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Abstract
The histone acetylation processes, which are believedObjective and design: 

to play a critical role in the regulation of many inflammatory genes, are
reversible and regulated by histone acetyltransferases (HATs), which promote
acetylation, and histone deacetylases (HDACs), which promote deacetylation.
We studied the effects of lipopolysaccharide (LPS) on histone acetylation and
its role in the regulation of interleukin (IL)-8 expression. 

A human alveolar epithelial cell line A549 was used  .Material: in vitro
 Histone H4 acetylation at the IL-8 promoter region was assessed byMethods:

a chromatin immunoprecipitation (ChIP) assay. The expression and production
of IL-8 were evaluated by quantitative polymerase chain reaction and specific
immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT
inhibitor, anacardic acid, were assessed. 

 -derived LPS showed a dose- and time-dependentResults: Escherichia coli
stimulatory effect on IL-8 protein production and mRNA expression in A549
cells . LPS showed a significant stimulatory effect on histone H4in vitro
acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA
showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as
compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited
IL-8 production and expression in A549 cells. 

 These data suggest that LPS-mediated proinflammatoryConclusion:
responses in the lungs might be modulated via changing chromatin remodeling
by HAT inhibition.
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Introduction
Pneumonia is an important socio-medical problem and one of the 
leading causes of death in the world1. Gram-negative rods, crucial 
pathogens in hospital- as well as community-acquired pneumonia, 
produce and release endotoxins which constitute lipopolysaccha-
rides (LPS). Once inhaled via respiratory routes, LPS stimulate 
alveolar structural as well resident cells to release many kinds 
of bioactive agents such as proinflammatory cytokines into local 
microenvironments2.

Recent studies have emphasized a crucial role for the lung epi-
thelium as an important sentinel and effector system of innate| 
immunity3–5. Upon infectious agents and their products being inhaled 
into the respiratory systems, activated lung epithelium may contrib-
ute to the regulation of the immune response as the first-line defense 
mechanism6. Among those defense responses, it seems important 
that alveolar epithelial cells express and release a variety of pro- 
inflammatory cytokines and chemokines into alveolar microenviron-
ments6,7. A CXC chemokine, interleukin (IL)-8, plays an important 
role in the acute recruitment of immune/inflammatory cells, especially 
neutrophils, to the site of infection in the lung8,9. LPS bind to Toll-
like receptors (TLR) and thereby activate downstream signal trans-
duction pathways which ultimately phosphorylate cytosolic I-κB 
kinase10,11. Then, I-κB is phosphorylated to induce free-form of 
NF-κB, which translocates into the nucleus. The NF-κB binds to 
its specific binding sites on the promoter regions and enhances the 
expression of IL-8 gene12,13.

Increasing evidence has indicated that the expression of many inflam-
matory genes involves the remodeling of the chromatin structure 
provided by histone proteins14,15. Remodeling of chromatin within 
the nucleus is controlled by the degree of acetylation/deacetylation 
of histone residues on the histone core around which DNA is 
coiled. Histone acetylation results in the unwinding of the chroma-
tin structure, which enhances the binding of transcription factors to 
their specific promoter sites on the DNA16. Nuclear histone acetyla-
tion is a reversible process and is regulated by a group of histone 
acetyltransferases (HATs) which promote acetylation, and histone 
deacetylases (HDACs) which promote deacetylation17,18. The loosen-
ing of DNA-histone interactions and the subsequent unmasking of 
transcription factor binding sites is controlled by specific covalent 
modifications of accessible N-terminal histone tails19. Among the 
four core histone proteins that comprise the central chromatin core 
(H2A, H2B, H3, and H4), acetylation processes on H3 and H4 seem 
particularly important in gene regulation. For example, Gilmour 
and associates20 found that acetylation on H4 played an important 
role in environment particle-induced IL-8 production in A549 cells. 
Viable Listeria monocytogenes-stimulated endothelial cells showed 
increased expression of IL-8, and that process depended on modifi-
cations of H3 and H421. Although the host response in pneumonia is 
characterized by massive cytokine production, and altered histone 
modifications have been observed in diseased lungs22, it is not fully 
elucidated how histone modifications contribute to innate immune 
regulation in the lung.

