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Abstract

Estimation of genetic diversity in rapeseed is important for sustainable breeding program to

provide an option for the development of new breeding lines. The objective of this study was

to elucidate the patterns of genetic diversity within and among different structural groups,

and measure the extent of linkage disequilibrium (LD) of 383 globally distributed rapeseed

germplasm using 8,502 single nucleotide polymorphism (SNP) markers. We divided the

germplasm collection into five subpopulations (P1 to P5) according to geographic and

growth habit-related patterns. All subpopulations showed moderate genetic diversity (aver-

age H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of diver-

gence (Fst > 0.24) between most of the combinations. The rutabaga type showed highest

divergence with spring and winter types. Higher divergence was also found between winter

and spring types. Admixture model based structure analysis, principal component and

neighbor-joining tree analysis placed all subpopulations into three distinct clusters. Admixed

genotype constituted 29.24% of total genotypes, while remaining 70.76% belongs to identi-

fied clusters. Overall, mean linkage disequilibrium was 0.03 and it decayed to its half maxi-

mum within < 45 kb distance for whole genome. The LD decay was slower in C genome (<
93 kb); relative to the A genome (< 21 kb) which was confirmed by availability of larger hap-

lotype blocks in C genome than A genome. The findings regarding LD pattern and popula-

tion structure will help to utilize the collection as an important resource for association

mapping efforts to identify genes useful in crop improvement as well as for selection of

parents for hybrid breeding.

Introduction

Rapeseed (Brassica napus L., AACC, 2n = 4x = 38), is a recent allopolyploid of polyphyletic ori-

gin that evolved from hybridization events between two parental ancestors of B. oleracea
(Mediterranean cabbage, CC, 2n = 2x = 18) and B. rapa (Asian cabbage, AA, 2n = 2x = 20) [1].

Rapeseed genotypes having < 2% erucic acid in seed and < 30 μM glucosinolates in seed meal
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is known as canola, which is the second largest oilseed crops produced in the world after soy-

bean [2]. Canola oil is mostly used in frying and baking, margarine, salad dressings, and many

other products. Because of its fatty acid profile and the lowest amount of saturated fat among

all other oils, it is commonly consumed all over the world and is considered a very healthy oil

[3]. Canola oil is also rich with alpha-linolenic acid (ALA), which is associated to a lower risk

of cardiovascular disease [3]. Additionally, canola is utilized as a livestock meal and is the sec-

ond largest protein meal in the world after soybean [4]. Rapeseed oil has various industrial

usages. The rapeseed oil, being simple alkyl esters is the best alternative to diesel fuel. It is

more energy-economic and environment friendly than diesel fuel [5]. The high erucic acid

content in rapeseed oil also made it suitable for using as lubricants [6] and surfactants [7].

Rapeseed expresses three growth habits, winter, spring, and semi-winter. The spring canola is

planted in the early spring and harvested in the late spring of the same growing season [8]. The

winter type canola is seeded in the fall, vernalized over the winter to induce flower and har-

vested in the summer [8]. The semi-winter type is needed for a shorter period of vernalization

to induce flower [9].

Rutabaga (Brassica napus ssp. napobrassica L.) is a cool-weather root crop, grown as table

vegetable and fodder for animals [10]. Likewise rapeseed, rutabaga was also derived from natu-

ral or spontaneous hybridization between B. rapa and B. oleracea [11]. European immigrants

brought rutabaga to North America [12] from its center of origin Sweden or Finland [10, 13].

Likewise most cruciferous vegetables, rutabaga bears anti-cancer properties [14] and showed

considerable variability for morphology, biotic and abiotic stress resistance, seed yield and

quality [10, 15].

In the United States of America (USA), the canola production increased 13.5 folds from

five years average of 1991–1995 (0.11 m tons) to five years average of 2015–2019 (1.49 m tons)

[16]. At the same time, canola oil consumption has increased rapidly in last few years. Statistics

shows, though canola production increased, but it is not enough to meet the demand. That’s

why, every year USA imports huge amount of canola oil (2.50 m tons in 2019) from other

countries [2]. In USA, canola production is restricted to north-central region and North

Dakota (ND) is the leading canola growing state, where 83% of US canola is grown. The North

Dakota State University (NDSU) canola-breeding program could play a vital role in canola

economy by developing high yielding varieties, shortening the breeding cycle and expanding

canola growing acreage.

NDSU canola breeding has already developed few varieties and handsome amount of

breeding populations. However, in recent years, the low genetic diversity of the parental stock

is hampering the sustainability of the program. This happened because of same sets of parents

has already been crossed in different combinations. The recent origin of B. napus as a species

and its very recent domestication (400 years ago), as well as selection on few phenotypes (e.g.

low erucic and glucosinolate acids, seed yield) also accelerated the low diversity which threat-

ens sustainable improvement of the crop [17]. The narrow genetic diversity might also limit

the prospects for hybrid breeding where complementing genepools are needed for the optimal

exploitation of heterosis [18]. Therefore, we want to expand the genetic base of NDSU stock by

incorporating diversified germplasms to existing collection. To shorten the breeding cycle and

maximize genetic gain, we want to use cutting-edge breeding techniques such genome wide

association mapping (GWAS) and marker-assisted selection. The knowledge of population

structure, genetic relatedness, and patterns of linkage disequilibrium (LD) are also prime

requirements for genome-wide association study (GWAS) and genome selection directed

breeding strategies [19, 20]. Therefore, it is crucial to study, preserve, and even introduce

genetic diversity into rapeseed since the diversity ensures the variability for biotic and abiotic

stress resistance, and various agronomical and morphological traits.
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We could assess the diversity of a germplasm collection by observing the phenotypic varia-

tions or genomic variations among the individuals. Before the advent of marker technology

and next generation sequencing technique (NGS), crop diversity was usually assessed based on

phenotypic performance. However, phenotyping is time consuming and labor intensive.

Moreover, plant growth stages and environmental factors severely affect the phenotyping,

results in erroneous prediction [21]. To overcome phenotyping limitations, researchers use

DNA-based molecular markers for assessing the genetic diversity. Utilization of molecular

markers accelerates the pre-breeding activities, as field phenotyping and pedigree information

are not required [22]. Multiple genetic diversity and population structure studies, based on

molecular markers [23–27], whole genome resequencing [28], transcriptome and organellar

sequencing [29] have already provided information regarding genetic diversity in various B.

napus collections around the world. However, the genetic diversity of the core collection main-

tained by the NDSU canola-breeding program has not been revealed yet. That is why; we car-

ried out this research to explore the genetic diversity, population structure level and

relatedness among the genotypes and to investigate the linkage disequilibrium (LD) and haplo-

type block pattern.

