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Abstract  

Introduction: Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation 

(PLS) detect associations between two data matrices based on computing a linear combination 

between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) 

and covariance (PLS). These different maximization criteria may render one approach more 

stable and reproducible than the other when working with brain and behavioural data at the 

population-level. This study compared the LVs which emerged from CCA and PLS analyses of 

brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) 

dataset and examined their stability and reproducibility. 

Methods: Structural T1-weighted imaging and behavioural data were accessed from the baseline 

Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain 

matrix consisted of cortical thickness estimates in different cortical regions. The behavioural 

matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist 

(CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models 

were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation 

test was used to assess whether identified LVs were statistically significant. A series of 

resampling statistical methods were used to assess stability and reproducibility of the LVs.  

Results: When examining the relationship between cortical thickness and CBCL scores, the first 

LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, 

PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was 

linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical 

thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility 

of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and 
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cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first 

LV showed similar relationships between CCA and PLS and was found to be stable and 

reproducible (singular value: CCA = .21, PLS = .43, p < .001).  

Conclusion: CCA and PLS identify different brain-behaviour relationships with limited stability 

and reproducibility when examining the relationship between cortical thickness and parent-

reported behavioural measures. However, both methods identified relatively similar brain-

behaviour relationships that were stable and reproducible when examining the relationship 

between cortical thickness and cognitive performance. The results of the current study suggest 

that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are 

influenced by characteristics of the analyzed sample and the included behavioural measurements 

when applied to a large pediatric dataset. 
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Introduction  

Cortical structure has been linked to mental health symptoms across clinical and non-

clinical samples (Romer et al., 2021; Ameis et al., 2014; Albaugh et al., 2016; Ducharme et al., 

2016; Qin et al., 2014; Jacobs et al., 2020; Mihalik et al., 2019). Improving brain-behaviour 

research methods can lead to better characterization of risk or resilience to mental health 

symptoms (Nour, 2022). Yet, brain-behaviour associations have shown poor replicability across 

studies (Lombardo et al., 2019; Masouleh et al., 2019; Boekel et al., 2015), with recent work 

suggesting thousands of participants are required for replicable findings in cross-sectional studies 

(Marek et al., 2020). Small sample sizes, differences in between-study methodology, sampling 

heterogeneity, and underpowered statistical approaches have contributed to the lack of 

consistency between studies (Lombardo et al., 2019; Grady et al., 2021; Poldrack et al., 2017; 

Button et al., 2013). Recent multi-site research initiatives such as the Adolescent Brain Cognitive 

Development (ABCD) cohort study have largely addressed prior sample size limitations. 

However, substantial methodological challenges remain, necessitating studies that can guide 

decisions around which statistical approaches are most suitable for identifying stable and 

reproducible brain-behaviour associations across studies. Brain-behaviour relationships have 

been often explored using univariate statistical approaches that assess one dependent variable per 

model, despite the limited power and sensitivity of this method when applied to complex brain-

behaviour data (McIntosh, 2021; Mardia et al., 1979; Nakua et al., 2022). In contrast, 

multivariate approaches can examine relationships between several independent and dependent 

variables in a single analysis without requiring multiple comparison corrections, providing 

greater power to detect relationships between two variable sets (McIntosh, 2021; Marek et al., 

2020). 
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Two widely used multivariate approaches to examine the association between two sets of 

variables are Canonical Correlations Analysis (CCA) and Partial Least Squares correlation 

(PLS). These approaches derive a set of latent variables (LV) pairs which each obtained as a 

linear combination of the variables of one data table. The latent variables in a pair have maximal 

correlation (using CCA) or covariance (using PLS) (Hotelling et al., 1936; Kotz & Johnson, 

1985). This difference in the maximization criteria may result in the identification of different 

brain-behaviour relationships. Both CCA and PLS have been widely applied to clinical and 

population-based samples over the past decade to analyze brain metrics and phenotypic measures 

(Seok et al., 2021; Xia et al., 2018; Itahashi et al., 2020; Modabbernia et al., 2021; Ziegler et al., 

2013; Kebets et al., 2019; Drysdale et al. 2017; Moser et al. 2018; Avants et al. 2014; Ing et al. 

2019; Wang et al. 2018; Smith et al. 2015; Mihalik et al. 2019). As the accessibility of large-

sample multidimensional datasets increases, CCA and PLS will likely be used more frequently 

given the potential to identify complex associations between multiple modalities.  

