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Abstract

The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which
now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe,
how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex
aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic
variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long
incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events,
systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene
expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open
source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how
candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative
mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in
BEL models.
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Systems biology models and genetic variation:
two separate worlds

Barabási et al. [1] assert ‘given the functional interdependencies
between the molecular components in a human cell, a disease
is rarely a consequence of an abnormality in a single gene, but
reflects the perturbations of the complex intracellular and inter-
cellular network’.

Genome-wide genetic association studies (GWAS) have be-
come a useful and frequently used tool for discovering genetic
variants as a disease risk [2]. However, for complex traits and
phenotypes, interpretation of association data largely benefits
from available prior biological and environmental knowledge,
spanning over multiple scientific disciplines [3].

In human genetics, several strategies were developed and
implemented to determine the effect of single nucleotide poly-
morphisms (SNPs), particularly, for the analysis of genotyping
data. The limitation of many of these algorithms is that they
can predict only either to have no effect or to have negative ef-
fect on clinical readouts and endpoints. However, the spectrum
of possible biological effects caused by genetic variants is much
wider, and thus, methods are required to predict also potential
gain, loss or even modification of gene function [4]. Moreover,
most of the algorithms can predict only variant effects on indi-
vidual proteins [5], and machine learning supervised and semi-
supervised approaches are being used to predict the effect of
deleterious SNPs [4]. Generally, GWA studies are used to estab-
lish links between genotypes and phenotypes through
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identifying the differences (and commonalities) between thou-
sands of individuals. These approaches work as black boxes and
make use of statistical and machine learning approaches that
require huge data sets.

To reveal the functional context at the molecular level, sub-
stantial knowledge about the genes involved, their expression
at RNA and protein level, the time when they are expressed and
in which tissue and in which organ, is required. Regulation of
gene expression is mediated through genetic regulatory sys-
tems, which are controlled by complex interaction networks
involving DNA, RNA, proteins and small molecules. These regu-
latory networks involve many components linked to each other
by positive and negative feedback loops, and a deterministic
understanding of their dynamics is hard to attain owing to rap-
idly increasing complexity. Therefore, specialized methods and
computer software are essential, for the modelling and simula-
tion of genetic regulatory networks [6].

Systems biology is the systemic contextual representation
and modelling of a plurality of discrete observations. In systems
biology, modelling is a representation of disease high-level con-
cepts in a unified and comprehensive network that can help to
identify the differential subnetworks by comparing it with a
network representing the healthy state [1, 7–10]. Building blocks
of systems biology models, such as signalling pathways, meta-
bolic systems and gene regulation networks, are already widely
used in computational biology. Comprehensive disease models,
however, are going way beyond these comparably well-under-
stood functional modules. One of the explicit goals of systems
biomedicine is to use a generalized model of disease to assess
the parameters from high-throughput data of a single patient,
to generate ‘personalized models’ that predict disease progres-
sion and treatment responses [11, 12].

In systems biology, there are several ‘entry points’ to gener-
ate initial networks: protein–protein interaction, metabolic net-
works and signalling pathways have been widely used to model
biological processes [7]. In the past decade, however, new mod-
elling approaches have been developed [13]. For pharmacogen-
omics, these networks represent complex relationships
between drugs and targets. The diseasome [14] is a disease–
gene and drug–target (protein) network, where disease informa-
tion is associated with a gene and drugs are linked to proteins
by drug–target associations [15].

Despite the complexity of regulatory networks, attempts at
unravelling the impact of genetic variation on regulatory net-
works have been addressed by a number of groups. Leiserson
et al. [16], Carter et al. [17] and Atias et al. [18] have worked on
network approaches to scrutinize the genetic risks for human
disease. They have developed methodology that allows to de-
tect causal genes within disease-associated loci by network
analysis, and to ascertain causal paths from allele to disease
through intermediate molecular phenotypes [16–18]. Trynka
et al. [19] proposed new approaches on the interpretation of
transcriptional regulation effects to estimate the involvement
of variant alleles in common diseases. They suggested that
most of the causal complex trait variants have regulatory roles
with cell type specificity, by interconnecting GWAS data with
genome-wide chromatin assays results. They emphasized the
importance of cell-type-specific regulatory context and high-
lighted the value of the inclusion of epigenomics information
[19].

Sahni et al. [20] questioned the strong bias in the literature
towards coding variant effects on protein–DNA, protein–RNA
and protein–protein interactions. He proposed to put more em-
phasis on effects outside the protein centric scope of functional

assessment, to understand the impact of genetic variants on
specific interactions; for instance, mechanisms safeguarding
protein folding and stability [20].