Materials and methods

Plant materials

A core collection of 383 rapeseed germplasm accessions was used for this study. The core is

composed of 67 advanced breeding lines developed by NDSU canola breeding program, 252

germplasm accessions collected from North Central Regional Plant Introduction Station

(NCRPIS), Ames, Iowa, USA and 64 varieties collected from different countries. The breeding

lines are F7 generation genotypes, obtained by crossing different parents in different combina-

tions. Initially, we collected 500 accessions from NCRPIS and phenotyped them under field

conditions. No flowering occurred in case of winter type. Among them, we choose 252 rela-

tively homogeneous genotypes for the core collection. Finally, the core collection was com-

posed of 155 spring, 151 winter, 60 semi-winter, and 17 rutabaga types (S1 Table). The core

collection is being and will be maintained through selfing. We grouped the core collection into

five subpopulations (P1 to P5) according to their type and origin. Hereafter, we referred the

European winter type as subpopulation-1 (P1), Asian semi-winter type as subpopulation-2

(P2), spring type NDSU genotypes (advanced breeding lines) as subpopulation-3 (P3), spring

type from different countries other than NDSU breeding lines as subpopulation-4 (P4), and

rutabaga type as subpopulation-5 (P5).

Genotyping and sequencing

DNA was extracted from young leaf tissue, collected from 30 days old plants. We collected

three leaf samples per genotype in tubes and flash frozen in liquid nitrogen. Each sample

was composed of leaves from three different plant of same genotype. Then we lyophilized

leaf tissue and ground it in tubes with stainless beads using a plate shaker. Qiagen DNeasy

Kit (Qiagen, CA, USA) was used for DNA extraction (3 samples per genotype) following

the manufacturer’s protocol. DNA concentration was measured using a NanoDrop 2000/

2000c Spectrophotometer (Thermofisher Scientific). The sample that contains good con-

centration of DNA was kept and other two discarded. Then we prepared the GBS library

using ApekI enzyme [30]. Finally, Sequencing of the library was done at the University of

Texas Southwestern Medical Center, Dallas, Texas, USA using Illumina HiSeq 2500

sequencer.
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SNP calling

SNP calling was done by TASSEL 5 GBSv2 pipeline [31] was used for SNP calling using a

120-base kmer length and minimum kmer count of ten. For alignment of the reads the rape-

seed reference genome [32] (available at: ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/686/985/

GCF_000686985.2_Bra_napus_v2.0/) was used. The alignment was done using Bowtie 2 (ver-

sion 2.3.0) alignment tool [33]. After passing all the required steps, TASSEL 5 GBSv2 pipeline

yielded 497,336 unfiltered SNPs. To obtain high quality SNPs, we filtered the raw SNPs using

VCFtools [34]. Filtering criteria: minor allele frequency (MAF)� 0.05, missing values (max-

missing)� 50%, depth (minDP)� 5, min-alleles = 2 and max-alleles = 2 was maintained to

have bi-allelic SNPs. This filtering yielded 53,616 SNPs. To make SNP unlinked, we thinned

out SNPs present within 1,000 bp distance. The SNPs that were located outside chromosomes

(i.e., position unknown), were removed. As canola is a self-pollinating crop, the SNPs that

were heterozygous in more than 25% of total genotypes, were also removed using TASSEL

[35]. Finally, we selected 8,502 SNP markers for this study.

Data analysis

To investigate the population structure, the core collection was differentiated into clusters

using STRUCTURE v2.3.4 [36] software. For this purpose, we used admixture model with var-

ious combinations of burn-in lengths (5,000 to 100,000) and Monte Carlo Markov Chain

(MCMC) lengths (5,000 to 100,000). Each combination was replicated 10 times per K

(K1-K10). As we grouped the collection into five subpopulations according to their type and

origin, we ran each replication considering genotype assigned to specific subpopulation as well

as no subpopulation i.e. genotype unassigned to any specific subpopulation. These were done

to determine the parameters needed to reach convergence. We used DeltaK approach [37] to

determine the ideal number of subpopulations, which was performed by Structure Harvester

[38]. We also used median (MedMedK and MaxMedK) or mean (MedMeaK and MaxMeaK)

estimators of the “best” K to group the subpopulations into optimum clusters [39, 40]. Ten

replicates of Q matrix were assembled using CLUMPP [41] to get individual Q matrix. Struc-

ture output was visualized using the Structure Plot v2 software [42]. Principal component anal-

ysis (PCA) was conducted by covariance standardized approach in TASSEL [35]. We

constructed phylogenetic tree using MEGAX program with 1,000 bootstraps [43] using neigh-

bor-joining (NJ) algorithm. Resulting tree was displayed using FigTree V1.4.4 [44].

We calculated analysis of molecular variance (AMOVA) to partition the genetic variance

among subpopulations in Arlequin3.5. To show the divergence, we calculated average pairwise

between subpopulations Fst values using Arlequin3.5 [45]. Tajima’s D value of each group was

calculated using MEGAX software [43]. GenAlex v6.5 [46] was used to estimate percentage of

polymorphic loci, number of effective alleles, Shannon’s information index, expected heterozy-

gosity and unbiased expected heterozygosity of each marker and subpopulation. To visualize

SNP density, we developed a distribution plot of SNP using R package CMplot (available at:

https://github.com/YinLiLin/R-CMplot). The polymorphism information content (PIC) of

markers was calculated using software Cervus [47]. To show relatedness among individuals,

we calculated kinship (IBS) matrix using software Numericware i [48] on a 1 to 2 scale. The

kinship heatmap and histogram were visualized using R package ComplexHeatmap [49]. The

correlation between level of relatedness (IBS coefficients) and Shannon’s information index (I)
and diversity (H) was calculated in R v3.5.2 [50].

Linkage disequilibrium (LD) pattern of whole collection and different subpopulations were

analyzed using PopLDdecay [51]. The mean linked LD was calculated by dividing total r2

value with total number of corresponding loci pair. In this case, r2> 0.2 was considered only.
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Same procedure was followed to calculate mean unlinked LD where r2� 0.2 was considered.