In this study, we tried to determine whether Escherichia coli- 
derived LPS, one of the mainstream stimuli upon bacterial respira-
tory infection, altered histone acetylation/deacetylation balance, 

and to see whether the modulation of HDACs or HATs by their spe-
cific inhibitors (i.e. trichostatin A [TSA] for HDACs and anacardic 
acid for HATs) affected IL-8 gene expression and protein produc-
tion in an alveolar epithelial cell line A549 in vitro.

Materials and methods
Cell culture and stimulation
Human alveolar epithelial cell line A549 was obtained from the 
American Type Culture Collection (ATCC, Manassas, VA, USA) 
via DS Pharma Biomedical Co., Ltd (Tokyo, Japan). A549 cells 
were cultured in Dulbecco’s Modified Eagle’s Medium (Sigma-
Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum 
(FBS) (Invitrogen, Grand Island, NY, USA) and 1% penicillin-
streptomycin (Sigma-Aldrich, St, Louis, MO, USA), and incubated 
at 37°C in 5% CO

2
 atmosphere. Cells were cultured to 80% conflu-

ency as judged under inverted microscopy before the medium was 
replaced with serum-free Dulbecco’s Modified Eagle’s Medium 
and incubated for a further 15 h. The cells were stimulated with 
different concentrations of E.coli-derived LPS (026:B6, Sigma- 
Aldrich, St, Louis, MO, USA) for further experiments. To evalu-
ate the effects of HDAC and HAT inhibitors, cells were pre-treated 
with TSA or anacardic acid (Sigma-Aldrich, St, Louis, MO, USA; 
dissolved in dimethyl sulfoxide [DMSO] and further diluted for 
use) at the concentrations indicated, 1h prior to stimulation with 
LPS (10 μg/ml).

Quantitative reverse transcription polymerase chain reaction 
(qRT-PCR)
Total RNA from A549 cells was isolated with the RNeasy Mini kit 
(Qiagen, Hamburg, Germany), and cDNA was prepared using the 
Im Prom II reverse transcription system (Promega, Madison, WI, 
USA) for reverse transcription, and all procedures were conducted 
according to the manufacturers’ instructions. Gene transcript levels 
of IL-8, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
were quantified by real-time PCR using a reaction mixture with 
SYBR Premix Ex Taq (Takara, Tokyo, Japan) on a 7500 real-time 
PCR system (Applied Biosystems, Foster City, CA, USA). The 
primer sets for IL-8 were: (forward) 5’-CTGATTTCTGCAGCTCT-
GTG-3’; (reverse) 5’-TTCACTGGCATCTTCACTG-3’ and for 
GAPDH were: (forward) 5’-TGAACGGGAAGCTCACTGG-3’ 
(reverse) 5’-TCCACCACCCTGTTGCTGTA-3’ The relative 
amount of gene transcript was estimated after normalization by 
dividing the calculated value for the gene of interest by the GAPDH 
value.

