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Seizure detection, and more recently seizure forecasting, represent important avenues

of clinical development in epilepsy, promoted by progress in wearable devices and

mobile health (mHealth), which might help optimizing seizure control and prevention

of seizure-related mortality and morbidity in persons with epilepsy. Yet, very long-term

continuous monitoring of seizure-sensitive biosignals in the ambulatory setting presents

a number of challenges. We herein provide an overview of these challenges and current

technological landscape of mHealth devices for seizure detection. Specifically, we display,

which types of sensor modalities and analytical methods are available, and give insight

into current clinical practice guidelines, main outcomes of clinical validation studies, and

discuss how to evaluate device performance at point-of-care facilities. We then address

pitfalls which may arise in patient compliance and the need to design solutions adapted

to user experience.

Keywords: epilepsy, seizure detection, seizure forecasting, mobile health devices, extracerebral biosensors,

wearables, EEG signals, usability and user experience

INTRODUCTION

We live in the Internet of Things (IoT) era where wearables have become an integral part
of day-to-day life. Health and sleep trackers, fitness wristbands, smartwatches, and other
technologies attached to the human body offer users continuous biometric measurements
(i.e., movement, heart rate, sweating) over time, providing analytics via Bluetooth (or similar
wireless transmission protocols, e.g., wi-fi), and sending feedback to applications integrated
into generic devices (e.g., smartwatches). These wearable devices offer considerable potential
in regards to delivering novel options to shape personalized medical solutions (1). In the
field of epilepsy, specific types of wearable solutions have been developed with the aim of
detecting individual seizures, several of which have penetrated the consumer market. The
overarching goal of these devices is to provide continuous long-term monitoring of non-EEG
seizure related signals in order to detect or forecast seizures (2–9). Currently, however,
seizure detection with appropriate sensitivity and false-alarm rates has only been possible
for generalized tonic-clonic seizures (GTCS) (10, 11), while clinically-relevant accuracy is still
lacking for most other seizures types (12). Solutions to this limitation are likely to emerge
from the rapid advances in machine-learning seizure detection and algorithms forecasting
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the cyclic nature of seizures (13, 14). In parallel, progress has
been made in the field of long-term ambulatory EEG (15).
Subcutaneous electrode implants, embeddedwith a wearable data
receiver have allowed for the first-time real-world EEG data
collections over very long periods (16).

This short review gives an insight into the ambitious and
challenging field of wearable health devices for seizure detection
and forecasting applications and provides context for progress to
date, as well as possible pitfalls and how they might be resolved.

CLINICAL APPLICATIONS

With those suffering from chronic epilepsy, IoT technologies
have the potential to advance personalized epilepsy management
strategies, with the end result of increasing the positive disease
outcome for patients. To date, the epilepsy community has
demonstrated significant interest in wearable seizure detection
(17–21) and forecasting (22) companions. In the following
section, we have highlighted several avenues for their clinical
application, which could prove clinically relevant and useful
to patients.

In patients with high seizure frequency (20) and GTCS,
alarm-triggering to a caregiver’s smartphone might prompt life-
saving procedures and prevent Sudden Unexpected Death from
Epilepsy (SUDEP). It might also help decreasing the risks of
SUDEP and of other causes of GTCS-related mortality (23–
25) and morbidity, by providing predictive biomarkers of such
outcomes (12, 26) and of GTCS severity (26). However, no study
has yet demonstrated that the use of mobile health solutions,
including seizure detection devices coupled with alarms has an
impact on the risk of SUDEP.

A reliable seizure detection device could also provide
physicians with more accurate information on seizure frequency
than patients’ diary entries or recollection, which in turn can help
adjust both the type and dosage of medication and subsequent
treatment outcome, [e.g., (27–31)]. However, despite long-term
ambulatory EEG (32) and/or ambulatory implanted intracranial
EEG (15) studies demonstrating that patients tend to under-
report seizures, there is still need for more evidence to show
that optimized seizure tracking for patients who use connected
devices, is more reliable than diaries or direct communication
with the patient. For instance, a phase-4 study has shown that
a wearable accelerometer based system helped patients and
caregiver to log GTCS into the seizure diary in 44% of the
cases (32).