Haplotype block analysis was done using PLINK [52] with a window size of 5 Mb. Confidence

interval (CI) method [53] was used to identify haplotype blocks with high LD. Haplotype

blocks (>19 kb), observed in one subpopulation but not in the other, were considered to be

subpopulation-specific block. Haplotype blocks (>19 kb) shared by more than one subpopula-

tion, were considered to be common to corresponding subpopulations.

Results

SNP profile

We used 8,502 SNPs, covering 19 chromosomes for this study. The marker density was one

per 99.5 kb. Highest number (685 SNPs, 8.06%) markers was situated on chromosome A3 and

lowest (236 SNPs, 2.78%) was on chromosome A4. In terms of density, it was highest on chro-

mosome A7 (71.1 kb) and was lowest on chromosome C9 (134.5 kb) (Table 1, Fig 1).

The transition SNPs (4,956 SNPs) was more frequent than transversions (3,546 SNPs) with

a ratio of 1.40. The ratio of transitions to transversions SNPs was higher in A genome (1.41)

than that of in C genome (1.38). In both genome, G/C transversions were lowest (4.33% and

4.29%), but A/G and C/T transitions occurred in almost similar frequencies (Table 2). The

inbreeding coefficient within individuals (Fit), inbreeding coefficient within subpopulations

(Fis), observed heterozygosity (Ho) and fixation index (F) of all the markers ranged from -0.45

to 1.00, 0 to 0.73, 0 to 0.57 and 0.40 to 1.00, respectively. The mean Shannon’s information

index (I) of all markers 0.37 with a range from 0.10 to 0.69. The expected heterozygosity (He)

Table 1. Chromosome-wise distribution of SNP markers.

Chromosome No. of SNPs % SNPs Start position a End position b Length (Mb) Density c (Kb)

A1 440 5.18 149163 35806075 35.7 81.0

A2 392 4.61 13430 34692905 34.7 88.5

A3 685 8.06 2769 49103583 49.1 71.7

A4 236 2.78 32805 23517671 23.5 99.5

A5 413 4.86 18668 31435105 31.4 76.1

A6 448 5.27 120409 36005103 35.9 80.1

A7 384 4.52 85869 27388322 27.3 71.1

A8 281 3.31 231427 27734410 27.5 97.9

A9 541 6.36 81404 45841268 45.8 84.6

A10 305 3.59 133853 22085737 22.0 72.0

C1 445 5.23 86671 50660872 50.6 113.7

C2 589 6.93 92431 68260222 68.2 115.7

C3 651 7.66 3839 80365889 80.36 123.4

C4 634 7.46 138930 70507417 70.4 111.0

C5 366 4.30 26760 44124497 44.1 120.5

C6 414 4.87 275190 45479327 45.2 109.2

C7 518 6.09 271113 62304827 62.0 119.8

C8 383 4.50 57934 46317429 46.3 120.8

C9 377 4.43 920885 51627086 50.7 134.5

Mean 447.47 99.5

a Position of the 1st marker on a particular chromosome corresponding to reference genome
b Position of the last marker on a particular chromosome corresponding to reference genome
c Density was calculated by dividing the length with the marker number.

https://doi.org/10.1371/journal.pone.0250310.t001
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was from 0.05 to 0.50 with a mean value of 0.27. The polymorphic information content (PIC)

of all markers was less than 0.50 with a mean value of 0.22 (range: 0.05 to 0.37) (S2 Table). Sub-

population-wise marker diversity parameters are presented in S3 Table.

Population structure

We did structure analysis seven times with accessions unassigned and seven times with acces-

sion assigned to their type and countries of origin. Delta K approach indicated 3 to 9 clusters

Fig 1. Chromosome-wise SNP density map. Frequency of SNPs varies according to color gradient.

https://doi.org/10.1371/journal.pone.0250310.g001

Table 2. Transition and transversion SNPs across the genome.

Genome SNP type Model No. of sites Frequencies (%) Total (percentage)

A Transitions A/G 1195 14.06 2416 (28.3%)

C/T 1221 14.36

Transversions A/T 457 5.38 1709 (20.1%)

A/C 424 4.99

G/T 460 5.41

G/C 368 4.33

C Transitions A/G 1273 14.97 2540 (29.9%)

C/T 1267 14.90

Transversions A/T 496 5.83 1837(21.6%)

A/C 482 5.67

G/T 494 5.81

G/C 365 4.29

https://doi.org/10.1371/journal.pone.0250310.t002
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(Fig 2A and 2B), while four alternative statistics (MedMedK, MedMeaK, MaxMedK, and Max-

MeaK) determined following Puechmaille [39] and Li and Liu [40] indicated 3 clusters

(Table 3, Fig 2C). For each run, Delta K approach showed differences in cluster number for

both conditions: genotypes unassigned or assigned to their respective type and countries of

origin. However, opposite scenario was found for MedMedK, MedMedK, MedMedK, and

Fig 2. Bayesian clustering of whole collection using 8,502 SNP markers in STRUCTURE v. 2.3.4. Graphical representation of optimal

number of clusters (K) determined by Evanno’s method [37] with genotypes unassigned (A) and assigned (B) to their respective

countries, as well as by Puechmaille [39] and Li and Liu [40] method (C). Estimated population structure of 383 rapeseed genotypes on

K = 3 (D) using Puechmaille [39] and Li and Liu [40] method.

https://doi.org/10.1371/journal.pone.0250310.g002

Table 3. Clustering of core collection based on Evanno et al. (2005) [37] and Puechmaille et al. (2016) [39] methods using different combinations of burn-in lengths

and Markov Chain Monte Carlo (MCMC) lengths.

Run

#

Burn-in

lengths

MCMC

lengths

Number of clusters

(K)

Number of

Reps

Number of populationsα Number of populationsβ

ΔK (Unassigned)
a

ΔK (Assigned)
b

MedMedK MedMeaK MaxMedK MaxMeaK

1 5000 5000 10 10 3 6 3 3 3 4

2 10000 10000 10 10 8 8 3 3 3 3

3 20000 20000 10 10 8 3 3 3 3 3

4 20000 50000 10 10 8 3 3 3 3 3

5 50000 50000 10 10 9 6 3 3 3 3

6 50000 100000 10 10 9 3 3 3 3 3

7 100000 100000 10 10 3 7 3 3 3 4

α The ad hoc ΔK method [31]
aAccessions unassigned to any subpopulation
bAccessions assigned to subpopulation based on type and origin
βThe median (MedMedK and MaxMedK) or mean (MedMeaK and MaxMeaK) [33] estimators used to determine the number of cluster (K).

https://doi.org/10.1371/journal.pone.0250310.t003
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MaxMeaK statistic i.e., for each run it indicated three clusters. These outputs confirmed that

Puechmaille [39] and Li and Liu [40] method was more consistent than Evanno [37] method

(Table 3). Structure analysis revealed that 70.76% of genotypes belong to any of the three clus-

ters at similarity coefficient of 0.7 and 29.24% of genotypes are admixed (Table 4, Fig 2D).