Chromatin immunoprecipitation assay (ChIP assay)
Chromatin immunoprecipitation was performed using Millipore’s 
ChIP kit (Billerica, Massachusetts, USA) with an acetyl-histone H4 
antibody. Cells were cultured to 80% confluency in 100mm cul-
ture plates. Cells were cross-linked by adding 1% formaldehyde for 
10 minutes at room temperature in shaking. Then, 1ml of 10×glycine 
was added to 10ml of growth media to each dish to quench unre-
acted formaldehyde at room temperature for 5 minutes. Cells were 
washed twice with cold 10ml phosphate buffered saline (PBS). One 
ml PBS containing 1×protease inhibitor cocktail II prepared in the 
ChIP kit was added to each dish. Cells were scraped from each dish 
into a conical tube. The tubes were centrifuged at 700×g at 4°C for 
5 minutes to pellet cells. Each cell pellet was resuspended in 1ml 
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filter placed in a clean collection tube, and was centrifuged for 
30 seconds at 12000×g to recover purified DNA. The IL-8 enhancer 
regions were quantified by real-time PCR using a reaction mixture 
with SYBR Premix Ex Taq (Takara, Tokyo, Japan) on a 7500 real-
time PCR system (Applied Biosystems, Foster City, CA, USA). 
The primer sets for IL-8 were: (forward) 5’- CAGAGACAGCA-
GAGCACAC-3’; (reverse) 5’- ACGGCCAGCTTGGAAGTC-3’. 
All PCR signals from immunoprecipitated DNA were normalized 
to PCR signals from non-immunoprecipitated input DNA.

ELISA for IL-8 measurement
The concentration of IL-8 in the media was determined by sand-
wich ELISA kit (R&D Systems, San Diego, CA) according to the 
manufacturer’s instructions.

Statistical analysis
Data were analyzed with the Statistical Package for Social Science 
(SPSS) version 17.0 for Windows (SPSS Inc., Chicago, IL, USA). 
Values are expressed as mean ± standard error (SE). Mann-Whitney 
U test was performed for comparisons between groups. A P-value 
< 0.05 was considered significant. All P-values were two-sided.

Results
LPS stimulated production of IL-8 in A549 cells
We analyzed IL-8 production in LPS stimulated A549 cells. A549 
cells were stimulated by different concentrations of LPS (10 ~ 
200μg/ml) for indicated time periods. As shown in Figure 1, LPS 
showed a time- and dose-dependent stimulatory effect on IL-8 
release.

LPS induced expression of IL-8 gene in A549 cells
A549 cells were stimulated by 10μg/ml LPS, and the time course 
in levels of IL-8 mRNA was analyzed by qRT-PCR. IL-8 mRNA 
levels showed a gradual increase in response to LPS, reaching a 
maximum level 2 h after initial stimulation with 10μg/ml, which 
then decreased after that point (Figure 2).

of SDS lysis buffer containing 1×protease inhibitor cocktail II pre-
pared in the ChIP kit. Chromatin was sonicated to an average DNA 
length of 200–1000 bp using an Ultrasonic Disruptor UD-200 
sonicator (TOMY, Tokyo, Japan). Sonicated samples were centri-
fuged and the supernatant was collected. Samples (100μl) of the 
extracted chromatin were diluted with 900μl ChIP Dilution Buffer 
(0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl, 
pH 8.1, 167mM NaCl), precleared (1 hour) by incubation with 60μl 
Protein G Agarose containing 1×protease inhibitor cocktail II, and 
subjected to immunoprecipitation with a specific antibody with rota-
tion overnight at 4°C. The antibody used for ChIP assays was anti- 
acetyl histone H4 antibody (Millipore, Billerica, Massachusetts, 
USA). Immunocomplexes were collected by adsorption onto 60μl 
Protein G Agarose and the beads were washed five times sequen-
tially with Low Salt Immune Complex Wash Buffer (0.1% SDS, 
1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 150mM 
NaCl), High Salt Immune Complex Wash Buffer (0.1% SDS, 1% 
Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 500mM NaCl) 
and LiCl Immune Complex Wash Buffer (0.25M LiCl, 1% IGEPAL 
CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM 
Tris, pH 8.1), which were prepared in the ChIP kit. Precipitates 
were washed twice with TE Buffer (10mM Tris-HCl, pH 8.0, 1mM 
EDTA), and antibody-chromatin fragments were eluted from the 
beads with 1% sodium dodecyl sulphate in 0.1 M NaHCO

3
. Cross-

links were reverted by adding 200mM NaCl and heating at 65°C 
for 5 hours. In total, 10mg/ml RNase A were added and samples 
were then incubated for 30 minutes at 37°C. 10mg/ml proteinase K, 
10mM EDTA and 40mM Tris-HCl were added and samples were 
then incubated for 2 hours at 45°C.