Types of genetic variation information relevant
for systems biomedicine

If genetic variation is to be included in a systems biology model
of disease, we need to assess the biological impact of a SNP or a
mutation. Dependent on the way (the ‘mode-of-action’) how a
SNP or a mutation exerts its biological impact, we can distin-
guish several classes (‘types’) of SNPs. In this section, we iden-
tify and discuss the different functional categories that can be
distinguished as ‘mode-of-SNP-action’ classes (see Table 1).

Genetic variants on coding regions

The risk associated with non-synonymous genetic variants can
be easily translated into a change in protein structure or func-
tion owing to a change in the amino acid sequence. It can mod-
ify amino acid composition, or truncate the protein sequence by
causing an early stop codon [21]. Synonymous genetic variants
do not alter the codon sequence. However, synonymous genetic
risk variants can still impact protein function by modulating
translation rates with direct consequences to protein folding
[22]. For example, rs1045642 SNP slows down the rate of transla-
tion of the MDR1 mRNA and impacts protein folding [23]. Exon
splicing enhancers or silencers are typically 6–8 consecutive nu-
cleotide sequences in an exon region. Where, SNP can also re-
sult in deleterious intron retention or exon skipping, and
translate the protein isoform [24–27]. For example, rs1800693
SNP affects the splicing of the TNFRSF1A mRNA, leading to
translate an isoform [28].

Genetic variants on non-coding regions

Model gene system studies have revealed that local DNA inter-
actions between regulatory sites and genes are important for
transcriptional control. Such regulatory interactions, in mam-
mals, can take place over significant chromosomal distances up
to an entire mega-base (1 Mb) [29]. Genetic risk variants are fre-
quent on non-coding sequences [30]. Post-GWAS studies have
revealed the capacity of these genetic risk variants to regulate
gene expression by modulating cis-regulatory machineries
through mechanisms involving DNA methylation [31], tran-
scription factor binding [32], chromatin looping [33] or
microRNA (miRNA) recruitment [34]. If SNPs occur within tran-
scriptional regulatory regions, like transcription factor binding
sites, CpG islands and miRNAs, they may modify the binding af-
finity of the regions, remove recognition sites or create new
binding sites for other regulatory proteins. All of these modifica-
tions can lead to alterations in the level, timing and localization
of gene expression [35].

DNA methylation
DNA methylation means addition of methyl groups to a cyto-
sine nucleotide, which is basically part of a CpG dinucleotide
[36]. DNA hyper-methylation near transcription start sites of
tumour suppressor genes associates with their silencing [37].

Transcription factor binding to regulatory elements
Across the genome, transcription factors bind to thousands of
regulatory elements, including promoters (directly upstream of
their target genes) and cis-regulatory elements such as
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enhancers, insulators and silencers [38]. Genetic risk variants
located within promoter regions can also change transcription
factor binding to DNA, leading to differential target gene expres-
sion [39, 40]. For example, expression of the a-globin gene locus
is affected by a genetic variant associated with the a-thalassae-
mia blood disorder [39]. Enhancers are commonly targeted by
those genetic variants of risk-associated loci that map to DNA
recognition motifs, bound by transcription factors. These gen-
etic variants can modulate the chromatin affinity for transcrip-
tion factors and consequently gene expression [33, 41–46, 47].
For example, the rs12740374 SNP, which is associated with a
lower level of plasma low-density lipoprotein cholesterol, in-
creases the expression level of the SORT1 (Sortilin 1) gene by
increasing the binding affinity of the C/EBP (CCAAT enhancer-
binding protein) transcription factor to chromatin [33].

Chromatin loop bridging the enhancers and promoters
Genetic risk variants can modulate chromatin loop formation; it
can alter the DNA affinity for looping factors, which results in
allele-specific chromatin loop formation. The human genome is
structured in a three-dimensional architecture, which is
thought to regulate a diverse set of DNA-template processes
[47–52]. This facilitates regulatory elements, like promoters and
enhancers, to interact physically through long-range chromatin
loops, or chromatin interactions, to regulate gene expression
[53, 54]. This has been shown for the rs12913832 SNP, which res-
ides in an enhancer 21 Kb upstream of the OCA2
(Oculocutaneous albinism II) pigment gene [55]. Over the past
decade, the development of chromosome conformation capture
(3C) technology has initiated several 3D studies on regulatory
chromatin loops, but what has been done until now is far from
exhaustive. If a minor fraction of these potential regulatory
elements participate in chromatin looping, then most of the
genomic interactions have yet to be characterized again, be-
cause many such loops appear to be tissue-specific [56–58],
which makes their comprehensive analysis appear even more
disconcerting [59].