Spring type accessions fall under cluster-1, whereas winter type European accessions fall under

cluster-3. Cluster-2 consists of all rutabaga types and different type rapeseed accessions

(Table 4). We performed principal component analysis (PCA) to show the genetic similarity

among subpopulations and genotypes. The first two axes explained 21% (PCA1 13.5% and

PCA2 7.22%) of the total observed variation (S4 Table). The PCA revealed that rutabaga (P5)

and other types having Asian origin make one group, whereas spring type (P3, P4) and Euro-

pean winter type (P1) make two distinct groups (Fig 3). In addition to that, we also constructed

unrooted phylogenetic tree based on neighbor joining (NJ) criteria (Fig 4). The output of

neighbor-joining (NJ) tree analysis was in line with that of PCA.

Population diversity

Polymorphic loci percentage was greater than 75% in all subpopulations. P1 bears highest

(99%) polymorphic loci, whereas it was lowest in P5 (75%). The diversity (H) was lowest in P4

and P5 (0.19) and was highest in P2 (0.25) with an average of 0.22. The Shannon’s information

index (I) ranged from 0.31 (P4 and P5) to 0.40 (P2) with an average of 0.34. The Tajima’s D

value ranged from -0.70 (P4) to 0.53 (P1) with an average of 0.13 (Table 5).

Population genetic differentiation

The analysis of molecular variance (AMOVA) revealed that variance among subpopulations

covered 24% of total variation and rest of its was covered by among individual variance

(Table 6) with a Fst and Nm value of 0.24 and 1.28, respectively.

We found significant (p< 0.01) between subpopulation Fst in all combinations. Except

combinations P3 and P4 (0.11), P1 and P2 (0.19), we found Fst> 0.20 for all combinations.

The pairwise Fst> 0.30 was observed between P1 and P5, P3 and P5, P4 and P5 (Table 7).

Kinship analysis showed that the IBS coefficients of the collection ranged from 1.21 to 1.94

with an average coancestry 1.47 between any two canola genotypes (Fig 5, S5 Table). Under P2

subpopulation, almost 50% of total genotypic pairs shows IBS coefficients less than 1.50. In

case of other subpopulation, portion of genotypic pairs having IBS coefficient less than 1.50,

was very low (Table 8, S1 Fig).

We also performed correlation analysis between mean pairwise relatedness (IBS coeffi-

cients) among individuals within subpopulation and Shannon’s information index (I),

Table 4. Proportion of admixed and non-admixed accessions per subpopulation based on membership coefficients.

Cluster (K) Core collection subpopulation based on type and origina Total Number

P1: Winter (151) P2: Semi-winter (60) P3: Spring_mixed origin (88) P4: Spring_NDSU (67) P5: Rutabaga (17)

K1 3 12 58 39 0 112

K2 15 12 8 0 17 52

K3 99 6 1 1 0 107

Admixture b 34 30 21 27 0 112

In-Cluster 77.48% 50% 76.13% 59.71% 100% 70.76%

Admixture 22.52% 50% 23.87% 40.29% 0% 19.24%

a Number of genotypes having q � 0.7 were assigned to specific cluster.
b Genotypes having q < 0.7 were considered as admixed genotype.

https://doi.org/10.1371/journal.pone.0250310.t004
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diversity (H). The I and H were significantly and negatively correlated with relatedness (r =

-0.97, -0.98, and p< 0.01), respectively.

Linkage disequilibrium pattern

Subpopulation, genome, and chromosome-wise linkage disequilibrium (LD) pattern was

investigated. LD = r2 values showed inverse relationship with distance i.e., mean LD was high

(r2> 0.22) at short distance bin (0–2 kb) and decreases with bin distance increment (S6

Table). In the entire collection considering both A and C genome, the mean linked LD and

mean unlinked LD was 0.44 and 0.02 respectively; and loci pair under linked LD and unlinked

LD was 1.81% and 98.20%, respectively. Subpopulation-wise mean linked LD ranged from r 2

= 0.41 (P2) to r 2 = 0.48 (P1). Subpopulation P5 harbored highest (8.76%) loci pair in linked

LD and it was lowest in P1 (1.52%). The mean linked LD, mean LD and loci pair under linked

LD was always higher in all cases in case of C genome than that of A genome (Table 9). We

also compared the LD decay rate based on distance at which LD decayed to its half maximum

Fig 3. Principal component analysis of SNP diversity based on genetic distance. Colors represent subpopulations.

https://doi.org/10.1371/journal.pone.0250310.g003
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(half-life), which is the point at which the observed r2 between sites decays to less than half the

maximum r2 value. In the whole collection, LD decayed to its half maximum within < 45 kb

distance for whole genome, < 21 kb for A genome, and< 93 kb for C genome. In all subpopu-

lations, the distance for LD decay to its half maximum was always higher for C genome than A

Fig 4. Phylogenetic tree (unrooted) based on neighbor-joining (NJ) algorithm using information from 8,502 SNP

markers based on 1000 bootstraps. Each branch is color-coded according to genotype belongs to subpopulation P1 to

P5. Genotypes were grouped into three clusters by dividing the tree using black solid lines according to structure

output.

https://doi.org/10.1371/journal.pone.0250310.g004

Table 5. Subpopulation-wise diversity parameters.

Subpopulations Polymorphic loci (%) Na a Ne b I c H d Uh e Tajima’s D�

P1 99.12 1.99 1.32 0.35 0.21 0.21 0.53

P2 94.32 1.94 1.40 0.40 0.25 0.25 0.30

P3 96.98 1.97 1.35 0.36 0.22 0.23 0.30

P4 80.67 1.81 1.30 0.31 0.19 0.19 -0.70

P5 75.25 1.75 1.31 0.31 0.19 0.20 0.23

Mean 89.27 1.89 1.34 0.34 0.22 0.22 0.13

a No. of different alleles
b No. of effective alleles
c Shannon’s information index
d Diversity
e Unbiased diversity. SE (standard error) was zero in all cases. Indices calculated using 8191 SNPs with GenAlex v. 6.5.