Two prior studies have systematically compared the outputs from CCA and PLS models 

to determine the strengths, weaknesses, and similarities of both approaches (McIntosh, 2021; 

Helmer et al. 2020). Helmer et al. (2020) found that an adequate sample size (N > 1000) is 

necessary for stable and reliable CCA and PLS findings, regardless of the datatypes being 

examined. Although CCA and PLS both maximize linear relationships, McIntosh (2021) found 

that the identified relationships are most similar between CCA and PLS when the correlations 

within each data matrix are low. Beyond these findings, knowledge is limited regarding whether 

other characteristics of a dataset (e.g., measurements used, clinical versus non-clinical samples, 

etc.) influences the reliability of the models derived from CCA or from PLS. To address this gap, 

we applied CCA and PLS to brain and phenotypic behaviour data available through the ABCD 
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dataset to: 1) examine the similarity between the identified LVs of CCA and PLS when 

delineating relationships between cortical thickness and phenotypic measures (which we refer to 

here as between-method generalizability), and 2) compare the stability, reproducibility, and 

reliability of the LVs within CCA and PLS (which we refer to here as within-method 

generalizability). We examined two different phenotypic measures to assess whether phenotypic 

characteristics influence brain-behaviour relationship identification when implementing CCA 

and PLS. The first analysis included the Child Behavior Checklist (CBCL)—a phenotypic 

measure of parent-reported childhood behaviours that are relevant to various mental health 

diagnoses. The second analysis examined relationships between cortical thickness and cognitive 

performance measured using the NIH Cognitive Toolbox. Using these two sets of measures 

provide an opportunity to compare whether the stability and reliability of CCA and PLS is 

influenced by the choice of measurement (i.e., parent-reported or performance-based) and the 

construct of interest (i.e., psychopathology or cognitive performance). The ultimate goal of our 

analyses is to determine whether CCA or PLS models are impacted differently by the various 

measures, and which approach may be better suited to identifying stable and reliable brain-

behaviour associations in large population-based samples.  

Methods 

Sample  

The ABCD dataset is a longitudinal multi-site population-based sample collecting a 

comprehensive measurement battery (including genetic, blood, environmental, cognitive, brain, 

and behavioural measures) in > 11,000 beginning in children who are 9-11 years old. Data 

collection time points occurring annually or biannually for 10 years. Participants were recruited 
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from 21 academic sites across the U.S. using probability sampling to ensure that demographic 

trends across the U.S. are well represented in the sample (see Casey et al., 2018, for more 

details). Recruitment occurred through presentations and emails delivered to parents of children 

in local schools around each site. Interested parents underwent a telephone screening to 

determine whether their children were eligible to participate in the study. Participants were 

excluded from inclusion to the ABCD study if they had MRI contraindications, no English 

fluency, uncorrected vision or hearing impairments, major neurological disorders, were born 

extremely preterm (less than 28 weeks gestation), low birth weight (< 1200 grams), birth 

complications, or unwillingness to complete assessments. The current study used tabulated data 

from the baseline sample provided by the ABCD consortium from the fourth annual release 

(DOI:10.15154/1523041). Following removal of participants with poor brain imaging quality, 

missing T1-weighted scans, missing behavioural data, and removal of one sibling per family if 

the family enrolled multiple siblings, twins, or triplets (see Figure S1 for consort diagram and 

details of exclusion), the current study used data from 9191 participants for the first analysis 

exploring associations between cortical thickness and CBCL scores (ages 9-11 years, 4369 

assigned-female-at-birth and 4822 assigned-male-at-birth) and 9034 participants for the second 

analysis exploring associations between cortical thickness and NIH Toolbox scores (4292 

assigned-female-at-birth and 4742 assigned-male-at-birth) .  

Scanning Acquisition and Processing  

The neuroimaging protocol and specific T1-weighted parameters are detailed in previous 

publications (Casey et al. 2018; Hagler et al. 2018). Briefly, the ABCD protocol is harmonized 

for Siemens, General Electric, and Philips 3T scanners. All scanners used multi-channel coils 

capable of multiband echo planar imaging (EPI) acquisitions. The scanning occurred in either 1 
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or 2 sessions depending on the scanning site. Participants underwent a mock scanning session 

before the actual scan to help them get accustomed to the scanning environment. T1-weighted 

scans were collected, processed, and analyzed by the Data Analysis, Informatics Resource 

Center (DAIRC) based on standardized ABCD protocols (see details: Hagler et al. 2018). 

Cortical and subcortical segmentation was performed using FreeSurfer v5.3.0 (Dale et al., 1999; 

Fischl and Dale, 2000). All T1-weighted scans were examined by trained visual raters who rated 

each scan from 0-3 based on motion, intensity homogeneity, white matter underestimation, pial 

overestimation, and visual artifacts. From these ratings, participants with poor quality scans were 

recommended for exclusion by the DAIRC and were excluded from this study (for more details, 

Hagler et al. 2018). 