MicroRNAs
miRNAs target mRNAs by recognizing their complementary se-
quences mainly in 30 untranslated regions (30UTRs). miRNAs
largely function as post-transcriptional repressors. They recruit

RNA-induced silencing complex to their target mRNAs, leading
to mRNA degradation or translation repression [60]. They can
regulate the translation of hundreds of genes through se-
quence-specific binding to mRNA [61]. SNP variants, linked with
miRNAs, can affect gene functionality with three different
ways: (i) by transcription of primary transcript, (ii) by primary
miRNA (pri-miRNA) and precursor miRNA (pre-miRNA) process-
ing and (iii) by effecting miRNA–miRNA interaction [62]. For ex-
ample, rs10065172, a Crohn’s disease-associated SNP, lies
within the 30UTR of the IRGM (immunity-related GTPase M)
gene and alters the complementary target sequence of miRNA-
196 [36].

Long non-coding RNAs
Long non-coding RNAs (lncRNAs) are found across intergenic
regions of the human genome [63]. They can interact with chro-
matin regulators for their recruitment by chromatin [64, 65], a
process that relies on a highly conserved lncRNA tertiary struc-
ture, which can be changed by genetic risk variants [66]. Kim
et al. [67] described enhancer RNAs (eRNAs), a new class of non-
coding RNAs, formed from polymerase II-bound enhancers. The
level of expression of eRNAs is positively correlated with the ex-
pression of neighbouring coding genes [67] Genetic variants in
enhancer sequences can modify Transcription Factor (TF) bind-
ing, resulting in ‘improper’ gene expression and eventually sus-
ceptibility to diseases [68, 69]. The micropeptides, called small
pri-peptides, are also expressed from the lncRNA-pri and direct
the proteolytic cleavage or other modifications of target pro-
teins or transcription factors [70].

Expression quantitative trait loci
Studying the association between genetic variation and gene
expression offers a straightforward way to begin the compli-
cated task of connecting risk variants to their putative target
genes [71]. Networks created using gene expression data from
patient samples can be exploited to bridge GWAS results with
an underlying disease mechanism, as exemplified in the autism
spectrum disorder [72]. Genetic variation associated with gene
expression, known as expression quantitative trait loci (eQTL),
can identify the target genes of risk loci [73–77]. Polymorphism
situated in DNA regulatory elements can alter the gene

Table 1. Types of genetic variation information relevant for systems biomedicine: DNA regions with functional categories and consequences

Types of genetic variation information relevant for systems biomedicine

DNA regions Functional categories Functional consequences

1. Coding regions 1. Non-synonymous genetic variants Change in protein structure or function due to a change in the
amino acidsequence or protein sequence truncation

2. Synonymous genetic variants Modulating translation rates with direct consequences to pro-
tein folding

3. Exon splicing enhancers or silencers Translate the protein isoform by deleterious intron retention or
exon skipping

2. Non-coding regions 1. DNA methylation Associates with genes silencing
2. Transcription factor binding to regulatory

elements
Can change transcription factor binding to DNA that leads to

differential target gene expression
3. Chromatin loop bridging the enhancers and

promoters
Can alter the DNA affinity for looping factors and chromatin

interactions, which regulates gene expression
4. MiRNAs Can affect gene functionality: (i) by transcription of primary

transcript, (ii) by pri-miRNA and pre-miRNA processing and
(iii) by effecting miRNA–miRNA interaction

5. lncRNAs Can modify highly conserved lncRNA tertiary structure that
can affect chromatin regulator’s interactions
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transcript frequency. Thus, as a quantitative trait locus, gene
transcript frequency can be determined with substantial power
[78, 79]. Brem et al. [80] published the first genome-wide study of
gene expression in 2002. Stranger and Raj [81] reviewed the gen-
etics of human variation and diversity in eQTLs. These eQTL
data are dynamic with great specificity for different tissues and
environmental perturbations.

The ENCODE project: identification of genomic
functional elements

The ENCODE project has delivered an incredible compilation of
genetic functional elements of the human genome [82]. As most
of the SNPs detected in GWAS data belong to non-coding re-
gions of the genome, usage of ENCODE regulatory elements to
reinterpret GWAS data sets might be a valuable approach [83].
Undoubtedly, structural genomic variation are more influential
and systemic than the smaller scale variations; however, any
framework or methodology used to predict genetic variant ef-
fects needs to contribute for both small- and large-scale vari-
ations [13]. If possible, it should be able to predict the level in
which coding or non-coding genetic variants individually or col-
lectively have a functional impact on biology, ranging from rele-
vant protein function or expression to the perturbation of entire
networks. It can help us to annotate the massive amount of re-
sequencing data meaningfully without having to test the effects
of all variants experimentally [13].