� was calculated with 1000 permutations.

https://doi.org/10.1371/journal.pone.0250310.t005
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genome. LD decay rate also varied according to chromosome (S2 and S3 Figs). LD decay was

lowest in chromosome C1 (348 kb) and C2 (244 kb), but was highest in chromosome A5 (13

kb) and A1 (16 kb) (S7 Table). LD decayed to its half–maximum within < 29 kb for P1, <45

kb for P2 & P3,<101 kb for P4, and<120 kb for P5. In all subpopulations, LD persisted also

longest in all chromosomes of C genome than that of A genome (Fig 6, S7 Table).

We also performed haplotype block (HBs) analysis to investigate LD variation patterns

across whole genome. A total 200 blocks covering 18 Mb out of the 976 Mb anchored B. napus
reference genome [32], were identified. A and C genome contained 67 and 133 haplotype

blocks, respectively. The total length of A and C genome specific HBs were 1.8 Mb and 16 Mb,

respectively. The total length of HBs varied greatly from chromosome to chromosome. Total

HBs length varies from 24 kb on A1 to 901 kb on A9 in A genome and in C genome it varies

between 40 kb on C9 to 3,610 kb on C2. The haplotype block (HBs) number and size in C

genome chromosome was always higher than that of A genome chromosome (Table 10). We

analyzed subpopulation specific and common HBs. We found C genome chromosome bears

more subpopulation specific HBs than A genome chromosome (Table 11). We also found

some HBs were shared by different subpopulations, but we did not find any HBs blocks that

was shared by all five subpopulations (Table 12). The shared HBs were usually located on C

genome chromosome. Rutabaga type shared different HBs with other types also.

Discussion

Genotyping-by-sequencing [30] is one approach to obtain high frequency SNPs. The strategy

has been used for population genetic studies, association mapping, and proven to be a power-

ful tool to dissect multiple genes/QTL in many plant species [54–56]. We obtained 497,336

unfiltered SNPs markers of which 8,502 high quality SNP markers were used for genetic diver-

sity analysis of 383 genotypes. Delourme et al. (2013) [23] conducted genetic diversity analysis

in B. napus using 7,367 SNP markers of 374 genotypes. However, different marker technolo-

gies such as Single Sequence Repeat (SSR), Sequence Related Amplified Polymorphism

(SRAP) markers have been used by other researchers for genetic diversity analysis in B. napus.

Table 6. Summary of AMOVA.

Sources of variation d.f. Sum of squares Variance components % of variation Fst Nm

Among subpopulations 4 130814.6 228.5��� 23.5 0.24 1.28

Within subpopulations 761 565699.6 743.4 76.5

Total 765 696514.1 971.9

��� indicates p< 0.001 for 1023 permutations.

https://doi.org/10.1371/journal.pone.0250310.t006

Table 7. Genetic differentiation among subpopulations.

Subpopulation pairwise Fst
P1 P2 P3 P4 P5

P1 0

P2 0.19�� 0

P3 0.25�� 0.24�� 0

P4 0.21�� 0.24�� 0.11�� 0

P5 0.34�� 0.24�� 0.34�� 0.39�� 0

Diagonal values are pairwise Fst comparisons, performing 1000 permutations using Arlequin v. 3.5.

��indicates p< 0.01.

https://doi.org/10.1371/journal.pone.0250310.t007
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Chen et al. (2020) [57] used 30 SSR markers, Wu et al. (2014) [58] utilized 45 SSR markers,

Ahmad et al. (2014) [59] used 20 SRAP markers for genetic diversity and population structure

analysis of B. napus. Earlier, our group conducted a genetic diversity study of flax using 373

germplasm accessions with 6200 SNP markers [60].

The SNP markers were distributed throughout 19 chromosomes of B. napus and the marker

density was one per 99.5 kb. This is comparable density to earlier study conducted by

Delourme et al. (2013) [23]. Therefore, this marker density provides a sufficient resolution to

estimate genome-wide diversity as well as the extent of LD within the genome. This marker

density will also help in association mapping studies to identify a causal locus/loci or linked

Fig 5. Heatmap of kinship matrix of entire collection.

https://doi.org/10.1371/journal.pone.0250310.g005

Table 8. Summary of subpopulation-wise kinship (IBS) matrix.

Subpopulations Whole collection P1 P2 P3 P4 P5

IBS coefficients range 1.21–1.94 1.40–1.94 1.27–1.93 1.29–1.93 1.46–1.94 1.35–1.92

Mean of IBS coefficients 1.47 1.58 1.49 1.55 1.62 1.60

Pairs having� 1.50 IBS coefficients (%) 63.9 9.6 50.7 21.7 1.1 18.0

Pairs having > 1.50 IBS coefficients (%) 36.1 90.4 49.3 78.3 98.9 82.0

https://doi.org/10.1371/journal.pone.0250310.t008
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loci that can be further used either in MAS or to pinpoint the causative locus [61] especially for

oligogenic traits. However, for polygenic traits such as seed yield, it is better to incorporate

more markers for genome wide association studies. The core collection utilized in this study

represents mostly adapted lines from various breeding programs. Therefore, sources of varia-

tion, markers of interest identified in the collection can be directly used in breeding programs.

We have identified higher frequency of transition SNPs over transversion SNPs that is an

agreement with Bus et al. (2012) [62], Clarke et al. (2013) [63], and Huang et al. (2013) [64] in

B. napus. Higher number of transition SNPs over transversion is also reported in other crop

species such as Hevea brasiliensis [65], Camellia sinensis [66], Camelina sativa [67], and Linum
usitatissimum [60].

To assess the suitability of marker for linkage analysis and diversity, we calculated PIC and

expected heterozygosity (He) of markers [68]. In our research, the PIC value is ranged from

0.05 to 0.35 indicating that the markers are modestly informative. The similar lower PIC value

(0.1 to 0.35) was reported by Delourme et al. (2013) [23] in B. napus. The lower PIC value is a

result of bi-allelic nature of SNP markers and probable low mutation rate [69]. In our study,

the He value of each marker was always greater than corresponding PIC value indicating an

average lower allele frequency in the population [68].

Population diversity and structure

We have identified a moderate diversity (average H = 0.22) within the subpopulations. B.

napus is capable of self-pollination, and little cross-pollination may be occurred by insect.

