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Inclusion of low-resolution data in macromolecular crystallo-

graphy requires a model for the bulk solvent. Previous

methods have used a binary mask to accomplish this, which

has proven to be very effective, but the mask is discontinuous

at the solute–solvent boundary (i.e. the mask value jumps from

zero to one) and is not differentiable with respect to atomic

parameters. Here, two algorithms are introduced for com-

puting bulk-solvent models using either a polynomial switch

or a smoothly thresholded product of Gaussians, and both

models are shown to be efficient and differentiable with

respect to atomic coordinates. These alternative bulk-solvent

models offer algorithmic improvements, while showing similar

agreement of the model with the observed amplitudes relative

to the binary model as monitored using R, Rfree and

differences between experimental and model phases. As with

the standard solvent models, the alternative models improve

the agreement primarily with lower resolution (>6 Å) data

versus no bulk solvent. The models are easily implemented

into crystallographic software packages and can be used as a

general method for bulk-solvent correction in macromolecular

crystallography.
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1. Introduction

The size, shape and crystallographic packing of macro-

molecules leads to interstitial spaces that occupy a significant

portion (typically >40%) of the crystal volume (Matthews,

1968). The solvent surrounding the protein is typically only

visibly ordered within the first shell of hydration, while the

scattering of the remainder can be approximated as arising

from a continuum. In macromolecular crystallography, this

effect is usually modeled by defining a region of zero density

inside the solvent-accessible surface, while the area outside is

treated as a constant (i.e. flat) scattering volume (which we

refer to as the ‘binary’ model). The resulting binary mask is

Fourier-transformed and added to the atomic structure factors,

yielding a total scattering factor Ft,

Ft ¼ Fc þ ksFs exp
�Bsjsj

2

4

� �
; ð1Þ

where Fc are the structure factors computed from the mole-

cule, Fs are the structure factors from the Fourier-transformed

binary mask, ks is the electron density of the bulk solvent in

units of electrons per Å3, Bs is a B factor that represents

the isotropic thermal disorder of the solvent and s is the



reciprocal-lattice vector. The effect of exponential multi-

plication by Bs in reciprocal space is smoothing of the bulk-

solvent model in real space (Fokine & Urzhumtsev, 2002).

The binary-mask model was initially proposed by Phillips

(1980) and later adapted in X-PLOR (Jiang & Brünger, 1994)

using a version of the Lee and Richards solvent-accessible

surface model (Lee & Richards, 1971). The constant ks and B

factor Bs can be optimized against the diffraction data and

recent efforts have improved the robustness of the solvent-

parameter optimization in PHENIX and CNS (Fokine &

Urzhumtsev, 2002; Afonine et al., 2005; Brunger, 2007; Adams

et al., 2010). This approach represents the current standard

and has been incorporated into most modern crystallographic

software packages. However, by virtue of the binary nature of

the mask used to calculate Fs, this bulk-solvent model is ‘jump-

discontinuous’ at the solute–solvent boundary (i.e. the mask

jumps from a value of zero to one) and therefore is not

differentiable with respect to the atomic coordinates. As a

result, chain-rule terms arising from the binary mask cannot

be included during optimization of the coordinates using

positional minimization or simulated annealing (Brünger et al.,

1987). Therefore, the bulk-solvent model is kept fixed until an

update is performed; thus, the overall target function is not

continuous. A potential problem with the binary mask is made

apparent by considering that values in the mask can be flipped

upon infinitesimal atomic coordinate changes (see Fig. 1).