Thus, now it is the time to move ahead from merely bio-stat-
istical approaches for GWAS data interpretations to a more
comprehensive approach that can be acquainted with gene–
gene and gene–environment interactions, along with the com-
plexity of the relationship between genotype and phenotype
[84].

The need to integrate genetic variant
information in systems biomedicine models

Currently, GWAS variance data interpretation has become a
bottleneck in the progression of mapping and exploring com-
plex diseases. For example, multiple genes have been associ-
ated with Amyotrophic lateral sclerosis in GWAS data, but there
is no clear perspective of involved pathways and mechanisms
that would emerge from the available high-throughput data, by
taking multiple rare variants into account [85].

Substantial research for several complex diseases has been
conducted to unravel causal mechanisms underlying their dis-
ease aetiology. Often this type of research is multidisciplinary,
using research studies spreading over a wide range of time and
length scales. Consequently, a disease model representing dis-
ease aetiology may have many modules and interactions. Such
a disease model would provide a nice template for the interpret-
ation of the functional consequences of genetic variation [86].

One of the obvious questions is of course, which method-
ology can help in interpretation of GWAS data, when most of
the SNPs have small effects on disease susceptibility [87]. There
is lack of efficient and reliable algorithms as well as appropriate
multi-scale modelling methodology, to evaluate the huge num-
ber of interdependent data from GWAS [5]. One way to reduce
the combinatorial complexity of GWAS data is, to reduce the
dimensionality of genetic variation data by taking a priori
knowledge about functional relationships between genes and
proteins into account. Formalized knowledge about causal and
correlative relationships in systems biology models provides a
good starting point for that dimension reduction. So far, there

have been only few serious efforts to predict how these genetic
variants would collectively be effective for specific phenotypes
[88, 89].

Systems biology modelling language syntax
adaptations

A massive amount of data for molecular interactions and path-
ways are stored in online databases. Moreover, experimental
data are accumulating rapidly, and correspondingly, the de-
mand for exchange of data to allow analysis and comparison of
larger data sets is intensifying. Thus, there is a need for repre-
sentation of data in standardized formats. Comparisons and
evaluations of modern systems biology modelling languages
show [90,91] that XML is a remarkable and easy-to-use format
for systems biology information representation. Here, we com-
pare the recent updates with the standard XML-based represen-
tation formats for exchange of data.

The Resource Description Framework

The Resource Description Framework (RDF) model [92] is based
on the idea of making statements about resources. A RDF state-
ment, also called a triple in RDF terminology, is an association
of the form (subject, predicate, object). RDF Schema [93] and the
Web Ontology Language [94] are used to explicitly represent the
meanings of the resources described on the Web and how they
are related. These specifications, called ontologies, describe the
semantics of classes and properties used in Web documents.
These ontologies should be linked to a top-level ontology to en-
able knowledge sharing and reuse [94]. Unfortunately, each bio-
ontology seems to be built as an independent piece of informa-
tion, which does not enable the sharing and reuse of knowledge
and complicates data integration [95]. Moreover, various sour-
ces of biological data must be combined to obtain a full picture
and to build new knowledge. However, a large majority of cur-
rent databases does not use a uniform way to name biological
entities. As a result, a same biomedical object is frequently
associated with different names.

Systems Biology Markup Language

Systems Biology Markup Language (SBML) [96–99] was designed
by the Systems Biology Workbench Development group. The
purpose of SBML is to model biochemical reaction networks,
comprising cell signalling, gene regulation and metabolic path-
ways. In SBML, ‘Species’ is used as a notation to represent the
interactors, while reaction, modelling a transformation, trans-
port or binding to represent interaction. Each reaction is
allowed to interact with three predefined interactors i.e. react-
ant, product and modifier [100]. An SBML model encodes a reac-
tion network as pathway. Mathematical relations are also
available for reactions. References to other sources and extra in-
formation can be added only in the annotation field. Currently,
the representation of parts of molecules is not possible [101].

The Proteomics Standards Initiative Molecular
Interaction XML format

The Proteomics Standards Initiative Molecular Interaction XML
format (PSI MI) [102] is designed by the Proteomics Standards
Initiative, which is an initiative of the Human Proteome
Organization. The main purpose of the initiative is to standard-
ize proteomics data representation to facilitate data exchange,
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comparison and verification. The format is projected for ex-
change of protein–protein interaction data [102]. PSI MI is struc-
tured around an entry. It is not anticipated to be a pathway
[101]. Links to publications and databases are possible, but a
representation of relationships through mathematical equa-
tions and an inheritance is not available [101].

