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N E U R O S C I E N C E

Dissecting motor skill acquisition: Spatial coordinates 
take precedence
Pablo Maceira-Elvira1,2†, Jan E. Timmermann3†, Traian Popa1,2‡, Anne-Christine Schmid1,2‡,  
John W. Krakauer4, Takuya Morishita1,2, Maximilian J. Wessel1,2,5, Friedhelm C. Hummel1,2,6*

Practicing a previously unknown motor sequence often leads to the consolidation of motor chunks, which enable 
its accurate execution at increasing speeds. Recent imaging studies suggest the function of these structures to be 
more related to the encoding, storage, and retrieval of sequences rather than their sole execution. We found that 
optimal motor skill acquisition prioritizes the storage of the spatial features of the sequence in memory over its 
rapid execution early in training, as proposed by Hikosaka in 1999. This process, seemingly diminished in older 
adults, was partially restored by anodal transcranial direct current stimulation over the motor cortex, as shown by 
a sharp improvement in accuracy and an earlier yet gradual emergence of motor chunks. These results suggest 
that the emergence of motor chunks is preceded by the storage of the sequence in memory but is not its direct 
consequence; rather, these structures depend on, and result from, motor practice.

INTRODUCTION
Completing daily life activities often requires the sequential execu-
tion of actions in a specific order. A large amount of research has 
focused on how humans acquire sequential motor skills using well- 
established experimental paradigms alongside different imaging 
techniques to study the processes that lead to skill improvement (1). 
One of these paradigms, known as the sequential finger-tapping task 
(2, 3), has been used in past years because of its similarity to certain 
activities requiring higher dexterous skill, such as piano playing or 
typing on a computer. Performance improvement of a sequence-tapping 
task is characterized by a shift in the speed-accuracy trade-off, in which 
the speed of execution of the motor sequence increases without sac-
rificing the accuracy (4). The execution of sequential elements at 
increasing speeds leads to the spontaneous emergence of execution 
patterns (5, 6), namely, motor chunks (7), which reduce mental load 
(8) and facilitate a further increase in speed without sacrificing 
accuracy (9).

Recent discussions about this type of motor task are concerned 
with its validity for probing changes in motor ability (10). Motor chunks 
seem to be crucial for the optimization of such a task. Despite the 
ongoing debate on the role of the primary motor cortex (M1) in 
motor skill acquisition (11, 12), recent studies have not found a rep-
resentation of these structures in the primary motor cortex (13, 14), 
so it would appear that the task is probing mainly the cognitive 
aspects of motor learning, specifically the efficient retrieval of the 
sequence elements from memory [for a detailed discussion, please 
see (15)]. Nevertheless, most studies looking at the consolidation of 
motor chunks have been done in healthy young adults, a population 
in which the involved mechanisms, such as the encoding, storage, 

and the successful retrieval of sequence elements may be acting too 
quickly to be captured by the applied methods.

A common approach in systems engineering is to examine the 
functionality of an application by comparing the expected behavior 
of the system (i.e., requirement) and its actual performance. This 
approach can be applied to biological systems as well. For example, 
Shadmehr and Krakauer (16) compared computational models 
describing motor control to specific populations of patients with 
lesions in the central nervous system, mapping different model 
parameters to lesioned brain areas and attributing distinct roles to 
them (e.g., state estimation, optimization, etc.). Similarly, understand-
ing the mechanisms involved in motor sequence learning may be 
better achieved through the juxtaposition of individuals constituting 
the requirement (e.g., young adults, depicting optimal performance) 
and individuals in which the involved mechanisms may no longer 
function optimally (e.g., older adults).

Previous research shows neurophysiological, structural, and func-
tional changes occurring in the aging brain that lead to a decline in 
cognitive (17) and motor functions (18–22); for review, please refer 
to (23, 24). Hence, motor skill acquisition is typically diminished in 
older adults (3, 25, 26). However, the application of anodal tran-
scranial direct current stimulation (atDCS) to the motor cortex seems 
to enhance the motor skill acquisition (3, 27). Although the mecha-
nisms of action of atDCS in individuals are complex and not yet 
entirely understood, its application can be used as an additional 
probe to dissect motor skill acquisition.

We designed a study intended to identify (i) the main factors lead-
ing to differences in motor skill acquisition with aging and (ii) the 
effect of applying noninvasive brain stimulation during motor training. 
Comparing different components of motor skill acquisition in young 
and older adults, constituting the extremes of performance in this 
study, we found that the improvement of the sequence-tapping task 
is maximized by the early consolidation of the spatial properties of 
the sequence in memory (i.e., sequence order), leading to a reduced 
error of execution, and by the optimization of its temporal features 
(i.e., chunking). We found the consolidation of spatiotemporal fea-
tures to occur early in training in young adults, suggesting the 
emergence of motor chunks to be a direct consequence of com-
mitting the sequence elements to memory. This process, seemingly 
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less efficient in older adults, could be partially restored using atDCS 
by enabling the early consolidation of spatial features, allowing them 
to prioritize the increase of their speed of execution, ultimately leading 
to an earlier consolidation of motor chunks. This separate consoli-
dation of spatial and temporal features seen in older adults suggests 
that the emergence of temporal patterns, commonly identified as 
motor chunks at a behavioral level, stem from the optimization 
of the execution of the motor sequence resulting from practice, 
which can occur only after the sequence order has been stored 
in memory.

RESULTS
Age-related behavioral differences in the execution 
and practice of a sequence-tapping task
We studied differences in motor performance related to healthy aging 
using a well-established sequence-tapping task (2, 3) and followed 
their evolution during training. We recruited a cohort of 52 healthy 
adults belonging to three age groups: young (18 to 30 years old; 
n = 22, 13 female; age = 24.7 years old), middle-aged (50 to 65 years 
old; n = 15, 9 female; age = 57.4 years old), and older (>65 years 
old; n = 15, 8 female; age = 74.1 years old). Each participant trained 
for 20 min each day for five consecutive days. The training consisted 
of six 90-s training blocks interspaced by 90-s blocks of rest. The 
participants had to replicate a nine-digit sequence displayed on a 
screen, as quickly and as accurately as possible, using their left (non-
dominant) hand. We inserted a seventh block with a different se-
quence (i.e., “catch” block) halfway through training to evaluate 
the difference between the pure motor execution of a random se-
quence and that of the trained sequence. The participants returned 
on days 10 and 60, from the beginning of training, to evaluate the 
long-term retention of the learned sequence.

