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A B S T R A C T

In the development of an accurate modeling technique for the design of an efficient machining process, manu-
facturers must be able to identify the most suitable technique capable of producing a fast and accurate perfor-
mance. This study evaluates the performance of the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) models in predicting the machining responses (metal removal rate and tool wear) in an
AIS steel turning operation. With data generated from carefully designed machining experimentation, the ade-
quacies of the ANN and ANFIS techniques in modeling and predicting the responses were carefully analyzed and
compared. Both techniques displayed excellent abilities in predicting the responses of the machining process.
However, a comparison of both techniques indicates that ANN is relatively superior to the ANFIS techniques,
considering the accuracy of its results in terms of the prediction errors obtained for the ANN and ANFIS of 6.1%
and 11.5% for the MRR and 4.1% and 7.2% for the Tool wear respectively. The coefficient of correlation (R2)
obtained from the analysis further confirms the preference of the ANN with a maximum value of 92.1% recorded
using the ANN compared to that of the ANFIS of 73%. The experiment further reveals that the performance of the
ANN technique can yield the most ideal results when the right parameters are employed.
1. Introduction

Advances in engineering design witnessed in recent times has become
a major driving force behind technological developments in almost all
fields of engineering. As it’s been witnessed in the metal cutting industry,
the development of suitable machining techniques capable of guaran-
teeing highly-accurate parts at a minimized cost is continuously being
looked into by manufacturers to accelerate and automate the different
machining processes. According to Struzikiewicz and Sioma [1], the
development of a suitable machining technique is necessary to meet the
engineering design requirements of shape and dimension accuracy, sur-
face quality, and optimal cost and/or rate of production. However,
relating the process parameters amongst which are; the number of passes,
depth of cut for each pass, feed rate, and cutting speed, to the perfor-
mance measure of machinability; metal removal rate (MRR), surface
finish, chip flow pattern, specific energy consumption, and tool life [2],
are often very challenging and complex for manufacturers, thus pre-
venting the attainment of an acceptable process performance [3].

According to Koenigsburger [4] and Melkote [5], manufacturers in
the past depended solely on the use of large empirical databases compiled
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from previous machining operations in carrying designs. Groover [6]
illustrates that two types of variations are recorded in manufacturing;
random and assignable variations. Random variations can be attributable
to factors such as machine cycle, the vibration of the machine, etc. but
assignable variation is caused by poor control of the machining process.
He stated further that many defective machined parts are a result of the
lack of expertise in the application of machining parameters in batch
manufacturing of components. Moreover, it has been observed that 50%
of machining operations are performed using incorrect cutting tools and
process parameters [7]. Nevertheless achieving an effective and efficient
machining process can be made possible with the application of scien-
tifically developed techniques such as the different artificial intelligence
techniques.

According to Rao and Mukherjee [8], artificial intelligence (Al) tools
such as artificial neural networks (ANNs), particle swarm optimization
(PSO), fuzzy logic, neural-based fuzzy interference system (ANFIS),
genetic algorithm (GA), and geometric programming (GP) have proven
very useful in the areas of simulation/modeling of input and output
machining parameters. Different studies ranging from determining the
optimal process parameters [9], finding the optimal Hyperparameters in
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Table 1. Experimental results of the machining process.

Exp. No. Cutting Speed (m/min) Depth of Cut (mm) Feed Rate mm/rev. MRR mm3/min Tool Wear (mm)