The application of Babinet’s principle to macromolecular

crystallography was originally proposed by Moews & Kret-

singer (1975) and involves using the same Fourier coefficients

as derived from the atoms (Fc in equation 1) but with opposite

phases to describe the bulk-solvent scattering. An overlooked

aspect of this approach is that the bulk solvent is differentiable

with respect to the individual atoms and relies on the same

derivatives as computed for the atomic model structure

factors. However, the use of Babinet’s principle as a bulk-

solvent model is uncommon owing to the poor agreement with

the diffraction data relative to the binary model. This is a

consequence of the fact that the phase-inverted Fc is not an

adequate description of the electron density in the bulk-

solvent region, as it is not a characteristic function that shows

the relatively featureless electron density characteristic of

bulk solvent. Here, we propose a modification of Babinet’s

principle that uses a characteristic function rather than the Fcs

and retains differentiability with respect to the atomic co-

ordinates.

To generate a differentiable characteristic function, we first

use atom-centered Gaussians, which has been suggested and

implemented in various contexts in the past. Phillips’ initial

description of a bulk-solvent correction used Gaussians, but

the resulting Gaussian density was isocontoured at a selected

density level where all points outside the isocontour were set

to a constant density and all points inside were set to zero,

yielding a binary model (Phillips, 1980). Roversi and cowor-

kers used Gaussian smoothing of the molecular surface to

assist ab initio phasing methods (Roversi et al., 2000).

Kostrewa suggested the use of exponential smoothing as an

improvement over the binary model for crystallographic data

sets (Kostrewa, 1997; Fokine & Urzhumtsev, 2002), and a

Gaussian model for permittivity and ionic strength is common

in biomolecular Poisson–Boltzmann calculations (Grant et al.,

2001).

As an alternative to atom-centered Gaussians, we use a

polynomial switch at the solute–solvent boundary. The

simplicity of low-order polynomials offers a potential speed

benefit over the Gaussian treatment, which is an important

consideration for macromolecules with many atoms. The

utility of polynomials and their derivatives for describing

solute–solvent boundaries has been duly noted (Im et al., 1998;

Schnieders et al., 2007) and is a critical part of Poisson–

Boltzmann calculations for large systems (Baker et al., 2001).

Polynomials have also been noted to stabilize molecular-

dynamics simulations in which implicit bulk-solvent models

are used (Arnold & Ornstein, 1994).

We describe a simple replacement of the solvent-model

structure factors Fs using either a polynomial switch (which we

refer to as the ‘polynomial’ model) or a smoothly thresholded

version of atom-centered Gaussians (referred to as the

‘Gaussian’ model). We show that the polynomial and Gaussian

models result in continuous target values as a function of

coordinates and similar agreement with the diffraction data as

the binary model, as monitored using R,

Rfree and differences between model

and experimental phases. Finally, the

Gaussian and polynomial models are

differentiable with respect to atomic

coordinates such that chain-rule terms

arising from the bulk-solvent model

can be included during positional

minimization and simulated-annealing

protocols.
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Figure 1
A binary mask (gray squares) can be affected by moving a single atom
near the solvent–protein boundary (circle) along the shown vectorial path
by an infinitesmally small step, leading to noncontinuous changes in the
mask.

Figure 2
The total scattering of a macromolecule (gray) in bulk solution (blue) can be described as the sum of
the scattering from the macromolecule alone (Fc) plus constant bulk scattering (Fb) minus the solute
mask (Fm).



2. Methods

2.1. Babinet’s principle

The total scattering of a macromolecule in bulk solution is

depicted pictorially in Fig. 2. The scattering from the macro-

molecule alone (gray; Fc) is added to the constant scattering

from a bulk scattering mass (blue; Fb) minus the bulk scat-

tering effect that would arise from the macromolecular mask

alone (Fm). For the sake of simplicity, the symmetry of the

system is assumed to be P1. The situation simplifies in reci-

procal space, as the Fourier transform of the constant scat-

tering volume is zero (except at zero frequency, which is

ignored in this case). Therefore, (1) can be reformulated as

Ft ¼ Fc � ksFm exp
�Bsjsj

2

4

� �
: ð2Þ

This is Babinet’s principle as it is typically applied in macro-

molecular crystallography, with the exception of inverting the

phase of Fm rather than Fc. This is therefore opposite to the

binary model in that the real-space mask is one inside the

protein mask and zero elsewhere. Fm can be any function that

varies from zero in the bulk solvent to one in the solute region.