Figure 1A shows the main results of this experiment. We found 
no transfer of learning from the training sequence to the catch blocks, 
so we removed these blocks for the subsequent analyses (please refer 
to the Supplementary Materials to find the scores including the catch 
blocks). Previous studies (3, 28) considered only the number of cor-
rect sequences as the primary outcome. However, as we instructed 
our participants to be both as fast and as accurate as possible, we 
added an extra factor to the more traditional measure, scoring the 
participants by considering the number of correct sequences produced 
in each block, weighted by the ratio of the correct to absolute number 
of sequences (i.e., percent correct). To capture individual improve-
ment on the training sequence, we corrected individual scores by 
subtracting the score in the first block from the scores in the following 
blocks as a centering procedure (please refer to the Supplementary 
Materials for more information on the choice for scoring and to find 
the uncentered scores of all groups).

We used a linear mixed-effects (LME; please refer to Methods 
for details) model to quantify differences between groups. Scores on 
the fifth day (i.e., total learning, relative to the first block of training) 
were significantly higher in the young adults than in the middle-aged 
(t55 = 5.19, d = 2.61, P < 0.0001) and older (t55 = 8.23, d = 4.14, 
P < 0.0001) adults, with the middle-aged group scoring significantly 
higher than the older group (t55 = 2.78, d = 1.52, P = 0.01). At the 
follow-up testing days (i.e., days 10 and 60), the relative differences 
between the age groups persisted. Performance in all groups con-
tinued to increase significantly by the 10th day but dropped back to 
the level of day 5 on day 60.

The performance of individuals executing explicit motor sequence 
learning tasks has been characterized by nonlinear improvement 
dynamics, showing sharp improvements occurring during the first 
training day and modest improvements in subsequent days (29). 
Therefore, we compared the rate of improvement (i.e., slopes) be-
tween age groups on each training day. We found a marked difference 
on the first day, where the slope for the young group was significantly 
steeper than the slope for the middle-aged (t245 = 2.97, d = 0.99, 
P = 0.008) and older (t245 = 5.39, d = 1.8, P < 0.0001) groups. In 
young individuals, this slope was significantly steeper than that on 
the second day (t245 = 6.46, d = 1.94, P < 0.0001). Differences be-
tween slopes in middle-aged and older groups on the first day and 
differences among all groups from the second day onward were not 
significant. This suggested that the dynamics of the learning process, 
especially on the first day, are one of the main factors leading to the 
differences observed by the end of training.

We also tested overnight consolidation (i.e., offline learning), which 
is known to be diminished in aging populations (30, 31) because of 
different sleep patterns, such as lower quality or fragmented sleep 
(32). We found offline learning, quantified as the score difference 
between the last training block of a day and the first training block 
from the following day, to be significantly higher in the young adults 
than in the middle-aged (t196 = 3.34, d = 0.55, P = 0.002) and older 
(t196 = 3.47, d = 0.58, P = 0.001) adults, with no differences found 
between the middle-aged and older groups (t196 = 0.12, d = 0.02, 
P = 0.99). There is an ongoing discussion about overnight consoli-
dation, leading to seemingly enhanced performance, being an arti-
fact of increased fatigue toward the end of a training session (33). 
To test whether this was the case, we used a visual analog scale (VAS) 
to inquire about the state of fatigue and attention in all participants 
before and after each training block. We did not find a significant 
correlation between either of these factors and our estimation of offline 
learning, which does not provide evidence of neither fatigue nor 
attention biasing our estimate of offline learning. Offline gains were 
only consistently apparent in young adults, for whom attention and 
fatigue did not vary significantly over the course of the training ses-
sions (please refer to the Supplementary Materials to find the results 
of these tests).

Figure 1B shows the proportion of total learning represented by 
fast online learning during the first day, slower online learning during 
the subsequent days, and offline learning between training days. Of 
note was the lack of offline learning in the middle-aged and older 
adults, which was replaced by offline forgetting. Previous research 
has shown learning consolidation after sleep for finger-tapping tasks 
(2, 34), an effect apparent here in young participants. The extent of 
this consolidation might depend on different sleep-related factors 
(35). In older adults, previous research has shown impaired con-
solidation of motor learning (30, 31), potentially related to reduced 
sleep spindle oscillations and an associated decrease in activity in 
the corticostriatal network (36). Diminished sleep quality in older 
adults, derived from changes in the circadian rhythm and fragmented 
sleep (32), could also contribute to the lack of offline gains. Diminished 
performance after rest has been reported to come from warm-up 
decrements, which may bias the estimation of the improvement 
rate during training (37). However, as offline losses are absent in 
young adults and we still see comparable slopes among all groups 
from the second day on, it is unlikely that the seemingly diminished 
retention seen in older adults is artificially altering the learning curves 
seen in this group.



Maceira-Elvira et al., Sci. Adv. 8, eabo3505 (2022)     20 July 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

Age-dependent differences in speed and accuracy
As motor skill acquisition refers to the practice-related increase in 
speed and accuracy in the execution of a motor task (38), these pa-
rameters could explain differences in the slope on the first day. Speed 
in the young adults was significantly higher than that in the middle-aged 
(t49 = 4.41, d = 2.64, P = 0.0001) and older (t49 = 7.35, d = 4.40, 
P < 0.0001) adults, and speed in the middle-aged adults was higher 
than that in the older adults (t49 = 2.69, d = 1.76, P = 0.02). Accuracy 
on the first day was not significantly different between age groups, 
but the young group was significantly more accurate than the older 
group on day 2 (t76 = 2.98, d = 0.82, P = 0.01) and day 3 (t76 = 2.93, 
d = 0.81, P = 0.01).