Major disruptions to quality of life can be attributed to the
uncertainty of when seizures will occur (33).When responding to
questions concerning their medical history, patients commonly
report a periodicity in seizure occurrence and familiarize
themselves with individual risk factors and triggers that they
observe preceding seizure events. These then serve as reference
points for certain individuals to keep an overview of their disease
progression (34–39). The capacity to foresee a seizure event
would transform epilepsy care and ultimately allow patients
to counteract impending seizures by proactively adapting their
behavior. For example, a patient could potentially self-target

neurostimulation to abort the seizure (40), or rely on a
closed-loop apparatus that offered immediate seizure-triggered
therapy (41).

SENSORS

EEG and non-EEG sensors can be embedded in a wearable
tool, and are directly in contact with the body in order to
acquire physiological signals. The set-up should be appropriate
to measure epilepsy-related activity over long periods of time
during the day and night and has specific constraints in
terms of comfort and stigma (42). Especially for EEG systems,
usability comes as a challenge, as full-array scalp electrodes can
only be used in hospitals, or in controlled home-monitoring
settings (43), over time periods of up to several days maximum.
Non-obtrusive solutions have been developed, using only few
electrodes positioned either around (44) or in the ear (45, 46), but
signal quality often remains inadequate, characterized by artifacts
and sub-optimal electrode impedance. In order to facilitate
continuous EEG recordings, subcutaneous (a.k.a. subscalp or
subdermal) electrodes, placed by means of a minimally invasive
surgical procedure under the scalp, have been proposed (37, 47).
Subcutaneous electrodes set-up showed similar SNR levels, and
even better signal quality than standard scalp EEG montages
(48). After the development of first prototypes (49–51), a few
products have started their incubation process, but so far, only
one device has undergone clinical trials to be approved for
commercial use by regulatory bodies (52). First studies in epilepsy
patients showed that surgeries (37, 47) and ultra-long-term use
for real life monitoring for up to 3 months at home (37) were
technically feasible, well-tolerated, and for in a first use-case with
eight epilepsy patients, successfully detected seizures (37, 47).
Recently, a larger multicenter trial involving the implantation
of subcutaneous EEG devices in 14 patients with epilepsy and
12 healthy subjects, demonstrated the technological viability of
stable long-term EEG recordings (52).

Currently, four additional diagnostic solutions are
progressing in their development (16). Different electrode
designs (i.e., bipolar electrodes, multichannel strips), and
placement underneath the scalp (i.e., from focal to covering
both hemispheres) determine the type of seizures that can be
recorded (37, 47). Subcutaneous solutions are quasi invisible
and existing studies show that patients are willing to undergo
the operation and insertion of the material for long periods
of time (37, 47, 53). However, additional data involving larger
patient samples are required to confirm overall acceptance
of these devices. Non-EEG based sensors, are primarily
based on accelerometers, surface electromyography (EMG),
electrocardiography (ECG), photoplethysmography (PPG) and
electrodermal activity (EDA). They are easily integrated in
fashionable wearables, such as bracelets, without displaying the
disease and stigmatizing patients. Accelerometers strapped to a
limb appropriately identify GTCS, and other seizures with strong
motor components (54–56). Surface EMG on the biceps muscle
is particularly useful for the detection of tonic seizures early on
in the course of GTCS (57–60). The prerequisite for performance
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of movement sensors is to fasten them to a body part that
participates in the seizure semiology. Heart rate parameters are
known to vary during and even shortly before seizures (61, 62).
They can be recorded using self-adhesive ECG electrode patches
(63, 64) or via measures of heart rate (HR) by means of an
optical sensor that captures a PPG signal at the wrist (65, 66).

Finally, a clear-cut surge in EDA is observed at onset of GTCS
(67–69), while imbalance in this autonomic biomarker can also
be observed in the pre-ictal state (70). A combination of signals
can be used for seizure monitoring in the real-world setting,
yet the pitfall of this approach is that signal quality, and thus
reliability of the approach, is influenced by daily activities and

FIGURE 1 | (A,B) A wrist worn commercially available seizure detector with integrated ACC and EDA sensor, (B) displays three electrodes for EDA measure that are in

contact with the skin. (C,D) A wrist worn commercially available sensing device with integrated ACC, EDA, and PPG sensor. (D) Displays the PPG sensor that is in

contact with the skin. (E) A wired galvanic skin response (EDA) sensing solution, with velcro fabric finger cuffs and a small receiver unit that attaches to the wrist.
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psychological arousal (70, 71). Please view Figures 1A–E for an
illustration of different form factors of sensing solutions.