For both the polynomial and Gaussian models presented

below, we assume n atoms at individual coordinates ri and an

arbitrary grid point at rg. The distance between the two vectors

is defined as r = ||rg � ri||.

2.2. Gaussian model

The derivation of the Gaussian bulk-solvent model follows

that of Grant et al. (2001). Briefly, starting with a Gaussian

with variance �2,

�gðrÞ ¼ exp
�r2

�2

� �
; ð3Þ

a function for the bulk mask at grid point rg can be defined as a

product of the densities of individual atoms,

�maskðrgÞ ¼ 1�
Qn

i

½1� �gi
ðrÞ�; ð4Þ

which, ignoring atomic overlaps, is approximately equivalent

to

�sumðrgÞ ’
Pn

i

�gi
ðrÞ: ð5Þ

To generate a characteristic function that smoothly varies

from zero to one, the solute mask (note that the general term

‘mask’ can be any density function, not just limited to values of

zero and one as for a binary mask) is

MsoluteðrgÞ ¼ 1:0� expð�A�sumÞ: ð6Þ

A is a constant that scales the Gaussians. For this work, we

chose a value of 11.5 Å based on the results of Grant et al.

(2001).

Computation of the solute mask requires two loops, the first

being over the atoms (to generate �sum) and the second over

the map to carry out the exponentiation in the above equation.

This is similar to the binary bulk-solvent model, which

requires an initial pass through the atoms to generate the

mask and a second pass to shrink the mask based on the shrink

radius (Jiang & Brünger, 1994).

This mask can be Fourier-transformed to yield Fm in (2).

The solvent mask, which is necessary for the derivatives (see

equation 9), is simply

MsolventðrgÞ ¼ 1:0�MsoluteðrgÞ: ð7Þ

The Gaussian functions provide an easily differentiable

formalism with respect to the atomic coordinates,

@�gðrÞ

@ri;�

¼ �gðrÞ �
�2ri;�

�2
; ð8Þ

where � 2 {x, y, z}. This equation can be combined using the

chain rule to yield the derivative of the bulk solvent at rg for

atom i,

@MsoluteðrgÞ

@ri;�

¼
@MsoluteðrgÞ

@�gi

�
@�gi
ðrÞ

@ri;�

ð9Þ

¼
@MsoluteðrgÞ

@�sumðrgÞ
�
@�sumðrgÞ

@�gi
ðrÞ
�
@�gi
ðrÞ

@ri;�

ð10Þ

¼ AMsoluteðrgÞ �
@�gi
ðrÞ

@ri;�

; ð11Þ

which can be used with any target-function derivative with

respect to the bulk-solvent structure factors following the

equations given in Brünger (1989).

It is worthwhile to point out that the atomic Gaussians used

in the computation of Fc could be used for the purposes of

generating the solute/solvent mask. However, this would come

at a significant computational expense as the calculations for

the Gaussian and polynomial model are performed in P1 (see

Implementation section).

2.3. Polynomial switch model

For the polynomial model, we implemented a multiplicative

cubic switch function with the endpoints fixed at zero and one

(Im et al., 1998), although higher order functions are also

possible (Schnieders et al., 2007). Given an atom radius a and a

window size to compute the switch function w, the distance d

between the grid point and atom is computed as r� a + w. The

cubic polynomial function describing the solvent density is

then

�pðrÞ ¼
0:75½dðrÞ�2

w2
�

0:25½dðrÞ�3

w3
: ð12Þ

The switching function S is only computed within the window

w,

SðrÞ ¼

0 r � a� w

�p a� w< r< aþ w

1 r � aþ w

(
: ð13Þ

The characteristic function to yield the solute mask is the

product of the switch functions over atoms,

MsoluteðrgÞ ¼ 1:0�
Qn

i

SiðrÞ: ð14Þ
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This has the benefit that only a single pass through the atoms is

required, which provides a speed benefit over the Gaussian

model (data not shown). As above, the solute mask can be

used to compute Fm and the bulk-solvent density is simply

MsolventðrgÞ ¼ 1:0�MsoluteðrgÞ: ð15Þ

The derivative of the switch with respect to atomic coordinates

is only necessary inside the window region:

@�pðrÞ

@ri;�

¼
1:5½dðrÞ�ri;�

w2r
�

0:75½dðrÞ�2ri;�

w3r
: ð16Þ

The derivative of the solute mask with respect to atomic co-

ordinates can be obtained by

@MsoluteðrgÞ

@rj;�

¼
Msolvent

Sj rð Þ
�
�@SjðrÞ

@rj;�

; ð17Þ

which, as with the Gaussian model, can be combined using the

chain rule with the refinement target function of choice.

2.4. Implementation

An important point regarding the implementation of the

described models is the presence of the real-space solvent

mask in the derivatives (equations 9 and 17). This requires

that the solvent mask is stored in memory. Furthermore, as the

solvent mask is a many-body equation (i.e. the solvent density

at any given grid point may depend on several atoms,

including those generated by crystallographic symmetry), the

solvent mask must include contributions from the unique atom

set and nearby symmetry atoms. To properly account for this,

we first use the solute mask in computing Fm (equations 6 and

14) and then use a spatial decomposition routine to locate

atoms within a 4.0 Å shell around the unique atom set,

although the specific choice of this shell depends on the

parameters of the bulk-solvent model (e.g. w in the polynomial

model). This calculation is performed in P1. The resulting

mask is converted to a solvent mask (e.g. equation 7) and used

for the derivative computation.

The Gaussian and polynomial models were computed with

an experimental program system, Force Field X (FFX), which

is a Java Virtual Machine (JVM) based framework aimed

towards combining modules from several fields of molecular

biophysics into an integrated platform (Schnieders & Fenn, in

preparation). Bulk-solvent structure factors from FFX were

input to CNS v.1.3 (Schröder et al., 2010; Table 1). The CNS

optimization of the solvent parameters used a grid search

together with least-squares optimization (Brunger, 2007). The

least-squares optimization employed a least-squares target

function [see equation 2 in Brünger (1989) and equation 11 of

Jiang & Brünger (1994)]. The bulk-solvent models were

computed on a bounded grid that was calculated as one-third

of the maximum resolution, but limited to 0.57 and 0.9 Å for

high- and low-resolution structures, respectively (Rees et al.,

2005; Brunger, 2007). The default probe and shrink radius

parameters (1.0 Å) were used for the binary model in CNS.

We also optimized the solvent models within the FFX

framework (Supplementary Table 11). These optimizations

started from a scale (ks) that represents the electron density of

bulk water at 267 K and standard pressure, 0.33 e Å�3 (Botti et

al., 2002), and a B factor (Bs) of 50.0 Å2 (Fokine &

Urzhumtsev, 2002). FFX employed the derivatives given in the

appendix of Afonine et al. (2005) for the optimization of ks

and Bs. Analytic gradients were verified using finite-difference

methods and optimizations were carried out using a limited-

memory BFGS minimizer until the r.m.s. gradient magnitude

was reduced to less than 1.0 � 10�5. In contrast to CNS,

combined solvent-parameter grid searches/minimizations

were not performed. Furthermore, the solvent-model grid size

was simply computed as one-third of the maximum resolution

(Bricogne, 2006), i.e. no grid bounding was performed.

3. Results

For the test cases used here, only the anisotropic scale and

bulk-solvent parameters were fitted to the diffraction data.