Table 9. Linkage disequilibrium in the studied collection.

Subpopulation Mean linked LD a Mean unlinked LD b Mean LD c Loci pairs in linked LD (%) Loci pairs in unlinked LD (%)

AC_Genome

Whole collection 0.44 0.02 0.03 1.81 98.2

P1 0.48 0.01 0.02 1.52 98.5

P2 0.41 0.02 0.03 2.65 97.4

P3 0.45 0.02 0.03 1.94 98.1

P4 0.45 0.02 0.04 3.98 96.0

P5 0.43 0.03 0.07 8.76 91.2

A_Genome

Whole collection 0.33 0.02 0.02 1.34 98.7

P1 0.38 0.01 0.02 1.12 98.9

P2 0.32 0.02 0.03 2.02 98.0

P3 0.36 0.02 0.02 1.41 98.6

P4 0.40 0.02 0.03 3.45 96.6

P5 0.38 0.04 0.06 7.06 92.9

C_Genome

Whole collection 0.50 0.02 0.03 2.21 97.8

P1 0.52 0.01 0.02 1.83 98.2

P2 0.46 0.02 0.04 3.27 96.7

P3 0.50 0.02 0.03 2.35 97.7

P4 0.48 0.02 0.04 4.41 95.6

P5 0.46 0.03 0.08 10.57 89.4

a Mean linked LD was calculated by dividing total r2 (r2> 0.2 was considered) value with total number of corresponding loci pair.
b Mean unlinked LD was calculated by dividing total r2 (r2� 0.2 was considered) value with total number of corresponding loci pair.
c Mean LD was calculated by dividing total value with total number of corresponding loci pair.

https://doi.org/10.1371/journal.pone.0250310.t009
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Being a mostly self-pollinated crop a low to moderate subpopulation diversity in B. napus is

expected. Low to moderate diversity was also found in previous studies [70–72]. Along with

the reproduction system, one needs to look at evolution and domestication history for explain-

ing low to moderate levels of diversity in B. napus. This allopolyploid species originated at

Mediterranean coast because of a natural cross between B. rapa and B. oleracea which occurred

approximately 0.12–1.37 million years ago [73, 74]. The domestication of B. napus occurred

very recently, around 400 years ago with the first rapeseed being most likely a semi-winter type

due to the mild climate in the region [75, 76]. Later on, European growers developed the win-

ter and spring type Brassicas through selection for cold hardiness or early flowering to expand

its cultivation in further North in the last century [77]. Therefore, the low to moderate diver-

sity in winter and spring B. napus can be mostly explained by a recent history of the species,

followed by infrequent exchange of genetic material with other Brassicas [23], as well as by the

traditional breeding practices selecting for only few phenotypes. In our study, the more diver-

sity in semi-winter type (P2, H = 0.25) than winter (P1, H = 0.21) and spring (P4, H = 0.19)

type is supported by its domestication history. The Nm value was greater than one, which indi-

cates that there was enough gene flow among semi-winter, winter, and spring types. These

findings also support the evolution of winter and spring types from semi-winter type. In this

Fig 6. Linkage disequilibrium (LD) differences and decay pattern among subpopulations.

https://doi.org/10.1371/journal.pone.0250310.g006
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research, Tajima’s D value was calculated to identify the extent of availability rare and unique

alleles [78]. Recently, the NDSU canola-breeding program developed the P4 advanced breed-

ing lines through crossing different genetic resources including winter, spring, and semi win-

ter types and subsequent selection. This current expansion of P4 was supported by its negative

Tajima’s D value, which harbors more rare alleles [79]. The subpopulation P1, P2, P3, and P5

showed positive Tajima’s D value indicating an excess of intermediate frequency alleles, which

may be caused by balancing selection, population bottleneck, or population subdivision. Previ-

ously, negative Tajima’s D values were found in spring and winter type B. napus accessions

[80]. The negative correlation between diversity indices (H and I) and relatedness (average IBS

coefficients) indicates that subpopulation differentiation was also due to selfing and genetic

drift. Flax [60] and Arapaima gigas species [81] also showed same scenario.

To exploit diversity and transgressive segregation, parents from divergent group should be

crossed. Pairwise Fst statistic, a parameter describing population structure differentiation [82],

was estimated among five subpopulations. In the present study all pairwise Fst values compris-

ing both low and high values, were statistically significant. Similar results were also found in

other studies [80, 83–85]. Lower pairwise Fst (0.11) was identified between spring type origi-

nated in USA (P4) and spring type originated in other countries (P3). This is reasonably justi-

fied as both subpopulations comprise of spring type genotypes and germplasm exchanged

occurred between USA and other countries. It also indicating that we will not get higher

genetic diversity in population if we use only spring types in the crossing program. But this

Table 10. Subpopulation-wise number and length of haplotype blocks (HBs) along chromosomes.

Entire panel P1 P2 P3 P4 P5

Chr. Noa Sizeb Noa Sizeb Noa Sizeb Noa Sizeb Noa Size b Noa Sizeb

A1 5 24 6 733 2 5 6 557 5 2080 0 0

A2 8 80 7 96 1 11 8 654 3 15 0 0

A3 6 46 5 29 5 44 8 51 10 927 1 8

A4 5 46 1 27 2 17 0 0 1 6 0 0

A5 7 57 2 13 3 503 5 138 5 427 1 1

A6 9 308 6 564 4 29 5 52 5 51 0 0

A7 8 70 7 72 2 15 7 412 9 1092 1 13

A8 4 304 1 2 3 21 2 234 6 2654 0 0

A9 10 901 7 62 14 1493 6 64 9 1393 1 21

A10 5 29 6 50 2 21 1 6 5 45 1 1

C1 23 3099 14 3314 14 4638 19 2947 20 4295 1 14

C2 26 3611 19 3141 9 4503 22 3756 16 5237 7 3594

C3 14 969 13 930 13 1480 16 1603 9 1070 2 192

C4 16 3440 15 5351 15 5330 14 4502 13 6063 4 3989

C5 9 423 8 410 10 516 7 1148 7 2679 1 2

C6 18 1204 9 972 7 1191 13 1206 15 3357 3 954

C7 17 2394 17 2583 7 70 16 2479 10 1414 1 13

C8 4 893 5 865 10 1289 6 941 7 1143 1 73

C9 6 41 7 49 4 438 7 223 3 11 1 14

AC Genome 200 17938 155 19264 127 21615 168 20975 158 33956 26 8888

A Genome 67 1865 48 1648 38 2160 48 2168 58 8688 5 43

C Genome 133 16073 107 17616 89 19455 120 18807 100 25267 21 8845

a Number of haplotype blocks on each chromosome.
b Total length of haplotype blocks for each chromosome in kb.