We normalized the speed and accuracy in each group to study 
the dynamics of these two parameters. Figure 1C shows the changes 
in both speed and accuracy relative to the first block of training for 
all three groups (please refer to the Supplementary Materials for more 
details on the calculation of speed and accuracy). Speed consistently 
increased across training in all age groups, albeit to different extents 
(Fig. 1C, dashed lines). Accuracy in the young and older adults fol-
lowed different dynamics; starting from similar levels of accuracy on 
the first day, the young participants sharply increased their accuracy 
in the early stages of training and reached a plateau, whereas the older 
group gradually reached its maximum accuracy over the course of 
the training week (Fig. 1C, solid lines). In other words, young adults 
improved their execution following a pattern reminiscent of the 

model presented by Hikosaka and colleagues (39), in which the spa-
tial coordinates of the task (i.e., the accurate mapping of numbers to 
fingers stored in memory) are optimized before the motor coordi-
nates (i.e., rapid execution of motion). In contrast, older adults seem 
to develop both coordinates in parallel, gradually increasing both 
speed and accuracy.

Motor chunks and age-related differences
Motor chunking is a well-established model of how individuals ap-
proach sequential tasks (6). In the hierarchical model of sequencing, 
long sequences are segmented into shorter chunks (40), which con-
sist of groups of individual movements prepared and buffered for 
their rapid successive execution, to balance execution efficiency and 
computational complexity (41). We extracted chunking patterns from 
every participant by applying a cluster-based algorithm (please refer 
to Methods for details) that characterized their strategies for each 
day with a binary, nine-digit sequence. Figure 2 depicts a radial 
visualization of the patterns extracted for each participant on day 1.

The young and older adults clustered more densely in specific 
regions, whereas middle-aged adults were distributed between the 
other two. To quantify the differences in chunking strategies between 
age groups, we fitted a support vector classifier (SVC) to patterns 
generated by young and older adults on the first day (please refer to 
Methods for more details), as they represented the extremes in speed 
and general performance. After fine-tuning the classifier, we extracted 
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the distance of each nine-dimensional data point characterizing the 
chunking patterns to the decision boundary separating the “young” 
and “old” classes; we hereafter refer to this parameter as the “chunking 
distance.” Figure 3A shows the extracted chunking distances for the 
first and last days of training, as well as for day 60 after training (i.e., 
the last follow-up session). On the first day, patterns from most young 
and older participants were correctly classified as such, confirming 
the presence of the clusters that we detected by visual inspection in 
Fig. 2. Regarding the middle-aged adults, most seemed to generate 
patterns that were more similar to those of the young adults on the 
first day, with some exceptions.

We used the same model to separate chunking patterns for the 
remaining days, which consisted of data points previously unseen 
by the classifier. Figure 3A shows that most middle-aged and older 
adults generated chunking patterns similar to those of the young adults 
by the end of training, with young adults not changing their strate-
gies much over the course of training. This is consistent with reports 
from the literature showing “young-like” chunking in older adults 
after more prolonged training (42). Figure 3B shows that this pro-
cess was more gradual in older adults, which was consistent with the 
gradual increases in accuracy shown in Fig. 1C.

Motor training in combination with atDCS in an  
aging population
We conducted a separate experiment (experiment 2) following the 
same design as in experiment 1, with the addition of atDCS applied 
over the motor cortex contralateral to the training hand during 
motor skill acquisition to enhance performance of the task. We re-
cruited a new cohort of 61 healthy adults belonging to the same age 
groups: young (18 to 30 years old; n = 19, 15 female; age = 24.4), 
middle-aged (50 to 65 years old; n = 19, 11 female; age = 58), and 

older (>65 years old; n = 23, 13 female; age = 71.2) groups. We 
randomly assigned participants in each age group to receive either 
real (i.e., verum; young = 10, middle-aged = 9, and older = 14) or 
placebo stimulation (young = 9, middle-aged = 10, and older = 9). 
The participants trained for the same amount of time as the unstimu-
lated cohort (i.e., 20 min/day for 5 days) and returned twice to test 
the long-term effects of learning and stimulation. We placed the anode 
electrode over the right motor cortex (M1), centered over the repre-
sentation of the first dorsal interosseous (FDI) muscle of the left hand 
on the motor cortex, identified using single-pulse transcranial mag-
netic stimulation (TMS).

Figure 4A shows the main results of this experiment. We tested 
the placebo groups in the same way as we did the unstimulated co-
hort in the first experiment and found similar relative differences 
between age groups. All statistical tests for both experiments are de-
tailed in the Supplementary Materials. The first row of Fig. 4B shows 
the same lack of offline learning in middle-aged and older partici-
pants that was replaced by offline worsening, as seen in experiment 1 
(Fig. 1B).

After verifying the findings from the first cohort, we tested the 
effects of verum and placebo stimulation in each separate age group. 
Total learning was not significantly different in the young (t20 = 0.90, 
d = 0.53, P = 0.37) or middle-aged (t20 = 0.77, d = 0.44, P = 0.44) 
groups. In the older group, however, we found higher total learning 
in the verum group (t24 = 2.76, d = 1.53, P = 0.01) with respect to 
placebo. In the follow-up sessions, we found no significant differences 
in scores between the verum and placebo stimulation in young and 
middle-aged participants. Performance on day 60 did not change in 
the young group with respect to day 5 but dropped significantly in 
the middle-aged (t148 = 3.19, d = 0.59, P = 0.004) and older groups 
(t182 = 2.57, d = 0.43, P = 0.02). However, the older group undergoing 
verum stimulation continued to score significantly higher than the 
group undergoing placebo stimulation (t21 = 2.38, d = 1.49, P = 0.02). 
After retrieval of the motor memory on day 60 (i.e., after the first 
block), scores were not significantly different from scores on day 5, 
providing no evidence for skill loss but a maintenance of the acquired 
skill even 2 months after training.

We did not find a significant effect of stimulation in either online 
or offline learning when testing all training days. When testing fast 
online learning as a separate component of learning (29), we identi-
fied a steeper improvement rate in the older group receiving verum 
stimulation relative to placebo (t21 = 2.68, d = 1.14, P = 0.01). We 
illustrate this difference (and lack thereof in the other groups) in the 
second row of Fig. 4B, showing the proportion of the different com-
ponents of learning to total learning in the verum group (outer rings). 
These proportions were similar to those in the placebo group for 
both young and middle-aged adults. In the older group, the propor-
tion of fast online learning to total learning was much larger than 
that in the placebo group.