Atomic coordinates were not altered from their deposited

values and no refinement of the positions or atomic B factors

was performed (except for testing of the analytic derivatives;
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Table 1
Bulk-solvent statistics for several test structures.

ks is the bulk-solvent scale term, Bs is the bulk-solvent B-factor term and |�’|
is the phase difference between the model and an experimentally determined
phase set. The binary model uses the standard probe and a shrink radius of
1.0 Å. The w value was held fixed at 0.8 Å for the polynomial model and the A
and � parameters for the Gaussian model were fixed at 11.5 Å and 0.55 times
the van der Waals radius, respectively. ‘None’ refers to the R values calculated
without a bulk-solvent model. The binary model was generated with CNS and
the polynomial and Gaussian models were generated with FFX and then
imported into CNS. Solvent-parameter optimization and analysis was carried
out with CNS.

PDB
code

dlim

(Å) Model
ks

(e Å�3)
Bs

(Å2)
R
(%)

Rfree

(%)
|�’|
(	)

1n7s 1.45 None — — 23.99 25.66 —
Binary (CNS) 0.42 52.2 20.00 22.17 —
Polynomial 0.45 61.1 20.14 22.32 —
Gaussian 0.50 70.3 20.15 22.29 —

3dyc 2.3 None — — 30.23 36.27 —
Binary (CNS) 0.34 33.7 20.82 26.54 —
Polynomial 0.40 61.2 21.42 27.42 —
Gaussian 0.42 67.0 21.48 27.35 —

3bbp 3.0 None — — 39.31 55.24 —
Binary (CNS) 0.32 62.3 31.56 35.50 —
Polynomial 0.34 62.9 32.29 35.65 —
Gaussian 0.35 64.5 32.38 36.59 —

2du7 3.6 None — — 34.36 39.82 —
Binary (CNS) 0.25 102.3 31.39 36.31 —
Polynomial 0.25 89.4 31.27 36.50 —
Gaussian 0.28 104.0 31.33 36.46 —

3bbw 4.0 None — — 35.11 40.31 —
Binary (CNS) 0.38 43.3 30.15 32.41 —
Polynomial 0.35 19.6 29.92 32.83 —
Gaussian 0.38 34.4 30.37 33.26 —

1nsf 1.9 None — — 32.11 31.80 39.86
Binary (CNS) 0.40 62.2 25.66 25.84 38.51
Polynomial 0.40 71.0 26.07 26.26 38.69
Gaussian 0.42 91.8 26.13 26.33 38.78

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: MN5003). Services for accessing this material are described at the
back of the journal.



see below). All atoms, including ordered water molecules,

were included as part of the molecular surface for use in

computation of the solvent mask (e.g. equations 6 and 14).

However, TLS-based (Schomaker & Trueblood, 1968)

ANISOU records from the PDB files and ligands were ignored

(MPD in the case of PDB entry 1n7s, zinc and phosphate in

PDB entry 3dyc, GTP in PDB entry 3bbp and ATP in PDB

entry 1nsf) owing to a lack of support for these ligands in the

software used.

We initially sought to determine optimum values for the two

variable parameters of the alternative bulk-solvent models: �
for the Gaussian model and w for the polynomial model (the

value of a in the polynomial model was set to the van der

Waals radius). Using a grid search with the R and Rfree values

as a guide, a value of 0.55 times the van der Waals radius was

determined for � to consistently yield optimum R values (data

not shown). In some cases, the optimum value for � varied

slightly; it is straightforward for these cases to implement grid-

search routines as part of the refinement process (Brunger,

2007). For the polynomial model, we determined a value of

0.8 Å for w, which yielded similar R values to the Gaussian

model. Furthermore, the profiles of the polynomial and

Gaussian models with these values appeared to be similar

(Fig. 3d and discussion below), suggesting that the two masks

model the bulk solvent in a similar fashion.