POSSIBLE ANALYTICAL APPROACHES

In validation studies, the accuracy of seizure detection algorithms
must be compared to the gold standard for seizure-diagnosis:
video-EEG recording or (for motor seizures) video recordings.
The presence or absence of an epileptic event will then be
mathematically treated as a binary variable. To increase the
accuracy of seizure detection algorithms, various machine
learning methods are available (72). Their performance is
typically evaluated by determining the area under a receiver-
operating characteristic curve (ROC) (2–9). Seizure prediction
algorithms aim at identifying pre-ictal changes immediately
before the seizure in order to anticipate the precise onset of a
given seizure (73–77). Meanwhile, data from a clinical trial (15,
36), animal studies (34, 78–81), crowdsourcing analysis efforts
of EEG databases (82, 83), and cohort studies of mobile seizure
diaries (39, 84, 85), have identified that epileptic activity in some
patients followed circadian, ultradian, and infradian (multidian)
cycles, and was highly correlated with self-forecasting techniques
(86). Thus, an alternative conceptual approach (87) to single
seizure event prediction, is the ability to algorithmically forecast
them. A successful seizure forecast would provide the patient
with a seizure cluster likelihood measure within a given time-
window, based on intraindividual cyclic distribution of events.
Companions using this approach might require more complex
designs than their seizure detection analogs. For instance, the
varying scales of forecasting windows (22) and data visualization
features (88) would be attuned according to frequency and
characteristics of the seizure cycles. Forecasting will also benefit
from the development of new EEG methods for very-long-
term data collection. Currently, clinical trials have been advised
(89) and are urgently needed to further existing knowledge
about seizure networks, the characteristics of interictal changes,
ictogenesis, as well as their cyclicity and predictive value over
prolonged time periods (13, 90, 91). Research on seizure
periodicity function will constitute the basis for addressing this
bottleneck in the advance of algorithmic approaches.

RESEARCH AND DEVELOPMENT

In Europe, clinical trials of wearable devices are steadily
increasing and are required to follow the regulatory framework
of Council Directive 93/42/EEC concerning medical devices.
In order to optimize study quality in the epilepsy domain,
recommendations for standardized testing and clinical validation
of seizure detection devices have been recently proposed (92).
This new standard classifies studies into 5 phases (0–4), with
key trial design features concerning the number of subjects,
types of recordings, data analysis, and alarm criteria. For
example, whereas a phase 0 study can still be performed on
retrospective datasets and serve as a proof of concept for
algorithm development, subsequent phases will require technical
feasibility testing and signal validation against standard hospital

Video-EEG. The final phase (4), will have to include a large
patient sample and be performed in a prospective manner at
multiple sites under real world-settings. As previously proposed
(76), seizure detection criteria for all devices will represent the
first qualitative control with the aim of complementing aspects
specifically relevant for digital forecasting companions. Overall,
device developers must consider that high quality product R&D
will require several years. Furthermore, trials will have to contain
a clear set of outcome measures and criteria to be reported to
and evaluated by regulatory bodies. Result summaries containing
transparent research data should also be made available to the
medical community at large.

DEVICE VALIDITY

The working group of the International League Against
Epilepsy (ILAE) and the International Federation of Clinical
Neurophysiology (IFCN) recently performed a literature search
and published evidence from 28 papers (10, 11), leading to
consensus in the endorsement of “clinically validated wearable
devices for automated detection of GTCS including the focal-
to-bilateral tonic-clonic seizures (FBTCS) when significant safety
concerns exist, especially in unsupervised patients (. . . ).” Only a
handful of validation studies have focused on the detection of
focal, non-convulsive seizures (10–12). As a consequence, no
commercially available wearable devices have received regulatory
authorization for the detection of focal epileptic seizures, and “the
ILAE-IFCN Working Group, does not recommend clinical use of
the currently available wearable devices for seizure types other than
GTCS and FBTCS, as more research and development are needed
for this application (. . . ).”

For the purposes of this short review, we have summarized
and updated the efforts of the ILAE-IFCN workforce below
(10, 11). Table 1 included the outcomes of nineteen phase
2–4 prospective studies that span the development of novel
analytical methods, confirm their safety and accuracy with
respect to regulatory bodies, and their ability to assess seizure
detection performances in the patient’s homes, as opposed to the
laboratory environment.

There is ample evidence regarding the detection rates for
convulsive seizures using a self-adhesive EMG patch placed on
the bicep muscle. In this case, a reasonable true positive/false
positive ratio was achieved using the algorithm, with a GTCS
detection sensitivity of 94% and a false alarm rate of 0.7/24-h (94).
Interestingly, when different detection-thresholds were used,
100% sensitivity could be attained, however the false positive rate
was consequently increased to 1.44/24-h (93).