A total of 1ml of Bind Reagent A was added to each sample, and 
mixed well by pipetting. The sample was transferred up to a spin 
filter placed in a collection tube, and was centrifuged for 30 seconds 
at 12000×g. Then, 500μl of Wash Reagent B was added to each spin 
filter placed in a collection tube, and was centrifuged for 30 seconds 
at 12000×g. Then, 50μl of Elution Buffer C was added to each spin 

Figure 1. The dose- and time- dependent interleukin-8 (IL-8) release from A549 cells in vitro. A549 cells were cultured until 80% confluence 
and stimulated by different concentrations of lipopolysaccharide (LPS) (10 ~ 200μg/ml). LPS showed a time- and dose-dependent stimulatory 
effect on IL-8 release at each concentration. Data were expressed in mean±SEM. *P<0.05, compared to LPS unstimulated cells at each 
concentration and time point (Mann-Whitney U test), n=4.
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Figure 3. Time course analysis of lipopolysaccharide (LPS)-induced histone H4 acetylation at the promoter region of the interleukin-8 
(IL-8) gene in A549 cells in vitro. A549 cells were stimulated 0 ~ 3 hr with LPS (10μg/ml). The results presented are from ChIP analyses using 
anti-acetyl H4 antibodies. All PCR signals from immunoprecipitated DNA were normalized to PCR signals from non-immunoprecipitated input 
DNA. Results are expressed as percentage of the input. Data were expressed in mean±SEM. *P<0.05: compared to LPS 0hr stimulated cells 
(Mann-Whitney U test), n=4.

Figure 2. Time course analysis of lipopolysaccharide (LPS)-mediated interleukin-8 (IL-8) gene expression in A549 cells in vitro. 
A549 cells were cultured until subconfluence and stimulated by LPS at 10μg/ml. After 0 ~ 8 hrs, IL-8 mRNA expression was analyzed 
by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-8 mRNA levels were normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) levels. Data were expressed in mean±SEM. *P<0.05: compared to LPS 0hr stimulated cells (Mann-
Whitney U test), n=4.

LPS induced histone acetylation in A549 cells
Based on the previous reports showing that modifications of his-
tones, in particular acetylation of H4, seem to contribute to the regu-
lation of inflammatory genes such as IL-820, we assessed acetylation 
of H4 after stimulation of LPS in A549 cells. We analyzed histone 
modifications at the IL-8 gene promoter by ChIP assay. A549 cells 
were stimulated with LPS (10μg/ml) for 0 min to 3 h. LPS induced 
a time-dependent increase of acetylation of H4 at the IL-8 promoter, 
and this increase peaked after 1 h (P<0.05, Mann-Whitney U test), 
and then decreased after 3 h of LPS stimulation (Figure 3).

Histone acetylation regulates IL-8 expression in LPS-
stimulated A549 cells
Next, we wondered whether inhibition of HDACs by TSA or 
blocking of HATs by anacardic acid impacts on LPS-induced IL-8 

expression. We increased global histone acetylation by incubation 
of A549 cells with TSA (10nM, 24 h) which did not induce IL-8 
secretion per se (Figure 4). Preincubation for 1 h with TSA (10nM) 
before subsequent treatment with LPS significantly increased IL-8 
release as compared to LPS alone (Figure 4). Pretreatment with 
TSA (10nM) showed a tendency to increase IL-8 mRNA levels as 
assessed by qPCR analysis, but did not reach statistical significance 
(Figure 5).