A density slice of the binary and Gaussian bulk-solvent

models is presented in Fig. 3. Of note is the continuous smooth

transition from the protein region (red) to bulk solution (blue)

in the Gaussian/polynomial mask (Fig. 3b) versus the sharper

transitions in the binary mask (Fig. 3a). The other apparent
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Figure 3
Density slices from (a) a binary model mask and (b) the corresponding Gaussian model mask (the polynomial model mask is similar and is not shown)
derived from test model 1exr. The coloring scheme is from red (zero density) through white (0.5 density level) to blue (1.0 density level). Below each
density slice is a one-dimensional representation of the mask for each case, given a single atom at the origin. The distance from the atom in Å is given on
the x axis and the y axis depicts the relative electron density of the mask. In (d), the Gaussian model (A = 11.5 Å, � = 0.55 times the van der Waals radius)
is shown in blue and the polynomial model (a set to the van der Waals radius, w = 0.8 Å) is shown in magenta given an atom with a van der Waals radius of
1.75 Å.



feature of the density slices is that the alternative bulk-solvent

models do not use a probe radius to extend the solvent mask

and therefore the resultant masks are more closely associated

with the van der Waals surface definition of Richards (1977)

and Connolly (1985) rather than the solvent-accessible surface

that defines the binary model (Lee & Richards, 1971). The

shrink procedure of the binary mask reduces the solvent-

accessible surface to the molecular surface, with the intention

that small internal cavities are excluded from the mask

(compare Figs. 3a and 3b). This has the effect of preventing

bulk-solvent scattering in regions that should not scatter

X-rays, such as hydrophobic cavities. However, it is not

determined from the mask procedure what type of contacts

are available (if any) in the excluded cavities to differentiate a

cavity as hydrophobic or otherwise (Finney, 1975). In any case,

significant experimental evidence suggests that internal

cavities – even small hydrophobic cavities – can be partly

occupied by water molecules that exhibit short bound life-
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Figure 4
Rfree values as a function of resolution. Blue circles correspond to no bulk-solvent correction, magenta squares to the binary model, yellow diamonds to
the polynomial model and green triangles to the Gaussian model. Only a single overall scale factor was used for the R-value calculations rather than a
resolution-dependent scale for the sake of consistency with the overall R values. (a) 1n7s, (b) 3dyc, (c) 3bbp, (d) 2du7, (e) 3bbw, (f) 1nsf.



times or are dynamically disordered such that the water

molecules are not observed in crystallographic experiments

(Richards, 1977; Tilton et al., 1986; Ernst et al., 1995; Buckle et

al., 1996; Otting et al., 1997; Yu et al., 1999; Liu et al., 2008).

Therefore, the use of the van der Waals surface in the alter-

native bulk-solvent models has some physical footing,

although it is not entirely correct since the average electron

density in these small internal cavities is expected to be less

than that of the bulk solvent. Nevertheless, we obtain similar R

values with the binary, Gaussian and polynomial models (see

discussion below) and the difference densities in small cavities

appear to be similar (Supplementary Fig. 1). A pictorial

representation of the mask is also shown in the one-

dimensional case for an atom located at the origin below each

two-dimensional density slice using either the binary model

(Fig. 3c) or the Gaussian/polynomial model (Fig. 3d). The

Gaussian and polynomial models generate a solvent distri-

bution that asymptotes to bulk electron density approximately

where the first shell of density in radial distributions of solvent

about protein molecules appears (Pettitt et al., 1998; Makarov

et al., 2002; Chen et al., 2008).

The similar Rfree of the Gaussian and polynomial models

compared with the binary model (Table 1 and Supplementary

Table 1) suggests that the alternative bulk-solvent models are

similarly consistent with the diffraction data. This is also

reflected in the agreement between the calculated and

experimentally determined phases in the 1nsf test case. Fig. 4

shows that the bulk-solvent models (magenta, yellow and

green lines) primarily improve the Rfree at a resolution lower

than approximately 6 Å (0.03 Å�2) compared with having no

bulk-solvent correction (blue lines), although the agreement

with the high-resolution data is also improved in most cases.