An alternative GTCS detection method using wrist
accelerometers has approached a relatively high sensitivity
of >89.7% in several phase 2 studies, with the rate of false alarms
significantly reduced <0.24 per day (32, 55, 95–98). ACCs are
most effective when attached to several areas of a patient’s body
known to be implicated in the seizure semiology. Using multiple
ACCs, several phase 1 studies, identified myoclonic-, clonic-,
tonic- (108, 109), and hypermotor seizures (110, 111) with a
sensitivity rate of at least 95%. However, a different phase 2 study
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TABLE 1 | Outcomes of phase 2–4 prospective seizure detection algorithm reliability studies.

Modality Study Phase Study

site/design

Seizure type Device Performance Time to positive

detection after

seizure onset

Surface EMG Szabo et al. (59) 2 EMU/Offline GTCS Brain Sentinel Sensitivity = 95%

FP = 0.017/24 h

µ = 15.2 s

Surface EMG Halford et al. (93) 2 EMU/Offline GTCS Brain Sentinel Sensitivity depending on

cohort = 100%, 76%

FP = 1.4/24 h, 2.5/24 h

µ = 7.45 s

Surface EMG Beniczky et al. (94) 3 EMU/Real-time GTCS Seizure detector

by Ictal Care

Sensitivity = 93.8%

FP = 0.67/24 h

µ = 9 s

Wrist 3D-ACC Kramer et al. (95) 2 EMU/Real-time Motor

seizures,

GTCS

Not specified Sensitivity = 90.9%

FP = 0.11/24

µ = 17 s

Wrist 3D-ACC Beniczky et al. (96) 3 EMU/Real-time GTCS Epi-care Sensitivity = 89.7%

FP = 0.2/24 h

µ = 33 s from

GTCS, µ = 55 s

from FS

Wrist 3D-ACC Meritam et al. (32) 4 In-field/Real-time GTCS Epi-care Sensitivity = 90%

FP = 0.1/24 h

n.a (infield)

Wrist ACC Patterson et al. (97) 2 EMU/Real-time GTCS, tonic,

myoclonic,

hypermotor,

complex

partial

Smartwatch by

Smartmonitor

GTCS: Sensitivity = 31%

FS: Sensitivity = 16%

FP = n.r

Not reported

Wrist ACC Velez at al. (98) 2 EMU/Real-time GTCS Smartwatch by

Smartmonitor

GTCS: Sensitivity = 92.3%

FP = n.r

FS = Not detected

Not reported

Wrist 3D- ACC Johansson et al. (55) 2 EMU/Offline GTCS Shimmer Sensitivity = 90–100% FP =

0.24–1.2/24 h

Not reported

Wrist ACC + EDA Onorati et al. (99) 2 EMU/Offline GTCS Embrace Sensitivity = 94.55% FP =

0.2/24 h

Median = 29.3%

ACC +ECG Van Andel et al. (100) 2 EMU/Offline GTCS,

tonic, clonic,

hypermotor

Shimmer Clinically urgent GTCS:

Sensitivity = 87%

FS: Sensitivity = 56–71% FP

= 2.3–5.7/24 h for all seizures

per night

µ = 13 s

Wrist 3D-ACC + PPG Arends et al. (101) 3+4 EMU +

In-field/Real-time

GTCS,

myoclonic/

tonic,

hyperkinetic

Nightwatch GTCS: Sensitivity = 81%

Other motor seizures:

Sensitivity = 77%

FP = 0.3 per night

Not reported

ECG Boon et al. (102) 2 EMU/Offline GTCS, FS Hospital ECG&

VNS Aspire SR

For HR increase >20%:

Sensitivity = 52.3%

FP = 7.2/h

Not reported

ECG Fisher et al. (103) 2 EMU/Offline GTCS, FS Hospital

ECG&VNS Aspire

SR

For HR increase >20%:

Sensitivity = 91%

FP = 0.7/24 h

µ = 8 s

ECG, PPG Vandecasteele et al.

(104)

2 EMU/Offline FS Hospital ECG,

180◦ eMotion, E4

ECG: Sensitivity = 57% FP =

1.92/24 h

180◦: Sensitivity = 70%

FP = 2.11/24 h

E4: Sensitivity = 32%

FP = 1.8/24 h

Not reported

ECG Jeppesen et al. (63) 2 EMU/Offline GTCS, FS ePatch ECG GTCS: Sensitivity = 100%

FS: Sensitivity = 90.5%

FP = 1/24 h

µ = 30 s

In-the-ear NIRS Jeppesen et al. (105) 2 EMU/Offline FS PortaLite Sensitivity = 6–24% Not reported

Behind-the-Ear-EEG Gu et al. (106) 2 EMU/Offline FS Ambu Neuroline

Cup

Sensitivity = 94.5%

FP = 0.52/24 h

Not reported

PPG + Oxygen

saturation

Brotherstone et al.