Figure 4C shows the dynamics of speed and accuracy in the second 
experiment. There were no significant differences in speed between 
the verum and placebo groups in any of the three age groups. In terms 
of accuracy, the young group receiving verum stimulation was sig-
nificantly less accurate than the placebo group by the end of training 
(t23 = 2.16, d = 0.97, P = 0.04). The middle-aged group receiving 
verum stimulation was significantly less accurate than the placebo 
group on the first (t21 = 3.39, d = 1.67, P = 0.002) and second (t21 = 
2.45, d = 1.21, P = 0.02) days. In the older group, the verum group 
was consistently and significantly more accurate than the placebo 

Middle-agedYoung Older

Fig. 2. Radial visualization of chunking patterns generated during the first day 
of training by participants in the first experiment that involved motor train-
ing without stimulation. Gray dots on the perimeter of the circle (S1, S2, …, S9) 
correspond to each bin of the chunking pattern extracted from each participant. 
Each value of the chunking patterns acts as a “rope” pulling on the data points. For 
example, a chunking strategy grouping almost exclusively the last three elements 
of the sequence (labeled [0, 0, 0, 0, 0, 0, 0, 1, 1]) would cause bits S8 and S9 to pull 
on the data point, resulting in the blue dot situated between S8 and S9 on the plot.
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group on all days, except the third (please refer to the Supplementa-
ry Materials to find the results of the comparisons), although we did 
not find a significant difference in accuracy on the first block (F1 = 
0.038, P = 0.84). As in the first experiment, the older group receiving 
placebo stimulation reached its maximum accuracy gradually over 
the course of the week. In contrast, the older group receiving verum 
stimulation displayed a sharp increase on the first day and quickly 
reached its plateau, with dynamics reminiscent of those observed in 
the young group in the first experiment (please see Fig. 1C, solid 
lines). In summary, verum atDCS led older participants to score higher 
by the end of training. However, it appears not to have had any 
effect on the speed of execution of the task; our results suggest that 
verum atDCS led older adults to improve their accuracy quickly on 
the first day, much like young adults did in the first experiment.

Chunking and stimulation
In the first part of the analysis, we proposed that differences in ac-
curacy could derive, at least in part, from differences in the consolida-
tion and deployment of motor chunks during training between age 
groups. We applied the same classifier trained with data from the 
unstimulated cohort to the chunking patterns extracted from par-
ticipants receiving verum and placebo stimulation (data were not seen 
before by the SVC). Figure 5A shows that on the first day of train-
ing, the model classified most young participants correctly, while it 
classified most middle-aged participants as young; this matched the 
results obtained from the unstimulated cohort. The model also cor-
rectly classified older participants receiving placebo stimulation. In 
contrast, the model classified almost half of the older participants 
receiving verum stimulation as young. By the end of training, most 
participants executed chunking patterns more similar to those of 

the young, matching our previous findings. Figure 5B shows the gradual 
evolution of chunking patterns in all groups, with young adults 
executing patterns in a consistent manner. Middle-aged adults start 
with patterns more similar to those of young adults, which become 
even more similar over the course of the training week. Older adults 
drift from old-like patterns to young-like patterns, as seen in the first 
experiment, with this transition occurring sooner in the verum group.

To test whether these differences in chunking translate into dif-
ferent performances in the task for the older group, we identified 
the participants in the verum group classified as young on the first 
day and plotted their scores separately from the other participants 
in their group, as well as the speed and the accuracy. Figure 6A shows 
the scores of all older participants, with young-like participants in 
the verum group scoring significantly higher than those in the old-
like participants in the verum group (t27 = 6.17, d = 3.27, P < 0.0001). 
Older adults generating young-like patterns on the first day of train-
ing were significantly faster on the first training block (t12 = 2.61, 
d = 1.41, P = 0.02) and overall on the first training day (although 
this difference was only a trend; t12 = 1.94, d = 1.71, P = 0.07), com-
pared to their peers under the verum condition, but not chunking 
similar to young on the first day of training. From the second day 
onward, young-like older adults were consistently and significantly 
faster than their peers. The rate of improvement in speed (i.e., the 
slope) was significantly steeper in older adults generating young-
like chunking patterns on the first day compared to those who did 
not (t80 = 2.85, d = 0.29, P = 0.005). As for the accuracy, even after 
the subdivision based on generated chunking patterns, all older 
adults receiving verum stimulation improved theirs sharply on the 
first training day, while older adults receiving placebo stimulation 
did so gradually over training. Older adults not chunking similar to 
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young on the first training day (both in the verum and the placebo 
groups) required more extensive practice to generate young-like 
chunking patterns, an achievement that they reached at different 
time points of training depending on their speed [please refer to 
Fig. 6 (C and D)], supporting the notion of “a tendency to chunk 
facilitating rapid execution, and the need for rapid execution induc-
ing chunking” (43).

Chunking, stimulation, and neurophysiology
We used established TMS protocols to measure intracortical inhibi-
tion in all participants in the second experiment. We applied a well- 
established double-pulse TMS paradigm [i.e., short-interval intracortical 
inhibition (SICI)] (21, 44, 45) before and after the first training session 
to quantify interneuronal GABAergic inhibition within M1, which 
is directly involved in the learning and execution of the motor 
sequence. We applied the SICI paradigm while participants were at 

rest. Within the placebo groups, we found no significant differences 
in inhibition before or after the first training session or after the whole 
training week. Similarly, we did not find significant differences be-
tween verum and placebo in any of the age groups, thus confirming 
previous reports that SICI does not significantly change when atDCS 
is applied together with motor training (46).

DISCUSSION
Here, we studied age-related differences in the acquisition of a 
sequence-tapping task and applied atDCS concomitant to motor train-
ing seeking to enhance performance. We isolated different compo-
nents of motor skill acquisition intrinsic to this task and followed 
their evolution throughout and up to 2 months after training. We 
contrasted the dynamics of motor skill acquisition seen in young 
adults, assumed to be able to acquire the task optimally, to those 
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seen in older adults, depicting a generally lower performance on this 
task. Our results suggest that mastering this motor task relies on the 
early internalization of the motor sequence, followed by the practice- 
dependent optimization of its execution, observed as motor chunks 
at a behavioral level.