The ks values are higher on average for the polynomial/

Gaussian models versus the binary model, perhaps compen-

sating for an overall smaller solvent electron-density volume

owing to the soft nature of the transition at the solvent–solute

boundary compared with the binary model.

To test the analytic gradients of the alternative bulk-solvent

models, a solvent water molecule in one of the tested struc-

tures (water 2126 in model 1exr) was moved from its original

position in 0.05 Å increments into the bulk solvent while

monitoring the analytic atomic derivatives compared with

finite differences of the log likelihood [LLK; for details on the

computation of the log-likelihood target, see Cowtan (2005)

and McCoy (2004)]. Finite differences were calculated using a

double wide criterion

LLKðxþ�xÞ � LLKðx��xÞ

2�x
: ð18Þ

For this procedure, the scale and B-factor values of the bulk

solvent were held fixed as the water molecule was moved. The

results are shown in Fig. 5. Using a �x of 1.0 � 10�4 Å

(Fig. 5a), the derivatives and finite differences match if deri-

vatives based on either (9) or (17) are included (solid lines),

but do not agree (dashed green and red lines in Fig. 5a) if the

derivatives of the bulk solvent are not included.

The finite differences for the binary model with solvent-

model updates performed at every step (blue dots in Fig. 5b)

show larger fluctuations than the corresponding calculation

without derivatives for the Gaussian and polynomial models

(compare the dashed lines in Fig. 5a and the dotted lines in

Fig. 5b). �x was set to 0.01 Å in the binary case to avoid

aliasing artifacts. Finer grid spacings could not improve this

result. This example illustrates that the alternative bulk-

solvent models will be less prone to sawtooth-like (i.e. up and

down) patterns during bulk-solvent model updates (see, for

example, Fig. 2 in Phillips, 1980). However, computation of the

solvent model and its derivatives are required at every mini-

mization or simulated-annealing step to achieve the improved

stability.
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Figure 5
Difference between analytic and numerical derivatives (y axis) upon moving a solvent water atom through bulk solution (x axis). (a) The solid lines show
the derivatives and finite differences calculated using either the polynomial model (green) or the Gaussian model (red) and a � (18) of 1.0� 10�4 Å. The
solid green and red lines overlap and thus only the green line is visible. Dashed lines represent the differences if the derivatives with respect to bulk
solvent are not included in the total. (b) Derivatives calculated by finite differences using the binary model, with solvent-model updates performed at
every step and a � of 0.01 Å.



4. Conclusions

Implicit continuum solvent models are important for crystal-

lographic refinement to improve the agreement between

model and diffraction data at low resolution and such models

also have potential for improving phasing methods (Roversi et

al., 2000). The utility of a polynomial or Gaussian definition of

the solvent density extends beyond crystallography, as conti-

nuum solvent electrostatics are a crucial component in

analyses such as computations of binding and desolvation

energies (for a review of this subject, see Kollman et al., 2000),

as well as pKa calculations, for which accurate continuum

models and their derivatives are crucial in improving agree-

ment with experiment (Simonson et al., 2004). It is also

possible to combine implicit models based on reference

interaction-site models (Lounnas et al., 1994) and explicit

solvent, although both come with a greater time cost. These

methods may be of interest in accounting for differences in

solvation between multiple structures and to fully analyze the

pattern of hydration around macromolecules (Makarov et al.,

2002); studies of protein structures have suggested the need

for such methods for quite some time (Savage & Wlodawer,

1986). Furthermore, crystal structures obtained with highly

accurate experimental phases suggest that the outer shells of

solvation about proteins may not be captured by a simple

continuum model (Burling et al., 1996).

The polynomial and Gaussian continuum solvent models

offer a comparable agreement with the diffraction data versus

the standard binary model as the R values and phase differ-

ences suggest. The continuous nature of the alternative

models offer improved stability for atomic refinement, the

latter of which acts as a ‘continuum boundary’ on the atoms.

These aspects of the polynomial and Gaussian models will be

most powerful when the model is updated at each step during

the refinement process.
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