(107)

3 EMU/Real-time Clinically

significant

seizures

Nonin finger

sensor

For HR change > 25% +

Oxygen desaturation <85%:

Sensitivity = 87% FP =

4.5/24 h

µ = 69.6 s for HR

µ = 83 s for

oxygen

desaturation

EMG, Electromyogramm; EMU, Epilepsy monitoring unit; FP, False positive; GTCS, Generalized tonic-clonic seizures; HR, heart rate; h, hour; µ, mean; n.a, not applicable; NIRS,

near-infrared spectroscopy; s, second.
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found that ACC-based wristwatches were less sensitive for the
detection of different types of focal motor seizures (0–24%) (97).

Conversely, heart rate parameters from ECG systems were
able to detect arrhythmias associated with focal seizures and
were showed sensitivity as high as (<91%). Nonetheless, many
algorithms still produced false positives from 0.5 to 5.4 per hour
(112–114). PPG signals measured from the wrist, may also be
appropriate detectors, however, they have so far not been shown
to have lower false positives rates than hospital ECGs (2.11 vs.
1.92) (104).

Combining the outputs from several sensors into a single
algorithm, has been considered in order to raise the detection rate
of GTCS (21, 115, 116). For instance, a clinical trial combining
phase-3 and 4, evaluated a band placed on the upper arm,
recording accelerometry and heart rate, and succeeded to isolate
nocturnal GTCS with a sensitivity of 81% (and 77% of motor
seizures), and a reduced false alarm rate of 0.03 per night (101).
A phase 2 EMU study, using a retrospective cross-validation
approach, demonstrated that fusing accelerometry signals with
electrodermal activity (EDA) recorded from a wrist-worn device,
resulted in a sensitivity of 95% for GTCS and a false positive
rate of 0.2 per day (99). Most recently, a phase 3 EMU study
applied pre-defined cut-off points to data obtained in real-time,
and showed that when heart rate changes and oximetry endpoints
are combined, the sensitivity is highest, and lowest when the
parameters are used alone (117).

Wearable EEG devices are potentially well-suited to reflect the
focal seizure onset when placed above the area of seizure onset.
A phase two study performed in the EMU showed the aptitude
of a behind the-ear-EEG set-up with a sensitivity of 94.5%. In
order to allow for ultra-long term monitoring, with the goal to
create personalized seizure forecasting (34, 37–39), subcutaneous
wearable EEG devices are currently being developed (16). To
date, only one device has received approval for sale by the
regulatory authorities (52). For this purpose, Duun-Herniksen
et al. performed EMU-based clinical trials for safety and signal
quality in patients with epilepsy originating from the temporal
lobe (47, 48) and performed the first ultra-long-term home study
in a sample of eight patients. This real-life monitoring, for up to 3
months, was shown to be safe, well-tolerated by participants, and
technically feasible (37).

CLINICAL EVIDENCE

While there is strong evidence to prove the accuracy of non-
EEG wearables, the average time to detect a seizure has been
situated between 7.45 (90) and 83 s (91) from onset. Therefore,
until now the purpose of seizure companions has mostly found
applications such as alarm systems for SUDEP prevention, and
the optimization of seizure diaries. However, first studies have
been published that report having successfully developed seizure
forecasts based on extracerebral biosignals (76, 118). Phase
4 trials for subcutaneous EEG seizure prediction/forecasting
devices have yet to be performed (93). Consequently, clinical
evidence on the impact of wearable solutions is sparse, and has
so far, only been indirectly deduced from epidemiological data

reflecting mortality rates in unsupervised patients who do not
share a bedroom with another person and are found in prone
position following a GTCS (100).