Suppression of histone acetylation by blocking of HATs via 
anacardic acid showed a dose-dependent inhibitory effect on LPS-
stimulated IL-8 production (Figure 6), indicating that histone dea-
cetylation regulates IL-8 expression in LPS-treated epithelial cells. 
The effects of anacardic acid on IL-8 mRNA expression were 
analyzed by qRT-PCR. Anacardic acid at 100μM administered 1 h 
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Figure 4. Effect of trichostatin A (TSA) on lipopolysaccharide (LPS)-stimulated interleukin-8 (IL-8) release from A549 cells in vitro. 
TSA at 1 ~1000nM treated 1 hr before LPS stimulation (10μg/ml) showed a significant stimulatory effect on LPS-induced IL-8 release. Data 
were expressed as mean±SEM. *P<0.05: compared to LPS-stimulated cells (Mann-Whitney U test), n=4.

Figure 5. Time course analysis of trichostatin A (TSA) on lipopolysaccharide (LPS)-stimulated interleukin-8 (IL-8) gene activation 
from A549 cells in vitro. TSA at 10nM treated 1 h before LPS stimulation (10μg/ml) tended to show a stimulatory effect on LPS-induced IL-8 
gene activation. After 0 ~ 8 h, the levels of IL-8 mRNA were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-
PCR). The IL-8 mRNA levels were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels, n=4.

Figure 6. Effect of anacardic acid on lipopolysaccharide (LPS)-stimulated interleukin-8 (IL-8) release from A549 cells in vitro. 
Anacardic acid at 10 ~ 100μM treated 1 hr before LPS stimulation showed a significant inhibitory effect on LPS-induced IL-8 release. Data 
were expressed as mean±SEM. DMSO: dimethyl sulfoxide used for solvent. *P<0.05: compared to LPS (10μg/ml) stimulated cells (Mann-
Whitney U test), n=4.
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including A549 cells, are activated by a variety of endogenous 
agents such as cytokines as well as exogenous stimuli including 
LPS and fine particles, and express biologically active compounds 
including cytokines and chemokines.

The transcription of many genes is known to correlate with levels 
of acetylated nuclear histone proteins14–16. The expression of many 
inflammatory genes involves the remodeling of the chromatin struc-
ture provided by histone proteins. Histone acetylation causes the 
unwinding of the chromatin structure, thereby enabling transcrip-
tion factors to bind to their specific promoter sites on the DNA. Such 
acetylation processes are reversible and regulated by HATs, which 
promote acetylation, and HDACs, which promote deacetylation18,19.

Proinflammatory gene transcription regulation is a multifaceted 
process that requires integrated sequential molecular events for 
maximal gene transcription to occur. Activation of specific gene 
expression needs to be associated with co-operated chromatin remod-
eling by histone acetylation and binding of transcription factors to 
their specific binding sites on DNA. In the present experiments, the 
levels of histone H4 acetylation peaked 1 h after LPS stimulation 
followed by the maximal levels of IL-8 mRNA at 2 h; such a time 
course was consistent with the above scenarios.

Our study supports a hypothesis that histone H4 acetylation could 
play a key role in inflammatory gene transcription such as IL-8 in 
A549 cells caused by LPS; however, the role of acetylation of the 
other histones in this model is yet to be established. It has been 
reported that a variety of histone acetylations are involved in cytokine 
transcriptional processes. Miyata et al.27 have shown that H3 and 
H4 are acetylated in murine epithelial cells in response to granu-
locyte-colony stimulating factor (G-CSF) at the myeloperoxidase 
gene promoter site, a response dependent on MAPK activation.

before LPS (10μg/ml) stimulation showed a significant inhibitory 
effect on LPS-induced IL-8 mRNA levels (Figure 7). These obser-
vations indicated that modulation of histone acetylation by anac-
ardic acid regulated LPS-stimulated IL-8 gene expression in A549 
cells.