The Biological Pathway Exchange

The Biological Pathway Exchange (BioPAX) format is designed
by the BioPAX working group [103, 104]. The main purpose of
this standard is to introduce a unified framework for sharing
pathway information. BioPAX offers more explicit use of rela-
tions between concepts than SBML and PSI MI. It is defined as
ontology of concepts with attributes [104]. However, reasoning
and integration of data increases its computational complexity
[101]. A specific data type is available for pathway representa-
tion, but mathematical equations underlying the relations are
not possible.

CellML

CellML Model Repository [105] contains biochemical pathway
models that have been published in peer-reviewed articles or
expressed in SBML [106]. CellML [107] and the CellML Model
Repository are part of the IUPS Physiome Project [108]. The
CellML Model Repository contains models describing a wide
range of biological processes [109]. It uses mathematical de-
scriptions of biological systems and adds semantic meaning by
annotating elements by ontologies and constrained vocabula-
ries [109]. It is also precise, and thus, the association between
dependent and independent species is implicit rather than ex-
plicit. However owing to this generality and explicit nature,
complexity is increased, especially for software developers, and
consequently, there are a few tools that can read and write
CellML [110].

Biological Expression Language

Biological Expression Language (BEL) is a highly expressive, tri-
ple-based knowledge representation language for the represen-
tation of knowledge about causal and correlative relationships
[111]. Several groups in academia and pharma are already
applying BEL in various areas including biological network ana-
lysis, disease modelling, understanding drug efficacy and tox-
icity, mechanisms for drug sensitivity and resistance and other
research and development-related projects. A suite of software
components called the BEL Framework provides tools that are
required to create, compile, assemble and deliver computable
knowledge models to BEL-aware applications [111].

BEL represents complex biological content as simplified, for-
malized, computable semantic triples that provide the ability to
use and reuse experimental observations. BEL can also be used
for next-generation sequencing applications, like gene expres-
sion profiling and genome annotation data, by using Reverse
Causal Reasoning (RCR) algorithm to get mechanistic insights
into the high-throughput data, which could be complementary
to the result of analysis using pathway gene set. BEL has many
utility tools such as a dedicated Cytoscape plug-in for network
visualization, algorithms of causal reasoning (RCR) for under-
standing disease mechanism by identifying up-stream and
down-stream controllers, electronic workbook integration, BEL-
to-RDF translation, text mining in BEL and nano-publication
concepts [112]. BEL has the potential to impact scientific litera-
ture, by introducing computable expressions in scientific

publishing, which could be integrated efficiently into existing
knowledge environment [113]. Moreover, these causal-reason-
ing models can provide a valuable addition to the biologists to
interpret the gene expression data [114]. By using these models,
Huang et al. [115] has proposed a data-driven method,
Correlation Set Analysis, to detect active regulators in disease
by integrating co-expression analysis and literature-derived
causal relationships [115].

Reasoning over genetic variance information
integrated in disease networks: concepts and
strategies

A key task in genetic variants interpretation, to understand the
phenotypic consequences, lies in the ability to predict the mo-
lecular-level mechanistic consequences of gene polymorphisms
and mutations.

As a consequence, systems biomedicine modelling
approaches need to combine mechanistic information from
various levels, including gene expression, miRNA expression,
protein–protein interaction, genetic variation and pathway in-
formation. OpenBEL, the open source version of BEL, has re-
cently been extended to match this requirement. With the
extended syntax, the new version of BEL 2.0 is now enabled for
encoding genetic variants in biomedical models. The last re-
lease of the BEL syntax proposes a representation for different
genetic variant types, for example, <substitution>, <insertion>,
<deletion> and <intergenic>, by introducing new variant func-
tions for DNA, RNA and protein levels.

In this version, the variant (<expression>) function can be
used as an argument within a gene(), rna(), microRNA() or pro-
tein() to indicate a sequence variant of the specified level. The
variant() function takes Human Genome Variation Society
(HGVS) variant description expression, e.g. for a substitution, in-
sertion, or deletion of variants. The extended BEL syntax is sup-
posed to support reasoning over cause-effect models that
include genetic variation information.

Representation of variant at protein level

Effects of genetic variants located on coding region or splice
site, if expressed at protein level, can be represented through
protein-level functions. Protein-level variants representation is
purposed to see the genetic variants with their relevancy to pro-
tein, like their location on the protein sequence and effect on
the protein structure (see Table 2).