USER EXPECTATIONS AND FIRST
EXPERIENCES WITH DEVICE
IMPLEMENTATION

Surveys have demonstrated the clinical relevance of seizure
detection, giving patients (22, 119, 120), as well as caregivers
and healthcare professionals (17–20, 22), the opportunity to
express their needs and wishes for wearable health companions.
Several studies have specifically addressed user feedback about
acceptable rates in both sensitivity and false alarms (19, 20,
120), finding that at minimum, patients desire both an accurate
detection/prediction rate > 90% and incorrect seizure triggering
of less than once per day. However, at present only the ACC
wristband and EMG patch have achieved this reliability ratio for
the detection of GTCS, whereas other available consumer devices
have not (121). One way to increase seizure recognition has been
to lower the threshold, although consequent higher false positive
rates exist, creating a challenge for software developers who must
then determine how best to tune their devices. For example if a
seizure is missed (false negative), this is considered more harmful
than incorrectly identifying it (false positive) (120). Furthermore,
in patients where seizure frequency is lower, false alarms were
more tolerable, as statistically they would occur only under
certain conditions. Nonetheless, interest in continuous real-time
monitoring and alarms has increased, especially in patients with
a high seizure frequency and concomitant risk of SUDEP (20),
where high rates of daily false alarms would become unbearable
for those most affected. Nonetheless, it was shown that a system
could possibly permit users to tune their sensitivity and false
positive rates (122), allowing to adjust for the patients’ individual
preferences of control, which might be quite different (123).

Regarding seizure forecasting, to date only one survey
has directly questioned patient and caretaker preferences,
finding that high accuracy and short forecasting windows
were favored over long-term, less precise ones (22). Broadly
speaking, forecasting has significant potential, as it covers
physiological parameters and time-frames of various length,
with the ability to provide predictive information of higher
complexity than a binary seizure detector (76). To outline future
applications of this methodology, further studying of end-user
requirements and focusing on user-centric development, are of
the utmost importance.

At present, several wearable companions have reached the
market. Preliminary studies have aimed to evaluate how patients
have implemented wearables in daily life, moving away from
assessing hypothetical tolerability and toward the evaluation of
hands-on device experiences. Major complaints have arisen such
as the disapproval of bulky designs, the presence of wires and/or
electrodes, and the necessity for adhesive material on the skin
(124), whereas those devices deemed comfortable had secure
fittings and discrete form factors (122). In general, patients
are “device-naïve” insomuch as they have not previously used
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wearables. Thus, an uncertainty exists as to whether user-
error could impact the implementation of a seizure detection
strategy, and consequently hinder further development efforts.
Depending on a device’s user interaction, its manipulation may
require sufficiently preserved executive function in order to learn
a sequence of procedures, such as pairing a sensor bracelet
to a mobile application. Furthermore, rapidly adapting to the
device when prompted, such as charging or even changing
the battery, could create obstacles for efficient use. Recently,
a study examining a wrist-worn device demonstrated that
only 50% of patients were able to fully and independently
control it, whilst others needed both appropriate support
and training, and a subgroup of patients (13.3%) required
constant supervision (123). In several devices, users have
identified constraints early on. For example, a phase 2 study
showed that 14% of patients consistently misplaced the EMG
patch (93), whereas another lost 54% of the patient samples
due to mishandling and data connection failures (100). Still
others found possible handling issues in real-world conditions,
leading to a 10% loss in device users during a phase 4
study (32).

Roadblocks such as these will specifically deter patients with
high seizure frequency rates, as cognitive impairment is increased
in the majority of these cases (125). In essence, difficulties
in usability risk hinder the effectiveness of these detection
and forecasting devices in patients with very active epilepsy, a
population subset which should be the ones who benefit most
from wearables with alarms.

CONCLUSION

Mobile health devices show promise for patients suffering
from epileptic seizures. However, before they can be widely
proposed, and/or medical insurance coverage can be assured,
several key efforts need to be solidified. When following

state-of-the-art research (92) and clinical practice guidelines
(10, 11), the overall recommendation is to perform robustly
designed clinical validation studies in EMUs, in addition to
real-life environment situations, to concretely demonstrate the
reliability of GTCS detection and quantification algorithms, as
well as other seizures types. Especially, since currently, mobile
health devices have only shown validity for the detection of
GTCS, and not for other seizure types. Furthermore, clinical
outcomes need to be assessed, including the decreased morbidity
and mortality associated with seizures and improvements in
quality of life. The future of wearable mobile health devices
related to epileptic seizure detection or forecastingmust continue
to focus on the advancement of adequate sensors, and their
development should emphasize user-centric methods prior to
products entering beta testing. At present, there is still a
gap between what seizure detection devices are capable of
measuring and the needs of patients. Specifically, prior to
the implementation of mobile health companions into real-
world situations, device developers should consider the clinical
characteristics of the patients themselves and directly assess
how digital health tools can directly benefit the management
of epilepsy.
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