1 210.00 1.10 0.20 2.29 1.21

2 210.00 1.10 0.20 1.31 2.32

3 83.87 1.10 0.20 2.16 4.19

4 210.00 1.10 0.40 2.27 2.58

5 135.00 0.60 0.32 3.12 3.12

6 210.00 1.10 0.20 1.23 1.06

7 336.13 1.10 0.20 2.19 2.76

8 285.00 1.60 0.32 1.89 3.72

9 210.00 1.10 0.20 2.43 3.25

10 285.00 0.60 0.32 2.42 1.72

11 210.00 1.10 0.20 2.32 3.21

12 135.00 0.60 0.08 3.21 4.25

13 210.00 1.10 0.20 1.32 2.31

14 285.00 1.60 0.08 3.20 3.45

15 210.00 0.26 0.20 2.12 3.43

16 285.00 0.60 0.08 3.37 3.14

17 210.00 1.10 0.20 2.74 2.12

18 135.00 1.60 0.32 1.74 4.47

19 135.00 1.60 0.08 2.93 1.16

20 210.00 1.94 0.20 2.15 2.83

21 210.00 1.10 0.20 2.29 1.21

22 210.00 1.10 0.10 1.31 2.32

23 83.87 1.10 0.20 2.16 4.19

24 210.00 1.10 0.40 2.27 2.58

25 135.00 0.60 0.32 3.12 3.12

26 210.00 1.10 0.20 1.23 1.06

27 336.13 1.10 0.20 2.19 2.76

28 285.00 1.60 0.32 1.89 3.72

29 210.00 1.10 0.20 2.43 3.25

30 285.00 0.60 0.32 2.42 1.72

31 210.00 1.10 0.20 2.32 3.21

32 135.00 0.60 0.08 3.21 4.25

33 210.00 1.10 0.20 1.32 2.31

34 285.00 1.60 0.08 3.20 3.45

35 210.00 0.26 0.20 2.12 3.43

36 285.00 0.60 0.08 3.37 3.14

37 210.00 1.10 0.20 2.74 2.12

38 135.00 1.60 0.32 1.74 4.47

39 135.00 1.60 0.08 2.93 1.16

40 210.00 1.94 0.20 2.15 2.83

Figure 1. General ANFIS architecture.
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Figure 2. Two layer MLP neural network structure.
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ANN applications for modeling the machining process [10] have been
performed, all aimed at improving the machining process. However, it is
paramount that the adequacies of these techniques be investigated by
comparing their performance ability in predicting the process parame-
ters and responses of the machining operation. Bakinde et al. [11],
states that among the different AL techniques, artificial neural networks
(ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) have been
effectively applied to rule-based process controls, classification tasks,
function approximation, and pattern recognition problems. The ANN
and ANFIS represent very effective modeling techniques capable of
producing outputs with high accuracy irrespective of the presence of
variation in the process parameters [12, 13]. The ANN derives its ide-
ology from the biological nervous system, as they can represent a pro-
cess just by having similar examples related to the given process. The
adaptive neuro-fuzzy inference system (ANFIS) however is an attractive
soft computing modeling technique that brings together the strength of
the artificial neural network (ANN) and fuzzy logic theory techniques
Figure 3. Network Model Regression Analysis for a. training dataset, b.
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[14]. Just like the ANN, it can learn from training data with any com-
plex mathematical model, after which it maps out the solutions onto a
fuzzy inference system (FIS) [15]. With the fuzzy inference system (FIS)
in the ANFIS network, it can determine the hidden layers as well as
improve its prediction ability thereby eliminating the rigor of deter-
mining hidden layers often associated with ANN [16]. Their ability in
overcoming the setback associated with empirical and deterministic
models makes it very ideal for the machining processes [17]. However,
the ineffective application of these ANN parameters remains a major
challenge in obtaining a very accurate model for the process. For this
reason, Hosoz et al. [18], argue that the adaptive neuro-fuzzy inference
system (ANFIS), can perform accurately better than the ANN given
recent successes recorded in its application in other fields of engineering
and comparison to other numerical methods. But Gill et al. [19], in their
study report that the accuracy of these techniques is subject to their
application.
validation dataset, c. testing dataset and d. the combined datasets.



Figure 4. Comparison of the neural network training performance.

Table 2. Statistical evaluation of different training algorithm, transfer functions, and neurons.

Learning algorithm No of Neuron Activation fn (layer) Training Testing

hidden output R2 MAE RMSE R2 MAE RMSE

LM 4-10-2 Tansig logsig 0.938 0.074 0.122 0.938 0.094 0.142

SCG 4-20-2 Tansig logsig 0.989 0.072 0.141 0.989 0.087 0.113

RP 4-16-2 tansig Logsig 0.964 0.044 0.204 0.964 0.044 0.210
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While manufacturers seem to be in dare desire of the most suitable
technique, several studies comparing these different approaches within
the diverse context in several engineering disciplines [20, 21], and
non-science related applications have been performed with varying re-
sults recorded [15, 22, 23]. For the machining operation, most studies
have either been based on the single application of the individual tech-
niques or a comparism of either the ANN or ANFIS to techniques such as
the meta-heuristics [22, 24, 25] or complementary application to other
techniques. To determine the most suitable technique for predicting the
machining process, it important that the performance of the Neural
Network (NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)
models be evaluated. This is the basis for which this study has been
performed.
Figure 5. Proposed A
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2. Methodology

2.1. Experimentation

The study was performed using AISI 1050 cylindrical steel of 32 cm
diameter and 140 cm in length as specimen along with an AISI T-42, CT,
S-400, 3/800 x 400 single point HSS tool with hardness value 67HRC as
cutting material on an NH22e lathe machining powered with an 11 KW
capacity spindle power and 3000 rpm maximum speed. During the
turning operation, a tool holder of ISO coding SVJCR steel EN47 was
used.