Representation of variant across DNA/RNA

To see the genetic variants’ impact at DNA/RNA level, protein-
level variants can also be expressed by DNA/RNA-level functions.
Whereas, genetic variants located on non-coding regions (like
intergenic or intronic) can only be represented through DNA/RNA-
level functions, which are designed to see the genetic variants
with their relevancy to genome or gene expression (see Table 3).

Integration of genetic variation information
in BEL models of Alzheimer’s disease:
enhanced functional interpretation of
complex SNP patterns

As a support of this review, here we demonstrate an example
to highlight this promising approach, by integrating genetic
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variant information into an Alzheimer’s disease (AD)
BEL model.

We have recently published the AD BEL model [116]. This
model has 4052 nodes and 9926 edges, and it was generated by
extracting relevant knowledge from the specific biomedical lit-
erature. The AD BEL model comprises disease-associated genes,
protein–protein interactions, miRNAs, bioprocesses and path-
ways. To integrate disease-specific genetic variant information
into AD BEL model, genetic data are retrieved from GWAS data-
bases and the biomedical literature using text-mining methods.
The AD BEL model was enriched with AD-SNP-associated data,
after annotating functional impact of these genetic variants
using the ENSEMBL variant database.

Subsequently, these genetic variants were prioritized, ac-
cording to their functional consequences. Then we mapped
them to the AD BEL model to identify subnetworks with SNPs
that display a substantial biological impact. To complete the
functional impact assessment for these variants, we have exca-
vated the biomedical literature to analyse the role of these SNPs
in the context of age of onset of AD and specifically in the endo-
cytosis pathway.

The early endosome is the first vacuolar compartment in the
context of EP, where enlarged early endosomes are identified as
the earliest neuro-pathologic features to develop in the early
onset of AD. In sporadic AD, endosomal enlargement adds to an
average 2.5-fold larger total endosomal volume per neuron, sug-
gesting a significant increase in endocytic activity. It is the site
of internalization and initial processing of amyloid precursor
protein (APP) and apolipoprotein E, two significant proteins in
AD aetiology [117–119]. Here we focus on the internalization of
APP based on the functional role of SNPs.

AD is mainly characterized by the deposition of insoluble
amyloid beta peptides 42 (Ab42) in the brain, which cannot be
easily removed through the blood–brain barrier. In healthy
brain, APP is processed by ADAM10, which produces soluble
amyloid beta peptide 40 (Ab40), whereas in the non-amyloido-
genic pathway, APP is proteolytically processed by BACE and c-
secretase to generate Ab42 peptides. A SNP rs514049, linked to
the ADAM10 gene, may perturb the normal processing of APP to
produce soluble Ab40, as rs514049 is associated with lower level
of CSF APPa in AD [120]. BACE1 and BACE2 are associated with
c-secretase complex proteins. Moreover, a SNP rs3754048, with
allele G, in the promoter of APH1A gene, might alter the binding
ability of YY1 transcription factor, resulting in an increased
level of APH1A and c-secretase activity to facilitate Ab42 gener-
ation [121].

All these players in the non-amyloidogenic pathway are
trans-membrane proteins, which traffic through the endocytic
pathway [122], where these proteins are internalized from the
plasma membrane and recycled back to the surface (as in early
endosomes and recycling endosomes), or, alternatively, sorted
to degradation (as in late endosomes and lysosomes [123, 124].
However, BACE1 is a genetically significant gene with a number
of high-ranked AD-associated SNPs. It is also evident that APP
and BACE1 are up-regulated in AD. Moreover, experimental evi-
dence suggested that at the cell surface, APP and BACE1
strongly interact and co-localize and are being internalized to-
gether into early endosomes, where both proteins remain co-
localized and produce amyloid-b. This evidence confirms that
endocytosis may be an important step for amyloid-b production
[125]. This can be again supported by the association of genetic
variants linked with the trafficking proteins in the EP.

As shown in Figure 1, there are two branches of EP: firstly,
clathrin-mediated endocytosis (CME), and secondly, retromer-
mediated endocytosis. In the CME pathway, various proteins
such as CLTC, PICALM, DNM2, EPS15 and BIN1 modulate APP
transport for its further internalization, subsequent Ab gener-
ation and further processing in lysosomes, which is required for
neurotransmission and signal transduction. CLTC is a major
protein component of coated vesicles and coated pits in CME
pathway [126]. These specialized organelles are involved in the
intracellular trafficking of receptors and endocytosis of a variety
of macromolecules including APP with the help of additional ac-
cessory proteins such as PICALM, EPS1, DNM2, EGF and its sub-
strate EPS15. PICALM encodes a clathrin assembly protein,
which recruits CLTC and AP2, and regulates the size of the cla-
thrin vesicle at neuromuscular junction, whereas an intronic
PICALM SNP, rs588076, is associated with allelic expression of a
PICALM isoform [127]. Stable DNM2 recruitment during CME
correlates well with CLTC lifetime [128], while a risk allele at
rs892086 is associated with reduced expression of DNM2 mRNA
in the hippocampus in AD patients compared with non-demen-
ted controls [129].