https://doi.org/10.1371/journal.pone.0250310.t010
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combination is good for accumulating specific elite trait if the targeted trait is found in mem-

bers of one and missing from the members of another group. We found spring type (P3 and

P4) genotypes are greatly divergent (Fst> 0.20) from winter and semi-winter type (P1 and P2)

genotypes. Utilization of genotypes from these groups in crossing program will broaden the

genetic base of developed population results in high heterosis. This potentiality has already

been proved as hybrids between the Chinese semi-winter and European (including Canada)

spring type exhibited high heterosis for seed yield [86]. The P5 (rutabaga type) showed the

higher Fst with other subpopulations such as the highest Fst was observed between P5 and P4

(NDSU spring type) followed by P3 (other spring type), P1 (winter type) and P2 (semi-winter

type). This outcome clearly shows that rutabaga is genetically distinct from spring and winter

type canola that is confirmed by previous studies [75, 87, 88]. This distinctness of rutabaga can

be exploited through heterosis breeding. Several previous studies have already showed ruta-

baga as a potential gene pool for the improvement of spring canola [89, 90]. NDSU canola

breeding program also utilized winter and rutabaga types in the breeding program for increas-

ing genetic diversity and for improvement of spring canola. AMOVA showed that variation

among individual within subpopulation captured greater portion of total variation, than that

by among subpopulation. This finding is also supported by earlier researches [56, 72, 91, 92].

This finding supports that within subpopulation genotype from P2, P3, and P1 could be

crossed as they showed high diversity (H> 0.20) for cultivar development.

Principal component analysis and distance-based population structure analysis such as NJ

tree yielded three subgroups in the core collection. Here, we ran structure analysis many times

to obtain convergence before the best number of clusters was determined. It was done because

previous studies [39, 93] reported that STRUCTURE program did not depict the main clusters

Table 11. Subpopulation specific number and length of haplotype blocks (HBs) along chromosomes.

P1 specific P2 specific P3 specific P4 specific P5 specific

Chr. No1 Size2 No1 Size2 No1 Size2 No1 Size2 No1 Size2

A1 1 683.06 0 0.00 0 0.00 2 1491.24 0 0.00

A2 1 39.03 0 0.00 2 598.97 0 0.00 0 0.00

A3 0 0.00 0 0.00 0 0.00 2 878.65 0 0.00

A4 1 27.02 0 0.00 0 0.00 0 0.00 0 0.00

A5 0 0.00 2 491.27 1 109.37 2 408.85 0 0.00

A6 1 522.43 0 0.00 1 23.04 0 0.00 0 0.00

A7 1 28.42 0 0.00 3 392.36 5 1054.82 0 0.00

A8 0 0.00 0 0.00 0 0.00 3 2411.28 0 0.00

A9 0 0.00 4 1409.29 1 36.87 3 1339.60 1 20.50

A10 0 0.00 0 0.00 0 0.00 1 22.15 0 0.00

C1 4 1723.88 4 3236.73 1 800.29 7 2334.07 0 0.00

C2 6 1537.92 7 4464.18 6 2741.63 5 3464.31 5 2796.14

C3 2 616.65 4 1024.20 4 724.95 2 378.76 0 0.00

C4 4 1764.07 6 2844.27 2 237.73 7 5148.84 1 3439.16

C5 1 29.99 2 121.08 1 771.31 2 2315.20 0 0.00

C6 3 795.86 1 691.72 4 782.76 4 2310.66 1 715.45

C7 3 2085.43 0 0.00 4 767.17 2 511.88 0 0.00

C8 0 0.00 1 390.00 1 885.21 4 1121.11 1 73.33

C9 1 27.36 2 262.00 1 32.61 0 0.00 0 0.00

1 Number of specific haplotype blocks longer than 19 kb on each chromosome
2 Total length (kb) of specific haplotype blocks longer than 19 kb on each chromosome.

https://doi.org/10.1371/journal.pone.0250310.t011
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within a collection. Based on Evanno’s ΔK method [37] and MedMedK, MedMeaK, MaxMedK

and MaxMeaK statistics [39], structure analysis divided the core collection into three distinct

clusters. Cluster-1 contains spring type NDSU advanced breeding lines (P4) and spring type

(P3) other than those. This finding is supported by low genetic differentiation (Fst = 0.11)

between P3 and P4 due to sharing of parents by advanced breeding lines from P3. Cluster-3 is

solely dominated by European winter type (P1) genotypes. This is also supported by high Fst
between winter and other types which may be due to geographic barriers between Europe and

America, Asia. Cluster-2 contained all rutabaga types as well as other type Asian genotypes

which indicates that all types share considerable amount of SNP markers attributing to this

cluster. These findings also indicate that there is gene flow among different types, which is also

supported by Nm> 1. Structure analysis revealed that all clusters contained both non-admixed

as well as admixed (share alleles attributed to different subpopulation) genotypes. For broad-

ening genetic diversity of population, non-admixed genotypes should be crossed. However,

for improving or introgression of specific traits, admixed genotypes could also be crossed

which will reduce the population size required for phenotypic screening. However, structure

analysis may overestimate the differentiation among individuals, as the individuals may not

share alleles from same ancestors [94]. Since a breeder would like to combine historically

never combined favorable alleles, IBS values directs which individuals should be crossed. Low

IBS is the best. However, self-pollinated crops exhibit higher kinship values than cross-polli-

nated crops, as homozygosity increases probability of being identical by state [95]. We found

approximately 64% of pairwise coancestry ranged from 1.21 to 1.50. Crossing among geno-

types from subpopulation P2 will demonstrate more diversity, than that of other

Table 12. Shared haplotype blocks (HBs) among subpopulation along chromosomes.