Using the central composite design (CCD) to the experiment, with the
aid of design expert software three-level experimental matrix comprising
NFIS architecture.



Figure 6. ANFIS Editor showing the (a) checking dataset and (b) test dataset for the MRR Model.

Figure 7. ANFIS Editor showing the (a) checking dataset and (b) test dataset for the Tool Wear Model.
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forty (40) experimental runs were developed for this experiments based
on the following input parameters and their ranges; cutting speed
(135–380), depth of cut (3.89–6.26), and feed rate (0.2–0.4). The
experiment focused on the following responses; metal removal rate
(MRR) and tool wear with results obtained tabulated as shown in Table 1.

2.1.1. Material removal rate
The material removal rate (MRR) in turning operation is the volume

of material/metal that is removed per unit time in mm3/s, with each
revolution of the workpiece, extracting a ring-shaped layer of material
[23]. Eq. (1) gives an expression of the material removal rate, in mm3/s.
R² = 0.6922
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MRR¼
π
4D

2
oL� π

4D
2
i L

L=CN
(1)
Where, L length of the workpiece to be turned in mm, D0 denotes initial
diameter in mm, Di final diameter in mm, C- feed rate in mm/rev and N
spindle speed in rpm.
2.2. Artificial neural network theory

ANNs are computer programs very useful for prediction and catego-
rization issues related to data processing. They are inspired by the at-
R² = 0.738

0

1

2

3

4

5

6

0 2 4 6 8

Ex
pe

rim
en

ta
l R

es
ul

t

Predicted Result

(B)   EXP  vs ANFIS Predicted 
Values (Tool Wear)

es for (a) the MRR and (b) tool wear model.



S.O. Sada, S.C. Ikpeseni Heliyon 7 (2021) e06136
tributes of biological neuron systems similar to the human brain that
learn by experience to develop information, used for prediction and
categorization in data processing [22]. ANN's predictive ability is
executed by adjusting the weights and biases (learning) in a network to
capture the linear and non-linear structure of the data while maintaining
an acceptable error limit. The weights are iteratively adjusted until the
network presents a minimum error for each of the input x(k) and output
y(k) data. This is made possible by the selection of a suitable network
design, training algorithms, and Hyperparameters [26]. The neuron
network performance is evaluated using statistical measures such as the
coefficient of correlation (R2), and the root mean squared error (RMSE)
[27, 28] as given in Eqs. (2) and (3).

R2 ¼ 1�
 P

jðOprei � OexpiÞ2P
jðOpreiÞ2

!
(2)
Table 3. Predicted ANN and ANFIS Values for the Metal Removal Rate (MRR) and T

Exp. No. Cutting Speed (m/min) Depth of Cut (mm) Feed Rate (mm/re

1 210.00 1.10 0.20

2 210.00 1.10 0.20

3 83.00 1.10 0.20

4 210.00 1.10 0.40

5 135.00 0.60 0.32

6 210.00 1.10 0.20

7 336.00 1.10 0.20

8 285.00 1.60 0.32

9 210.00 1.10 0.20

10 285.00 0.60 0.32

11 210.00 1.10 0.20

12 135.00 0.60 0.08

13 210.00 1.10 0.20

14 285.00 1.60 0.08

15 210.00 0.26 0.20

16 285.00 0.60 0.08

17 210.00 1.10 0.20

18 135.00 1.60 0.32

19 135.00 1.60 0.08

20 210.00 1.94 0.20

21 210.00 1.10 0.20

22 210.00 1.10 0.10

23 83.00 1.10 0.20

24 210.00 1.10 0.40

25 135.00 0.60 0.32

26 210.00 1.10 0.20

27 336.00 1.10 0.20

28 285.00 1.60 0.32

29 210.00 1.10 0.20

30 285.00 0.60 0.32

31 210.00 1.10 0.20

32 135.00 0.60 0.08

33 210.00 1.10 0.20

34 285.00 1.60 0.08

35 210.00 0.26 0.20

36 285.00 0.60 0.08

37 210.00 1.10 0.20

38 135.00 1.60 0.32

39 135.00 1.60 0.08

40 210.00 1.94 0.20

Prediction error %

Coefficient of correlation (R2)
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RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ðOprei � OexpiÞ2
s

(3)

n

Oprei and Oexpi represent the predicted and experimental output, while n
is the number of paired input/output.