On the other hand, the EP is also regulated by retromer,
which transports APP from early endosomes to trans-Golgi net-
work (TGN) and released outside cell mainly by retromer com-
plex (VPS35, VPS29, VPS26), SORL1, SNX3, SNX1, WASH complex
(KIAA1033) and so on [130]. SORL1 protein belongs to type-I
trans-membrane, which is expressed in neurons and plays a
critical role in the intracellular transport and in APP processing.
SORL1 binds to the retromer complex and works as an adaptor
protein for APP trafficking from endosomes to TGN. It is
observed that SORL1 levels are reduced in AD-diseased brain,
while overexpression of it redistributes APP to the Golgi appar-
atus; thus, the placement and interaction time of APP and

Table 2. Representation of different genetic variant categories with
variant functions at proteins level in BEL (2.0V)

Variant categories Variant() function in
protein

Reference allele p(HGNC:CFTR, var(¼))
Unspecified variant p(HGNC:CFTR, var(?))
Substitution variant p(REF:NP_000483.3,

var(p.Gly576Ala))
Deletion variant p(REF:NP_000483.3,

var(p.Phe508del))
Frameshift variant

(HGVS short description)
p(REF:NP_000483.3,

var(p.Thr1220Lysfs))
Frameshift variant

(HGVS long description)
p(REF:NP_000483.3,

var(p.Thr1220Lysfs*7))

Table 3. Representation of genetic variants across DNA/RNA with
the reference of chromosomal or mRNA position in BEL (2.0V)

Level categories var() function at different genetic levels

DNA—SNP g(SNP:rs113993960,
var(delCTT))

DNA—chromosome g(REF:NC_000007.13,
var(g.117199646_117199648delCTT))

DNA—coding sequence g(REF:NM_000492.3,
var(c.1521_1523delCTT))

RNA—coding sequence r(REF:NM_000492.3,
var(c.1521_1523delCTT))

RNA—RNA sequence r(REF:NM_000492.3,
var(r.1653_1655delcuu))
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BACE1 is reduced in the early endosomes, which will reduce the
amount of Ab42. SNX3 mediates recruitment of cargo-selective
retromer complex in association with VPS35 [130]. Recent stud-
ies have shown that SNX3 and RAB7A are also required for
proper recruitment of the cargo-selective complex.
Constitutively active RAB7A Q67L mutant is overexpressed, re-
sulting in displacement of the cargo-selective complex [131].
The cargo-selective retromer subcomplex (VPS35–VPS29–VPS26)
recruits the WASH complex (KIAA1033), which mediates the
production of branched actin networks on the surface of endo-
somes. The cargo-selective retromer complex together with
SNX27 and the WASH complex operates in the endosome-to-
cell surface recycling of receptors and proteins.

Integration of genetic variation information
enhances the evidence base for shared
pathophysiology pathways in
neurodegenerative diseases

Parkinson’s Disease (PD) and AD may share pathophysiological
mechanisms and—as a consequence—may share some of their
molecular aetiology. To identify evidence that would speak for
shared pathophysiology between AD and PD, we systematically
analysed genetic variation information that is common be-
tween AD and PD and that can be mapped to putatively shared

pathways. We have selected the common SNPs from AD and PD
GWAS data, and mapped them to gene annotation. Then we
searched diseased BEL models to identify the functional im-
pacts of these genes on AD, PD or neurodegenerative diseases
(see Table 4).

Conclusion

Given the complexity of neurodegenerative diseases and the
limited accessibility to experimental tissues of brain, we need
new strategies to integrate data-driven and knowledge-driven
approaches to unravel the mechanism behind these complex
diseases. Disease networks based on the systems biology mod-
els, comprising various interacting molecules such as genes,
proteins and bioprocesses, succeeded in integrating most of the
available data. In this review, we tried to recapitulate all the
major breakthroughs, which demonstrated the collective cap-
turing of disease-related knowledge, modelling it as a system.
In addition, we have revisited the major studies around identifi-
cation of genetic variants and prioritizing these variants based
on statistical analysis.