The results of the first experiment show that general performance 
of the sequence-tapping task decreases with age, with score differ-
ences between age groups coming mostly from the improvement 
dynamics present in the first training day. Our results show that speed 
decreases with age, with relative differences between age groups as 
expected from natural muscular deterioration (47) and atrophy in 
cortical regions and the corpus callosum (19) that occur during 
healthy aging. Accuracy, on the other hand, was initially compara-
ble among the three groups but improved sharply and reached a 
plateau on the first training day in young adults, while older adults 
improved theirs gradually over the course of training. These results 
suggest that young adults improve their performance of this task 
first by minimizing the error of execution and focusing on improving 
speed thereafter, a behavior reminiscent of the model proposed by 
Hikosaka and colleagues (39).

Instructing individuals to generate sequential movements in quick 
succession results in the spontaneous appearance of temporal pat-
terns known as motor chunks (6, 7). Our analyses on the chunking 
patterns produced by all participants showed that older adults did 
not generate chunking patterns as young adults did on the first train-
ing day but did so after more extensive practice. Previous research 
on motor chunking assumes that chunks emerge from the repeated 
sequential execution of single commands in close temporal proximity 

(9). In our first experiment, young adults were faster, so one could 
deduce that this higher speed allowed for more intensive practice 
on the first day of training and that this led them to generate chunk-
ing patterns sooner.

The second experiment revealed a significant effect of atDCS only 
in older adults, with those under the verum condition scoring sig-
nificantly higher than their peers in the control group. The same 
analysis performed on the data from the first experiment revealed 
that older adults receiving verum atDCS during training reduced 
their error sharply on the first training day, much like young adults 
of the first experiment did. In addition, they generated chunking 
patterns similar to those seen in young adults at earlier stages of train-
ing, with many of them doing so on the first training day. At first 
glance, these results would suggest that not all older adults responded 
to atDCS to the same extent. However, the speed and the accuracy 
of older adults under the verum condition, grouped according to 
whether they generated young-like chunking patterns or not on the 
first day of training, suggest that atDCS acted on all older adults by 
facilitating the encoding and the storage of the sequence in memo-
ry, leading to a sharp improvement in accuracy on the first training 
session. On the other hand, older adults with young-like chunking 
patterns were faster initially, which, alongside an optimized accuracy 
achieved on the first training day, resulted in an earlier consolida-
tion of motor chunks.

Therefore, older adults under the verum condition improved their 
performance following a similar pattern as the one seen in young 
adults, optimizing the error first and improving the execution there-
after, albeit at different rates depending on their speed of execution. 
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As previously mentioned, speeding up leads to chunk formation, and 
chunk formation allows further increases in speed, which is supported 
by faster, young-like older adults chunking earlier and increasing 
their speed more steeply.

Motor and cognitive components of the  
sequence-tapping task
Recent work has suggested that motor chunks are not represented 
within M1 but rather form in premotor cortical and striatal centers 
(48), with patterns represented in the parietal cortex, as well as in 
dorsal and ventral premotor cortices (13). Subsequent chunk selec-
tion occurs in the striatum (48) and bilateral putamen (49), as well 
as dorsal premotor and supplementary motor areas (50, 51), with 
chunk execution eventually occurring in M1 (14). Krakauer and 
colleagues (15) suggest that the lack of representation of motor chunks 
within M1 indicates that these structures are not selectively motor 
but rather cognitive elements independent of motor execution, whose 

function is limited to storing the order of the sequential elements 
for their efficient retrieval. If this were the case, then it would suffice 
to memorize the sequence for these patterns to emerge and, in the 
case of the present study, to optimize its execution and minimize the 
error. In the real world, this would translate to a pianist being able 
to master a musical piece simply by studying the score, which appears 
not to be the case (52).

Our method captured behavioral differences in speed, accuracy, 
and generated chunking patterns. Considering speed increases con-
sistently in all groups without accuracy ever decreasing, the observed 
improvement results from a shift in the speed-accuracy trade-off 
(4, 53). The increase in accuracy likely reflects the storage of the 
sequence elements in memory, resulting from the transition from a 
state of high uncertainty (i.e., ignorance of the sequence) to a state 
of low uncertainty (i.e., knowing the sequence). This information 
constitutes the spatial feature set, specific to the trained sequence 
(51), and likely enables an increase in speed (without sacrificing the 
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accuracy) by boosting motivation and confidence in the execution 
itself (54). This process would indeed be independent of motor prac-
tice and would capture the cognitive dimension of this task.

The chunking patterns, as detected by our method, reflect a dif-
ferent set of features. As the present method uses the interkey intervals 
(IKIs) to identify the chunks, it portrays the rhythm of execution, 
which constitutes the temporal feature set. Specific temporal patterns 
can be encouraged externally [for an example, refer to this experi-
mental paradigm (55)], much as the partition determines the tempo 
in music playing. Taught patterns can be suboptimal, requiring the 
execution of relatively difficult transitions in close temporal proximity, 
but in the absence of external temporal cues, easier transitions are 
normally grouped together (56). These patterns are optimized with 
practice, and their structure is constrained by a balance between 
computational cost and motor efficiency (41).

Kornysheva and Diedrichsen (55) found neural activity encoding 
spatial and temporal features independently represented in lateral 
and bilateral medial premotor cortices. These findings suggest that 
the emergence of motor chunks, as those captured by our method, 
result from the storage of both spatial and temporal features in higher 
brain areas, upstream from M1 in the motor network, a mechanism 
that appears to be diminished in older adults. Our results suggest 
that the most effective way to improve performance in this task is to 
first store the spatial components (i.e., sequence order), followed by 
the storage and iterative optimization of the temporal features (i.e., 
chunking patterns). This order may be specific to the present task, 
in the sense that no external temporal cues were provided; it may be 
that when both the sequence order and the temporal patterns are 
explicitly available, both may be consolidated in parallel.