For this study, the experimental data generated were divided into
three sets; 70% for training, 15% for validation, and 15% for testing of
the ANNmodel. Three different training algorithms, activation functions,
and a no of neurons varied from 2-20 were selected [29] for performing
the training, validation, and testing of the network to identify the most
ideal for the machining process. By following Haykin [30], the network
error was checked periodically for validation as the training process
continued to effect an early stopping technique. This process was
implemented with the aid of the MATLAB 2016b software.
ool wear.

v) MRR (mm3/min) Tool Wear (mm)

EXP ANN ANFIS EXP ANN ANFIS

2.29 2.19 1.96 1.21 1.18 2.10

1.31 1.30 1.96 2.32 2.30 2.10

2.16 2.16 2.16 4.19 4.16 4.19

2.27 2.25 2.27 2.58 2.58 2.58

3.12 3.10 3.12 3.12 3.12 3.12

1.23 1.13 1.96 1.06 1.06 2.10

2.19 2.11 2.19 2.76 2.75 2.76

1.89 1.81 1.89 3.72 3.72 3.72

2.43 2.43 1.96 3.25 3.25 2.10

2.42 2.42 2.42 1.72 1.72 1.72

2.32 2.32 1.96 3.21 3.20 2.10

3.21 3.21 3.21 4.25 4.24 4.25

1.32 1.30 1.96 2.31 2.30 2.10

3.20 3.21 3.20 3.45 3.45 3.45

2.12 2.12 2.12 3.43 3.43 3.43

3.37 3.35 3.37 3.14 3.14 3.14

2.74 2.74 1.96 2.12 2.11 2.10

1.74 1.72 1.74 4.47 4.46 4.47

2.93 2.93 2.93 1.16 1.16 1.16

2.15 2.15 2.15 2.83 2.83 2.83

2.29 2.29 1.96 1.21 1.21 2.10

1.31 1.31 1.31 2.32 2.32 2.32

2.16 2.16 2.16 4.19 4.19 4.19

2.27 2.27 2.27 2.58 2.58 2.58

3.12 3.12 3.12 3.12 3.12 3.12

1.23 1.23 1.96 1.06 1.06 2.10

2.19 2.19 2.19 2.76 2.76 2.76

1.89 1.89 1.89 3.72 3.72 3.72

2.43 2.43 1.96 3.25 3.25 2.10

2.42 2.42 2.42 1.72 1.72 1.72

2.32 2.32 1.96 3.21 3.21 2.10

3.21 3.21 3.21 4.25 4.25 4.25

1.32 1.32 1.96 2.31 2.31 2.10

3.20 3.20 3.20 3.45 3.45 3.45

2.12 2.12 2.12 3.43 3.43 3.43

3.37 3.37 3.37 3.14 3.14 3.14

2.74 2.74 1.96 2.12 2.12 2.10

1.74 1.74 1.74 4.47 4.47 4.47

2.93 2.90 2.93 1.16 1.16 1.16

2.15 2.14 2.15 2.83 2.83 2.83

6.1 11.5 4.3 7.2

0.9206 0.693 0.9206 0.738
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2.3. Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is a machine learning technique that integrates the
adaptive neural network (ANN) rules and fuzzy logic (FL) theories inside
an adaptive network framework to form a logical relationship between
inputs and outputs [31]. The toolbox feature of the ANFIS forms a fuzzy
inference system (FIS) whose membership structure or parameters can be
calibrated either by using a backpropagation method alone or combining
with the least-squares-type method. However, with ANN procedure the
FIS model of the ANFIS is developed through which data are learned or
trained. A well-utilized demonstration of the ANFIS procedure is given in
Figure 1, showing two inputs (a; b) and one output (Si) in this system
[32].