So far, disease networks could not easily accommodate in-
formation on genetic variation. We have introduced a novel
methodology based on BEL, which enables us to integrate gen-
etic variation information into a disease network. We developed
a strategy to analyse the functional consequences of SNPs based

Figure 1. In this diagram, we present a flowchart that depicts an abstracted BEL subnetwork derived from the original AD BEL Model. This flowchart represents causal

relationships between genes and genetic variants for the EP components. Gene symbols written in the textboxes with red outline are showing association with the

GWAS identified SNPs for AD. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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on their location in the genome and an interpretation of their
putative role in a network model. Currently using the capabil-
ities of extended BEL version, we have developed the AD BEL
models together with genetic variants with their DNA, RNA or
protein position, variant type and associated allele, which can

be used to better understand the role of SNPs in a disease con-
text and tried to predict its consequences based on the func-
tional context provided by the network model.

Although BEL provides certain powerful algorithms like RCR,
which allows identifying upstream controllers of an observed

Table 4. A list of common SNPs/genes in AD and PD with their possible role in the disease context specifically for AD and PD and generally for
neurodegenerative diseases (NDD)

Common SNPs
in AD and PD

Gene AD PD NDD

rs931977 (Intronic) ERG2 EGR2 targeted by mAChRs
(muscarinic acetylcholine re-
ceptors), which is associated
with cognitive functions,
synaptic plasticity and
memory

– EGR2 is involved in myelin-
ation of peripheral
nerves

EGR2 also associated with
apoptosis

rs2672893 (Intronic) RPTOR RPTOR is downstream of MTOR
and is expressed highly in
AD hippocampus

Alpha-synuclein
reduced the activa-
tion of AMPK target
RPTOR

–

RPTOR activates of PI3K-Akt
pathway

rs6488270 (Intergenic) Downstream_variant
for: TMEM52B

– GABARAPL1 plays role
in development and
homeostasis of the
mouse brain

GABARAPL1 presents a
regulated tissue expres-
sion and is the most
highly expressed gene
among the family in the
central nervous system

Upstream_variant for:
GABARAPL1

rs4742095 (Intergenic) Upstream_variant for:
CD274 PLGRKT

PD1/PD-L1 (CD274) pathway
have role in neuroinflamma-
tion of AD

– PLGRKT is regulating plas-
minogen activation,
which plays a key role in
regulating catecholami-
nergic neurosecretory
cell function

PD1/PD-L1 (CD274) pathway is
associated with IL-10
production

PLGRKT is also involved in
macrophage recruitment
in the inflammatory
response

PLGRKT is believed to have
role in plasminogen bind-
ing and cell migration

rs1984129 (Intergenic) Downstream_variant
for: GBP6

– – LRRC8B is implicated in
proliferation and activa-
tion of lymphocytes and
monocytes

Upstream_variant for:
LRRC8B

rs10515758 (Intergenic) Downstream_variant
for: EBF1

– – EBF1 have role in axonal
pathfinding

Upstream_variant for:
CLINT1

CLINT1 interacts with cla-
thrin, the adapter protein
AP-1 and phosphoinositi-
des. This protein may be
involved in the formation
of clathrin coated ves-
icles and trafficking be-
tween the TGN and
endosomes

rs6810871 (Intergenic) Downstream_variant
for: FAM114A1,
TMEM156

– – FAM114A1 plays a role in
neuronal cell
development

FAM114A1 expressed in
dentate gyrus, the hippo-
campus, the cerebellum
and the olfactory bulb

Upstream_variant for:
KLHL5, TLR6
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effect, there are still limitations to overcome to enable reason-
ing over genetic variants. It is obvious, that we need to develop
more sophisticated algorithms for reasoning over genetic vari-
ant information in network models, by integrating the func-
tional impact of genetic variants on genes in the disease
context. One route to go to refine that algorithm is based on ma-
chine learning approaches to train a model with the established
knowledge of functionally identified genetic variants for differ-
ent complex diseases. That model will then be applied to neuro-
degenerative diseases to overcome the deficiency of genetic
variant evidential data in this area.

Key Points

• Systems biomedicine modelling approaches need to
combine various types of mechanistic details to ad-
dress multilevel nature of disease dysregulation
processes.

• This work represents genetic variation information in-
tegration in cause-and-effect models to identify candi-
date disease mechanisms in diseases with complex
aetiology.

• It is an integrative mining approach that identifies
‘chains of causation’ with reasoning over genetic infor-
mation in BEL models.

• It exemplifies a new strategy to integrate data-driven
and knowledge-driven approaches to unravel the
mechanism of complex diseases.
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Supplementary data are available online at http://bib.
oxfordjournals.org/.
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