Dissecting motor skill acquisition
There is an ongoing discussion on whether motor chunks are purely 
cognitive elements (15). In the presently discussed analysis, we con-
sider young adults to be capable of acquiring motor skills optimally 
(within the constraints inherent to the human neuromotor system). 
Hence, we consider them to embody the requirement of the system 
for the acquisition of our sequence-tapping task. In young adults, 
the accuracy reaches a plateau in the early stages of training, indi-
cating that the sequence has been stored in memory. Chunking pat-
terns, on the other hand, also emerge on the first training day and 
remain relatively unchanged for the rest of training. This early opti-
mization of both the accuracy and the chunking patterns could be 
interpreted as chunking patterns being a direct consequence of storing 
the sequence in memory. However, the process that we observe in 
older adults suggests otherwise. In older adults, the mechanism for 
storing the sequence in memory appears to be diminished, as their 
accuracy increases gradually over the course of the training week. 
Nevertheless, atDCS seems to restore this mechanism early in train-
ing, similar to reactivating a dormant ability of the brain, leading to 
the early consolidation of spatial features and resulting in an opti-
mized accuracy on the first training session, as seen in young adults. 
Chunking patterns appeared at different stages of training, which seems 
to depend on the amount of practice and, indirectly, on the speed of 
execution. Figure 6A shows faster older adults chunking sooner, 
which would support the notion of increased amounts of practice 
early in training leading to an earlier consolidation of chunks. This 
is not supported by the other older adults, as most of them need similar 
amounts of practice to generate young-like chunking patterns, re-
gardless of differences in speed; please note that patterns emerging 

later in training but requiring similar amounts of practice imply a 
slower execution. It appears that relatively high speeds (e.g., like those 
seen in young and middle-aged adults) place a prime on the optimal 
execution of the sequence, resulting in an accelerated formation of 
chunking patterns, while executing the sequence at lower speeds 
(e.g., old-like older adults under verum and all older adults under 
the placebo) leads to a slower consolidation of chunks, requiring more 
extensive practice.

These results support the notion of a critically important cogni-
tive component intrinsic to sequence-tapping tasks (15). However, 
the structure of the patterns detected as motor chunks at a behavioral 
level is determined by the ease of the mechanical transition between 
key presses (56) and is optimized with practice (a process occurring 
more gradually in slower older adults). This might explain why 
pianists need extensive practice to perfect a musical piece long after 
memorizing it.

The effect of atDCS on the storage of spatial coordinates
Our results suggest that atDCS facilitates the consolidation of motor 
chunks in older adults when the anode is placed over the contralateral 
hand-knob representation at M1 (although it is notable that the spa-
tial resolution of the stimulation is limited) by facilitating the storage 
of the sequence order in memory. Given the nonfocality attributed 
to this technique (57), we cannot discard the possibility of physio-
logically relevant stimulation of other brain areas, such as the pre-
motor cortex, as spatial and temporal components of the sequence are 
encoded unilaterally and bilaterally, respectively, in these regions (55). 
Therefore, the anode could be inducing long-term potentiation–
like plasticity (58) in not only intracortical interneurons (59) of the 
M1 contralateral to the trained hand but also the ventral and dorsal 
premotor areas (i.e., PMv and PMd), facilitating the storage of the 
spatial coordinates in these regions.

In search for likely causes behind the selective effect of atDCS, 
seemingly exclusive to older adults, we quantified intracortical 
(GABAergic) inhibition within M1 since previous studies have shown 
that less efficient SICI was associated with lower dexterity in execut-
ing rapidly alternating two-finger tapping (20, 21). Nevertheless, we 
did not find significant differences between verum and placebo in 
any of the age groups, confirming previous reports that SICI does 
not significantly change when atDCS is applied together with motor 
training (46). This further supports the view that the effect of atDCS 
in older adults at a behavioral level does not directly act on the exe-
cution of the sequence itself but likely on higher brain areas, upstream 
of the motor network.

If we conceive the process of chunk formation as the transition 
from high uncertainty to lower uncertainty in the execution of a motor 
sequence, then we can consider each source of information to con-
tribute to this change of state. In a recent study, Cross and colleagues 
(60) found evidence for the primary motor cortex being a hub where 
both somatosensory and visual feedback converge. This informa-
tion is likely integrated in higher brain areas, such as premotor (61) 
and parietal cortices (16), an essential process to decrease the error 
in the execution of our task. Sensorimotor integration decreases with 
age (62), so atDCS could be compensating this process in older adults.

Implications for using atDCS in motor sequence learning
During the first day of training, young adults optimize their accuracy 
and focus on improving speed thereafter, experiencing a shift in the 
speed-accuracy trade-off early in training. The consolidation of spatial 



Maceira-Elvira et al., Sci. Adv. 8, eabo3505 (2022)     20 July 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 14

coordinates allows the rapid optimization of temporal features, re-
sulting in an early consolidation of chunking patterns. The fact that 
these patterns do not change much during the subsequent 4 days of 
training indicates that they reached an optimized strategy. Hence, 
these strategies would constitute a ceiling on dexterous skill for this 
task. Our results suggest that atDCS influences accuracy, but not speed, 
as we did not find significant differences in speed related to stimula-
tion in any age group. Nevertheless, it appears that only imbalanced 
neural systems that are less than optimal can benefit from stimula-
tion. Neural responsiveness decreases with healthy aging, which is 
why enhanced plasticity induced by atDCS (58) likely benefits older 
adults (3). Greeley and colleagues (63) reported improved motor 
chunk formation related to atDCS applied to M1 in young adults. 
Unfortunately, we cannot compare our results to theirs as the metric 
they used is the number of chunks, which does not provide much 
information on how the sequences are segmented. Furthermore, they 
consider fewer chunks to reflect greater improvement, which is based 
on the notion of an eventual full concatenation of chunks, which 
likely is not attained because of the related computational costs 
(41). On the other hand, they did not find differences in speed nor 
accuracy, which matches our own findings.

atDCS applied to enhance motor performance has low focality 
(57), which limits the interpretation of how exactly stimulation re-
stores motor and cognitive functions in older adults in regard to which 
brain areas of the motor network are mainly involved. In addition, 
the fact that the electrophysiological evaluation (i.e., TMS) could not 
be achieved in all subjects limits the null finding of SICI in relation 
to learning and atDCS in this study. In regard to the statistical analysis, 
we understand that there are certain implications to centering the 
data, but as we use these comparisons just to lay down the grounds 
for the discussion on the actual analysis on the mechanisms behind 
apparent differences in motor skill acquisition, we consider that the 
correction and corresponding statistical tests are justified.

Sequence learning is essential and ever present in the execution 
of many activities of daily life. Contrasting different components of 
skill acquisition between young and older adults, whose ability to 
acquire new skills is present but diminished, has revealed that mastering 
motor sequence tasks depends on the early storage of the sequence 

elements in memory (i.e., consolidation of spatial components), 
leading to the practice-dependent emergence of temporal patterns 
(i.e., motor chunks). Noninvasive brain stimulation, as applied here, 
might support and accelerate this process in systems not working at 
the optimal level, such as in healthy older adults.