To create an inference system, five different layers namely fuzzy
layer, product layer, normalized layer, de-fuzzy layer, and the total
output layer are used, with each consisting of different nodes (adaptive
nodes) represented by squares which allow factors to be changed and
circles for fixed factors.

The first layer contains several membership functions (MF) with
which numerical input data are converted into fuzzy inputs. With Eqs. (4)
and (5), the output of each node is determined, with Oij representing the
output, and μxi and μYi�2 representing the membership functions of the
first layer [31].

O1i ¼ μx; ðxÞ; i ¼ 1; 2 (4)

O1i ¼ μx; ðyÞ; i ¼ 3; 4 (5)

The network's second layer is formed when the fuzzy rules are
established. The set of fuzzy inference rules that apply to the structure
given in Figure 2 contains fuzzy if-then rules of Sugeno type [33]. The
two rules for a first-order Sugeno fuzzy inference system can be expressed
as shown in Eqs. (6) and (7) [34, 35].

IF x is A1 AND y is B1, THEN f1 ¼ p1x þ q1y þ r1 (6)

IF x is A2 AND y is B2, THEN f2 ¼ p2x þ q2y þ r2 (7)

where x and y represent the ANFIS inputs, A and B the fuzzy sets, fi the
first-order polynomial, and pi, qi, and ri are the parameters set, referred to
as the consequent parameters.

Taking the fuzzy subset as an algebraic multiplication, the fuzzy rules
are formed by multiplying output signals of the first layer as expressed by
Eq. (8) [36]:

O2i ¼ μAðxÞμвðxÞ; i ¼ 1;…; 4; j; k ¼ 1; 2 (8)

At the third layer, the effectiveness of the second layer outputs ~ω is
determined by normalizing it, to obtain a suitable weight coefficient
given by Eq. (9).

O3i ¼ ~ωi ¼ wiP
iwj

; i ¼ 1;…:; 4 (9)

At the fourth layer, haven obtained the weight coefficients from the
third layer, the effect of each of the parts of the system's output is
determined using fuzzy rules using Eq. (10).

O4
i ¼ ~ωifi ¼ ~ωðpixþ qiyþ riÞ; i¼ 1;…:; 4 (10)

The last layer which is the fifth utilizes the sum of the weighted values
obtained in the fourth to generate the system output as a numerical
variable equal to the non-fuzzy part in the fuzzy systems as given in Eq.
(11).

O5 ¼
X
i

~ωfi (11)

For this study, the Neuro Fuzzy design tool of MATLAB Mathwork
along with a graphical user interface (GUI) was used in constructing and
evaluating a fuzzy system. With the ANFIS editor, loading of data,
7

generation of the Fuzzy Inference System (FIS), and the training and
testing of the FIS were enabled with 150 epochs along with the hybrid
learning algorithm choose for the analysis. Prior to this, a training data
set is used to search the constant of the membership function, and
thereafter the dataset is verified for error. Generally, the performance of
the ANFIS is evaluated by the root mean square error between the data
and system output [37].

3. Results and discussion

Results from the experiment conducted have been tabulated as shown
in Table 1 and the analysis performed have been discussed in this section.

3.1. Training of the neural network model for the AISI steel turning data

The experimental data generated were divided into three sets; 70%
for training, 15% for validation, and 15% for testing of the ANN model.
Different training algorithms (Levenberg-Marquardt (LM), Scalar conju-
gate gradient (SCG), and Resilient backpropagation (RP)), activation
functions (logsig, tangsig and purelin) along with a range of neurons
(2–20) were evaluated in order to determine the most suitable for per-
forming the training, validation, and testing of the network. As revealed
by Haykin [30], the number of neurons most adequate in the hidden
layer is dependent upon how complex the system being approximated is.

In trying to determine the optimal Hyperparameters of the ANN
model, different parameters were evaluated and tested. The LM training
algorithm with 10 no of neurons and tansig activation function at the
hidden layer and logsig function at the output layer recorded the lowest
statistical performance with a coefficient of correlation (R2) value of
0.938, MAE value of 0.074, and RMSE value of 0.122 for the training.
Based on the above, an ANN architecture as displayed in Figure 2,
comprising 10 hidden neurons is selected for the optimal ANN model
design. Figure 3a, b, c and d displays machining values predicted for the
different data sets, revealing the correlation between the target (experi-
mental data) and the ANN model output values in the three sub-datasets.