Brain Measures 

Cortical thickness of the 68 cortical regions from the Desikan-Killiany Atlas parcellations 

(Desikan et al., 2006) were used as the structural morphology measures in the current study.  

Behavioural Measures 

Two different behavioural measures were selected for this analysis: CBCL subscale 

scores and the NIH Cognitive Toolbox. Both measures have been linked to structural brain 

morphology (Burgaleta et al., 2014; Ehrlich et al., 2012; Ronan et al., 2020; Ameis et al. 2014; 

Ducharme et al. 2014; Albaugh et al. 2016). The CBCL provides standardized parent-reported 

measures of behavioural symptoms relevant to mental health diagnoses (e.g., internalizing 

symptoms relevant to anxiety and depressive disorders), while the NIH Cognitive Toolbox offers 

a set of standardized performance-based measures of cognitive phenotypes (e.g., a working 

memory task).   
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In our first analysis, we implemented CBCL as the behavioural variable set. The CBCL is 

a well-validated tool to assess mental health symptoms in children from a parent/caregiver 

(Achenbach & Ruffle, 2000). The CBCL consists of 113 questions about a child’s behaviour on 

an ordinal scale (0 = never, 1 = sometimes, 2 = often). The ordinal ratings are summed to provide 

subscale scores for a variety of behaviours (e.g., aggression). We used the 8 conventional 

subscale scores from the parent-report CBCL for 6–18 year-olds: anxious/depressed, 

withdrawn/depressed, somatic complaints, thought problems, social problems, rule-breaking 

behaviour, aggressive behaviour, attention problems, in addition to 3 subscales included in 

ABCD that address symptoms closely related to neurodevelopmental disorders: stress symptoms, 

obsessive compulsive problems, and sluggish-cognitive-tempo (Jacobson et al. 2012; Storch et 

al. 2006).  

In our second analysis, we used cognitive performance measures from the NIH Cognitive 

Toolbox as the behavioural variable set. The NIH Toolbox consists of 7 tasks presented on an 

iPad and measures 5 broad cognitive domains: picture vocabulary task (language skills), oral 

reading recognition task (language skills), list sorting working memory task (working memory), 

picture sequence memory task (episodic memory), flanker task (attention/inhibition), 

dimensional card change sort task (cognitive flexibility), and pattern comparison processing 

speed task (visual processing) (Thompson et al. 2019; Weintraub et al. 2013).  

Statistical Analysis 

In order to remove the effects of age, sex-assigned-at-birth, total head size, site (N = 21), and 

MRI scanner model (N = 5) from the results, we regressed out (i.e., partialled out) these variables 

from both the brain and behavioural matrix using linear regression, a procedure ensuring that 
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their effects would not drive the results. The resulting residuals were Z-transformed (mean-

centered and standard deviation of 1) and were used in the CCA and PLS analyses.  

Performing the CCA and PLS Analyses 

CCA and PLS are unsupervised learning algorithms that identify linear relationships 

between two sets of variables, which describe the maximum relationship between 2 matrices 

(here a brain matrix, X, and a behaviour matrix, Y). These methods maximize different 

information between X and Y by decomposing a cross-product matrix. Usually, in CCA and 

PLS, the variables (i.e., columns) in X and Y are mean centered with unit variance (standard 

deviation of 1) or have a Euclidean norm of 1 (i.e., square root of the sum of squares equal to 

one). This scaling indicates that the cross-product matrix decomposed by PLS is either 

proportional (Z-scores are equal (norm 1)) to the Pearson correlation matrix between X and Y 

(denoted by RXY) and, the cross-product matrix decomposed by CCA is the adjusted Pearson 

correlation matrix between X and Y (denoted by Ω) as it is normalized by the within-block 

correlations of X and of Y. This difference in adjustment of within-block correlation makes the 

relationships derived from CCA optimized for correlation and those derived from PLS optimized 

for covariance (see details in supplementary Section 1, and in prior work: McIntosh et al. 2021; 

Krishnan et al. 2011; Abdi et al. 2018). 