METHODS
Experimental protocol (Fig. 7)
The participants in both experiments 1 and 2 came for seven visits. The 
participants in experiment 1 started with motor training, while 
the participants in experiment 2 started the first day with a set of 
electrophysiological investigations: identification and neuronavigated 
registration of the FDI hotspot coordinates, identification of the 
resting motor threshold (RMT) and 1-mV intensity, and a battery 
of 24 single and 24 double TMS pulses. After these measurements, 
the participants executed the motor training described below with 
concomitant atDCS for 20 min. We repeated the session of electro-
physiological investigations after the first and fifth training sessions 
and the 60th day control session. For each of these investigations, 
we adjusted the intensity of the test TMS pulse to maintain a 1-mV 
amplitude of the single-pulse motor-evoked potential (MEP). We 
registered our study as a clinical trial (SNCTP000003872 | BASEC2017-  
00301), and additional, publicly available information may be found 
using the following link: https://kofam.ch/de/studienportal/nach-
klinischen-versuchen-suchen/147028/studie/50668.

Participants
We based the sample size calculation on the effect sizes of two pre-
vious studies from our group, specifically (3) (standardized mean 
difference, 1.33) and (20) (standardized mean difference, 0.53) and 
aimed for the average of both (0.93). A total of 113 subjects volunteered 
to participate in our study, categorized as young (18 to 30 years old; 
n = 41, 27 female; age = 24.5 years old), middle-aged (50 to 65 years old; 
n = 34, 20 female; age = 57.7 years old), and older (>65 years 
old; n = 38, 21 female; age = 72.3 years old) healthy participants. 
All participants were right-handed as determined by the Edinburgh 
Handedness Inventory (64). The participants reported not having a 
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previous history of serious medical conditions (General Health 
Questionnaire) or contraindications for transcranial direct current 
stimulation (tDCS) and TMS [questionnaire based on safety recom-
mendations for these techniques (65)]. We performed a neurological 
examination on all participants over the age of 50 to ensure that par-
ticipants were healthy and performed the Mini-Mental State Exam 
(66) to ensure that all participants scored at least 26 of 30 points. The 
participants gave their informed consent under protocol guidelines 
approved by the cantonal ethics committee of Vaud, Switzerland 
(project no. 2017-00301) and the ethics committee of Hamburg, 
Germany (PV 3770) according to the Declaration of Helsinki. All par-
ticipants completed the required training to its full extent, but we ex-
cluded one middle-aged female participant who could not perform the 
sequence-tapping task properly for having arthritis from the analysis.

Motor task
We used a well-established finger-tapping task (2, 3) that required 
the participants to replicate a nine-digit numerical sequence displayed 
on a screen as quickly and as accurately as possible using a four-button 
box with buttons labeled from “2” to “5” (2 for the index finger and 
5 for the pinky finger). A white dot on the screen, displayed beneath 
the numbers, indicated the button to be pressed next. The dot would 
move to the next digit as soon as a key was pressed, regardless of 
whether it was pressed correctly. Before starting the first training 
session, we asked all participants to perform a 90-s familiarization 
block to use as a reference for general initial skill level (please refer 
to the Supplementary Materials for details on how we used this se-
quence). Training started immediately after this block. The partici-
pants trained their left hand for 20 min each day for five consecutive 
days. Each day of training consisted of seven 90-s blocks interspaced 
by 90-s rest periods. Six of the blocks from each day contained the 
same sequence (i.e., training sequence). The seventh block consisted 
of a catch block presented halfway through training on each day and 
contained a sequence different from the training sequence. Each day 
of training had a catch block with a different sequence. We used the 
catch blocks to test whether the observed improvements were spe-
cific to the training sequence or generalizable to any sequence. We 
presented the catch blocks at different stages of the training session 
on each day, alternating between the third, fourth, and fifth blocks 
to avoid interfering with overnight consolidation of learning and 
anticipation of its appearance (2). The participants returned for 
follow-up sessions on the 10th and 60th days after the beginning of 
training, during which they executed three blocks of the training 
sequence; we used these visits to test for long-term retention related 
to the intervention. We did not provide any form of feedback on the 
participants’ performance at any time. Before and after each block, 
we inquired about the participants’ state of attention and fatigue using 
a VAS, consisting of an ungraded line ranging from “completely 
attentive” (0) to “completely inattentive” (10) in the case of atten-
tion and from “awake” (0) to “tired” (10) in the case of fatigue.

Electrophysiological exploration of changes within M1
We used TMS to identify the representation of the FDI muscle of 
the left hand and quantified the interneuronal -aminobutyric acid 
type A (GABAA) receptor–mediated inhibitory networks within the 
right M1. TMS was delivered with a 70-mm figure-of-eight coil linked 
to a Magstim BiStim2/Magstim Bistim machine (Magstim Ltd., Whitland, 
UK), and we recorded electromyography (EMG) signals from the 
FDI muscle. We first empirically identified the cortical target as the 

spot on the scalp eliciting the largest MEP under EMG control in 
the left FDI. Then, we identified the RMT as the minimum single-pulse 
intensity to evoke 50-V MEPs 50% of the time and the single-pulse 
intensity to evoke 1-mV MEPs (test intensity). The SICI was quan-
tified with a well-established paired-pulse paradigm using a condi-
tioning pulse delivered at 80% RMT intensity followed 3 ms later by 
a test pulse delivered at the test intensity (21, 44, 45, 67, 68). We 
assessed the RMT, 1-mV test intensity, and SICI before and after 
the first training session, after the fifth day of training, and on the 
60th day after long-term retention testing.