The dots and solid lines as shown in Figure 3a, b, c and d, represents
the data and best-fit linear regression with R-values of 0.8277, 0.9206,
and 0.9836 recorded for the training in Figure 3a, validation in Figure 3b
and testing sub-dataset in Figure 3c respectively, while the overall R
value of 0.876 as displayed in Figure 3d was obtained for the overall
training process. The regression coefficient of the ANN models is
approximately equal to one, which is satisfactory and a confirmation of
the predictive ability of the model. Further analysis to confirm the
optimal ANN model is made by studying the network architecture based
on the average performance of the validation dataset errors and the
number of training epochs. The plot as shown in Figure 4 shows a
decrease in the large network values as the weights were improved
during the network training which was terminated at 36 epochs based on
adaptive weight minimization [38].

The plot shows that the model possesses a good generalization ability,
an indication that the size of the input parameters is ideal enough for the
training of the network.

3.2. Development of ANFIS model for the AISI steel turning prediction

In developing the ANFIS model, the experimental data tabulated in
Table 2 were divided into two sets: 70% for the training and 30% for
testing data sets and then employed in constructing a fuzzy inference
system, whose membership function parameters were adjusted, using the
back-propagation algorithm in combination with the least-squares
method. The ANFIS analysis only considers one output value for each
model hence the models for each of the responses are considered sepa-
rately. The proposed architecture of the ANFIS model is composed of
three input parameters and one output value as displayed in Figure 5
below. Figures 6a, b and 7a, b reveals the performance of the training and
testing for the two responses by comparing the predicted and
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experimental values for the 30 sets of trained data as shown in Figures 6a
and 7a for the MRR and tool wear and 10 sets of test data as shown in
Figures 6b and 7b for the MRR and tool wear, using the ANFIS editor.

The dots and asterisks points as shown in Figures 6a, b and 7a, b
represents the predicted and experimental values. The graph reveals that
the predicted responses values are relatively close to the experimental
measured values. An indication of the adequacy of the ANFIS in the
modeling of the experimental data.

Figure 8a and b shows a plot of the Experimental measured values and
ANFIS predicted values for the MRR and tool wear values. The plot with
the solid line representing the best fit of the data, reveals that the error is
uniformly distributed.

The analysis is further analyzed by comparing the predicted responses
from both techniques as shown in Table 3.

The predicted and the experimental values of the MRR and Tool wear
as tabulated for the different modeling techniques reveals that the
average error of the ANN and ANFIS prediction is 6.1% and 11.5% for the
MRR and 4.3% and 7.2% for the tool wear. The prediction accuracy of the
ANN as can be observed is higher than that of the ANFIS.

4. Conclusion

The prediction of machining parameters has become necessary
considering the increasing need for increased production rate, reduced
cost of production, and sustainability of quality. However, with the
nonlinear nature of the machining process, applying and identifying a
suitable and adequate technique is very crucial to achieving success. For
this reason, machine learning approaches such as an artificial neural
network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have
been applied in this study to predict the metal removal rate and tool wear
in the turning operation of AIS cylindrical steel. Based on the literature,
the following process parameters: cutting speed, feed rate, and depth of
cut, was selected as the input parameters for the study. The performance
of the ML algorithms were comprehensively and successfully evaluated
by determining the optimal training parameters for the ANN and ANFIS
models to ascertain their accuracy and suitability in the prediction of the
responses.

The results show that the ANN and ANFIS techniques are very
suitable for predicting the machining process. However, a comparison
of both techniques indicates that ANN is relatively superior to the
ANFIS techniques, considering the accuracy of its results in terms of
prediction errors for the ANN and ANFIS of 6.1% and 11.5% for the
MRR and 4.1% and 7.2% for the Tool wear respectively. Furthermore,
the Coefficient of correlation (R2) for the ANN 92.1% recorded the
maximum values compared to that of the ANFIS of 60% and 73%. The
result of this study confirms the argument by Sada and Enyi [39]
attributing the efficiency of the ANN over other approaches to the
ability of designers to determine the optimal hyper-parameters for
training the ANN model. It is concluded that with the successful
application of the AL techniques, the machining process can be accu-
rately predicted for planning purposes as well as the improvement of
production/manufacturing processes.

Furthermore, the accuracy of the developed models can be further
evaluated by increasing the experiment data and increasing the input
variables as researchers [20] have often argued that the performance of
the ANN and ANFIS model can be affected by the size of experimental
data considered.
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