Raw data for figures 1–7

7 Data Files

http://dx.doi.org/10.6084/m9.figshare.159692

Discussion
In the present study, we demonstrated that E. coli-derived LPS stim-
ulate human alveolar epithelial A549 cells to express and release 
IL-8, an important chemokine for the local recruitment of neutro-
phils as an initial defense mechanism8,9. The specific histone acetyla-
tion processes were evaluated by ChIP assay, which clearly showed 
that LPS induced histone H4 acetylation in A549 cells. Next, we 
studied the effects of TSA, a HDAC inhibitor on LPS-induced 
IL-8 expression. TSA showed a significant stimulatory effect on 
IL-8 production, whereas this agent tended to increase, although 
not significantly, IL-8 mRNA levels in LPS-stimulated A549 cells. 
Finally, a HAT inhibitor, anacardic acid, significantly decreased 
IL-8 mRNA levels as well as protein release in a dose-dependent 
fashion. These results suggested that LPS-induced IL-8 gene 
expression is, at least in part, regulated by histone H4 acetylation/
deacetylation balance at the IL-8 promoter region.

It has been reported that alveolar epithelial cells respond to bac-
terial products such as LPS to produce a variety of inflammatory 
cytokines and mediators including IL-82. We23,24 and others9,25,26 
have previously shown that airway and alveolar epithelial cells, 

Figure 7. Time course analysis of anacardic acid on lipopolysaccharide (LPS)-stimulated interleukin-8 (IL-8) gene activation in A549 
cells in vitro. Anacardic acid at 100μM treated 1 hr before LPS (10μg/ml) stimulation showed a significant inhibitory effect on LPS-induced 
IL-8 gene activation. After 0 ~ 8hrs, the levels of IL-8 mRNA were analyzed by quantitative reverse transcription polymerase chain reaction 
(qRT-PCR). The IL-8 mRNA levels were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels. Data were expressed as 
mean±SEM. *P<0.05 (Mann-Whitney U test), n=4.
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decreased IL-8 mRNA levels as well as protein release in a dose- 
dependent fashion. These results suggested that regulation of HDAC 
and HAT activity by low molecular weight agents might become a 
novel strategy for the appropriate control of inflammation by modu-
lating inflammatory mediators such as IL-8.
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Anacardic acid is a bioactive phytochemical found in the nutshell 
of Anacardium occidentale28. The promising effect of anacardic 
acid on IL-8 gene regulation in the current study has already been 
reported by Schmeck and associates29 in Legionella pneumophila-
derived flagellin-induced IL-8 expression. Although the available 
records are promising, more detailed investigation into the thera-
peutic properties of anacardic acid, particularly the anti-cancer and 
anti-inflammatory activities, are needed30.

LPS-mediated IL-8 production is generally expected to act as a 
defense mechanism which recruits neutrophils in the local environ-
ment and facilitates bacterial elimination. However, it is now also 
known that excessive accumulation of activated neutrophils in the 
lung is likely to cause excessive inflammatory changes that dam-
age lung tissues8. In this context, appropriate control of local 
inflammation would be an important strategy for the management 
of severe pneumonia22. Recently, it has been attracting attention that 
macrolide antibiotics added to guideline-based therapy has shown a 
better outcome than respiratory quinolones among intensive care unit 
(ICU) hospitalized patients with severe pneumonia and/or sepsis31. 
It has been speculated that certain anti-inflammatory actions of 
macrolides were involved in such clinically beneficial effects32. 
Therefore, the suppressive effects of anacardic acid on IL-8 gene 
expression and production might become a novel strategy for con-
trolling excessive inflammation in order to lessen the risks of acute 
lung injury and, ultimately, respiratory failure to death.

In conclusion, we have shown that E. coli-derived LPS-induced 
expression and release of IL-8 are associated with increased acetyla-
tion of histone H4 expression. The HDAC inhibitor TSA increased 
IL-8 release. In contrast, a HAT inhibitor, anacardic acid, significantly 
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