Electrical stimulation of M1 during training
When applying atDCS, the anode was placed over the FDI hotspot, 
and the cathode was placed over the left supraorbital area (3) using 
squared electrodes (25 cm2), covered in sponges soaked in saline solu-
tion (0.9% NaCl), connected to a neuroConn DC-STIMULATOR 
(Germany recordings) or a DC-STIMULATOR PLUS (Switzerland 
recordings) (neuroConn GmbH, Ilmenau, Germany). Stimulation 
was applied in a double-blind, placebo-controlled, parallel design, 
with all experimenters involved in the acquisition and/or the analy-
ses of results blinded until the end of the acquisition. A member of 
our research group not involved with the study in any way created a 
coded list for each group of the second experiment, specifying the 
type of stimulation (i.e., verum or placebo) assigned to each code in 
an aleatory fashion but ensuring balanced groups of each type of 
stimulation. We assigned the codes sequentially to all participants 
as they enrolled. The verum stimulation consisted of 20 min of stimu-
lation with 1-mA direct current (ramp-up/down times of 8 s). The 
placebo stimulation consisted of 40 s of stimulation delivered at the 
beginning of training (with 8-s ramp-up and 5-s ramp-down times, 
as defined by neuroConn) to emulate the prickling sensation on the 
scalp often reported in the use of this technique during current in-
tensity variation (69).

Chunking strategy extraction
We extracted a single chunking pattern to characterize the execu-
tion of the training sequence for each day of every participant’s training. 
To this end, we applied the clustering approach proposed by Song 
and Cohen (70) and labeled successive IKIs of every sequence as either 
“fast” (i.e., “1”) or “slow” (i.e., “0”), considering adjacent keys with 
intervals labeled fast to belong to the same chunk. Please refer to the 
Supplementary Materials for a detailed exposition of our arguments 
in favor of using this approach. Each sequence had nine IKIs, with 
the first reflecting the interval between the last key press of the pre-
vious sequence and the first key press of the current sequence. After 
removing incorrect sequences from each block, we normalized the 
IKIs in each sequence to the total duration of the sequence (i.e., 
divided each IKI by its sequence duration) to account for the gradual 
increase in speed during training. After normalization, we applied 
the K-means clustering algorithm (Sklearn; https://scikit-learn.org/) 
to sequences of each block, enforcing the notion of two clusters be-
ing present (i.e., fast and slow) by labeling the IKIs in each sequence 
on the basis of their proximity to them. The outcome of this step 
was a chunking pattern for each individual sequence. To determine 
a single pattern describing strategies for each day, we defined a se-
ries of possible criteria:

1) Maximum allocation. This criterion looks at the most frequently 
repeated chunk sizes generated by a participant and excludes patterns 
with chunk sizes different from these. It also assumes that participants 

https://scikit-learn.org/
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will allocate all keystrokes to at least one of the chunks. These two 
constraints result in the choice of one dominant pattern for each day.

2) Reclustering. This criterion sums all chunking patterns for each 
day and reclusters them using K-means clustering, outputting a single 
pattern for the entire day.

3) Reclustering top. This criterion is similar to the previously 
mentioned clustering approach, with the difference that it reclusters 
only a percentage of the most frequently repeated patterns. In this 
case, we fixed this percentage to 15%.

4) “More-often-than-not.” This criterion uses all chunking pat-
terns generated on a day and generates a new sequence containing 
1’s for each IKI labeled 1 in more than 50% of the sequences of that 
day and zeros otherwise.

5) Highest frequency. This criterion takes the most frequently 
repeated pattern on each day.

For some participants, the pattern found to characterize their exe-
cution for a given day varied depending on the criterion used. For 
this reason, we used all five criteria and generated a single chunking 
pattern by performing a majority vote on the five patterns. In other 
words, we obtained five chunking patterns for every participant on 
each day. Then, we performed a majority vote for each bit (i.e., each 
IKI label) of the five chunking patterns and obtained a single pat-
tern characterizing chunking on that day. Please refer to the Supple-
mentary Materials for more information on this process.

Chunking pattern classifier
We fitted an SVC (Sklearn; https://scikit-learn.org/) to chunking 
patterns generated on the first day by young and older participants 
of the first experiment (i.e., training without stimulation). We used 
80% of these chunking patterns as the training set and the remaining 
20% as the test set. We did not keep any of these data as the valida-
tion set, as we intended to use the patterns generated by young and 
older adults receiving placebo stimulation in experiment 2 (i.e., training 
with stimulation) as the validation set. To fine-tune the model, we 
performed a grid search cross-validation on different parameters, 
namely, the regularization parameter (C) and the model kernel, and 
chose the model yielding the highest F scores in both cross-validation 
and testing. We repeated this process 10 times, varying the samples 
used as training and testing datasets. After this step, we obtained 
10 models with parameters optimized to the training set used each 
time. Among these 10 models, we chose the one with the highest F 
scores, with the optimal parameters being C = 0.1 and a linear kernel, 
for which the training F score was 0.88 and the test score was 1. We 
chose this model as the final model and used it to classify chunking 
patterns generated on the second day onward in the first experiment 
and all days in the second experiment. As previously mentioned, we 
validated this model with the chunking patterns generated by the 
young and the older groups receiving placebo in experiment 2, with 
a classification accuracy of 88.88% (i.e., F score of 0.8888).

We used the decision boundary from the final model, separating the 
young and old classes, to quantify the resemblance of chunking pat-
terns from every individual to each class. Specifically, we obtained the 
distance from each nine-dimensional data point (corresponding to nine 
IKIs) to the nine-dimensional hyperplane separating both classes and 
used this amount to assess changes in chunking strategy during training.

Statistical analysis
We performed all statistical analyses in R (71). We used the lme4 
package by Bates and colleagues (72) to fit LME models to our data, 

and we used the emmeans toolbox (73) for post hoc testing. For the 
effect sizes, we used the calculation implemented in emmeans, which 
looks at pairwise differences and divides them by the SD, and used 
confidence intervals to account for uncertainty in estimated effects 
and estimated SD. We fitted all models using restricted maximum 
likelihood. We tested the significance of fixed effects by means of 
analysis of variance type III on the model using Satterthwaite’s method 
and obtained P values using the lmerTest package (74). We performed 
post hoc tests on significant fixed effects and corrected for multiple 
comparisons using Tukey’s post hoc method (75). We ran two-tailed 
post hoc tests on the estimated marginal means (i.e., least-squares 
means) from our fitted models, with degrees of freedom estimated 
using the Kenward-Roger method (76). The present manuscript dis-
cusses, with a few exceptions, significant results only (with a cutoff 
for statistical significance of P < 0.05). Please refer to the Supplemen-
tary Materials for the results for all statistical tests applied to the data 
from both experiments.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo3505

View/request a protocol for this paper from Bio-protocol.
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