Chr. Shared HBs (size and corresponding subpopulation) a

A1 19.991 (P1, P4), 515.231 (P3, P4)

A2 0

A3 0

A4 0

A5 0

A6 0

A7 0

A8 232.016 (P3, P4)

A9 19.986 (P1, P2, P4)

A10 0

C1 20.457 (P1,P2, P3, P4), 38.038 (P1, P3), 134.065 (P2, P3, P4), 241.815 (P2, P3), 260.121 (P2, P3, P4), 336.839

(P1, P3), 374.884 (P3, P4), 438.341 (P1, P4), 652.629 (P3, P4), 718.372 (P1, P2)

C2 20.408 (P1, P2, P4), 28.252 (P1, P4), 164.414 (P3, P4), 729.678 (P1, P3, P4), 781.808 (P1, P4, P5)

C3 39.715 (P1, P4), 191.098 (P2, P5), 202.569 (P1, P2, P3), 611.558 (P3, P4)

C4 98.616 (P3, P5), 149.89 (P1, P2, P3), 378.898 (P1, P3), 436.853 (P1, P2, P3), 447 (P1, P3, P5), 601.227 (P2, P3),

867.133 (P1, P3, P4), 1265.92 (P1, P2, P3)

C5 337.986 (P1, P2, P3, P4)

C6 96.217 (P4, P5), 136.404 (P3, P4), 142.519 (P2, P5), 237.159 (P3, P4), 308.114 (P2, P4)

C7 390.085 (P1, P3), 828.502 (P3, P4)

C8 255.517 (P1, P2), 592.433 (P1, P2)

C9 171.465 (P2, P3)

a Length (kb) of common NBs longer than 19 kb on each chromosome with their corresponding subpopulation

shown in parenthesis.

https://doi.org/10.1371/journal.pone.0250310.t012
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subpopulations, as most genotypic combinations of P2 shows low IBS coefficients than others

do. This finding is in line with the evolutionary history of B. napus where semi-winter type is

the base population containing more divergence. Gradually this diversity is narrowed down in

P3 (spring type, mixed origin) and P1 (winter type), because genotypic pairs belong to P3 and

P1 having high IBS values evolved from semi-winter type [77]. Subpopulation P4 exhibited

highest number of pairs having IBS > 1.5, which is obvious as these genotypes are advanced

breeding lines developed from crossing of same set of parents in different combinations.

Genotypic pairs of P5 (rutabaga type) also showed high coancestry may be due to the dupli-

cates which is supported by low genetic differentiation of Nordic rutabaga accessions [27]. We

could discard the duplicates during the crossing program.

Linkage disequilibrium

Linkage disequilibrium can be defined as the correlation among polymorphisms in a given

population [96]. The strength of association mapping relies on the degree of LD between the

genotyped marker and the functional variant. Linkage disequilibrium analysis provides insight

into the history of both natural and artificial selection (breeding) and can give valuable guid-

ance to breeders seeking to diversify crop gene pools [17]. SNPs in strong LD are organized

into haplotype blocks, which can extend even up to few Mb based on the species and the popu-

lation used. Genetic variation across the genome is defined by these haplotype blocks. Haplo-

types, which are subpopulation-specific, are defined by various demographic parameters like

population structure, domestication, and selection in combination with mutation and recom-

bination events. Conserved haplotype structure can then be used for the identification and

characterization of functionally important genomic regions during evolution and/or selection

[97]. In addition, the extent of LD needs to be quantified across the genome at high resolution

(down to approximately one Kbp) [98]. The information is important for choosing crossing

schemes, association studies and germplasm preservation strategies [99–102].

We used markers from across the genome to quantify the LD for the core collection. Low

level of LD was evident for each individual subpopulation in A, C, and whole gnome. The low

level of LD can be due to multiple factors. First, canola is a partially outcrossing species with

an average of 21–30% of cross-pollination [103–105]. The outcrossing occurring in canola

leads to more recombination and to a breakdown of haplotype blocks. Secondly, the ancestral

history of canola is limited in comparison with other crops, such as rice, common bean, wheat,

and corn, restricting the selection of desirable haplotypes during the evolution. In other words,

there was no adaptation or domestication pressure on the species, which would lead towards

positive selection. Third, the only selection pressure imposed on the species for a relatively

short time was breeding. However, the breeding practices were biased towards selection of

only few phenotypes. Additionally, the short period under selection pressure might have not

been sufficient to select favorable haplotypes in the genome. Fourth, since canola cultivars

with different growth habits are compatible there has been always gene flow present between

them contributing to the low level of LD. The Nm>1 was observed in this study, which sup-

ports this gene flow. Fifth, the restriction enzyme used to develop the libraries for sequencing

of the core collection helped in identification of SNPs largely residing in genic regions, which

are prone to high recombination, contributing to the low level of LD. Finally, the low level of

LD may be due to thinning of markers, as we did not use all markers (53,616) for LD analysis

rather used 8,502 markers after thinning. That can be confirmed by analysis the LD using

whole marker set in further analysis.

In this study, we have identified that the LD decay in B. napus varied across chromosomes

of both A and C genomes. In addition, LD in C genome decayed much slower than A genome.
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C genome also contained larger haplotype blocks than A genome. This LD patterns are consis-

tent with previous findings [17, 26, 106–108]. The slower LD decay and presence of long hap-

lotype blocks in C genome indicates that high level of gene conservation could have resulted

from limited natural recombination or could be exchanged of large chromosomal segment

during evolution. In the whole genome, presence of subpopulation specific haplotype blocks

suggests that these regions had been experienced selection pressure for specific geographic

regions adaptation. In all subpopulations, presence of shorter haplotype blocks in A genome

than C genome reveals that B. rapa progenitor of B. napus containing A genome, which has

been used as oilseed crop and probably being used in hybridization process. Sharing haplotype

blocks by different subpopulations especially in C genome also confirms its conserved nature.

The low level of LD or haplotype blocks has implications for association mapping and a proper

experimentation design is necessary for utilizing a reduced set of markers by tagging major

haplotypes [109]. Though low LD of A genome requires more markers to pinpoint the location

of various QTL, but once a marker is found to be significantly associated with a phenotype,

there might be a higher probability of identifying the casual gene than that of C genome.

Conclusions

This study provides a new insight to select the best parents in crossing plan to maximize

genetic gain in the population. The population structure analysis showed a clear geographic

and growth habit related clustering. The rutabaga type showed the highest genetic divergence

with spring and winter types accessions. Therefore, the breeding strategies to increase the

genetic diversity may include generating population from rutabaga and spring crosses, or

using rutabaga and winter crosses. The linkage disequilibrium analysis revealed the decay pat-

tern and haplotype blocks in A and C genome. This output will help the breeder to formulate

breeding strategies to develop improved cultivars using modern breeding tools by utilizing this

collection and SNP markers.
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