      CCA and PLS maximize the associations between two data matrices by decomposing the 

RXY or Ω matrix with the singular value decomposition (SVD). The SVD decomposes RXY or Ω 

(for PLS and CCA, respectively) into 2 matrices of orthonormal singular vectors (U and V) and a 

diagonal singular value matrix (S). The singular vectors U and V store the X and the Y loadings 

that characterize the association between the two data matrices, respectively. The relationship 

between respective U and V singular vectors comprises latent variables (LVs; analogous to 
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components, factors, or dimensions in the multivariate literature; Krishnan et al. 2011). The 

loadings give the weight of each variable in the corresponding LV (i.e., the degree to which that 

variable contributes to the latent relationship). For PLS, the loadings are directly derived from 

the U and V matrices, whereas for CCA, they are reweighted (see supplementary section 1 for 

details). To better understand the latent relationships between X and Y, each matrix is projected 

onto the respective singular vectors to create latent scores (i.e., XU and YV; analogous to factor 

scores). For each LV, the XU-YV pair of scores are optimized for correlation (in CCA) and for 

covariance (in PLS) to describe the multivariate co-variation between the X and the Y matrices. 

The singular values (from the S matrix) give the strength of the relationships between the 

corresponding pairs of latent scores from XU and YV. The largest possible number of LVs 

generated is equivalent to the minimum number of variables from either of the two matrices 

(e.g., when using CBCL as the behavioural measures, there were 11 LVs identified given that the 

behaviour matrix has 11 variables and the brain matrix has 68 variables).  

The structure and distribution of X or Y may require some pre-processing prior to 

decomposing the cross-product matrix. In the current sample, the CBCL data were skewed with a 

high proportion of the sample having zero or low scores across subscales. As a result, cross-

product matrices (RXY and Ω) were implemented using Spearman’s correlation when performing 

the CCA/PLS analysis using CBCL and NIH Toolbox scores to ensure methods remain 

consistent. Non-parametric Spearman’s correlation is more robust to skewed data (de Winter et 

al. 2016; Myers & Sirios, 2006).   

To assess the significance of the LVs identified from CCA and PLS, we performed a 

permutation test on the singular values (McIntosh and Lobaugh, 2004; McIntosh, 2021). Briefly, 

the brain matrix underwent 10,000 iterations of resampling without replacement. Then, each 
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resampled brain matrix and original behavioural matrix underwent the CCA or PLS analytical 

pipeline. Because the resampling procedure breaks the associations between the brain and 

behaviour matrices, this permutation creates the cross-product matrix under the null. Given the 

large sample size, a standard permutation test may not be stringent enough to detect meaningful 

LVs. To impose stringency on the detection of significant LVs, we performed a “sum of squares” 

permutation test (analogous to Wilk’s Lambda). This test assesses the eigenspectrum (i.e., a set 

of eigenvalues which are the square of the singular values) from CCA or PLS to determine if the 

total variance explained by a given set of LVs is greater than chance. It works by generating the 

sum of squares for K – 1 singular values (with 1 ≤ K < 11 (i.e., LV1-LV1) then LV2-LV11, etc.). 

This permutation test generates null distributions of a given eigenspectrum depicting the 

likelihood of brain-behaviour relationships captured by a given LV occurring at random. Each 

LV was significant if less than 5% of the permuted sum of square singular values (e.g., LV1-

LV11 for LV1, LV2-LV11 for LV2, etc.) were equal or greater than the empirical sum of square 

singular values.  

Assessing Reproducibility, Reliability, and Stability 

Resampling statistics were used to assess reproducibility, reliability, and stability of the 

LVs identified. Reproducibility of singular vectors were assessed using split-half resampling. 

Reliability of singular values was assessed using train-test resampling (Figure 1). Stability of the 

elements (i.e., individual variables, e.g., anxiety/depression subscale score from the CBCL) 

within a single LV was assessed using bootstrap resampling of the singular vectors. The split-

half and train-test resampling analyses were conducted using 10,000 iterations. The bootstrap 

resampling of singular vectors analysis was conducted using 1000 iterations due to 

computational constraints. Reproducible and reliable distributions were identified using a Z-test 
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(i.e., mean divided by standard deviation of distribution). A Z-test magnitude >1.96 is associated 

with a p-value <.05, a pattern indicating that the distribution significantly differed from zero. 

Prior work using simulated data confirms that randomly permuted distributions rarely exceed a 

Z-score of 1.65 (which would match a p-value of .10), a configuration suggesting that this cut-off 

is appropriate to use to determine significantly reproducible distributions (McIntosh, 2021).  

Assessing reproducibility with split-half resampling: For each iteration, the original X 

and Y matrices were randomly split into two halves to create 4 matrices (i.e., X1 and Y1 for the 

first half, and X2 and Y2 for the second half) conserving the relationship between X and Y for 

each resample (Churchill et al., 2013). CCA and PLS analysis were separately performed in each 

half (e.g., within a single iteration, CCA was conducted between X1 and Y1, and then separately 

between X2 and Y2). A Pearson correlation was used to assess the relationship between U and V 

singular vectors from the halves of each iteration (e.g., U1 and U2 from the analysis of the first 

and the second half). The Z-test was performed on the distribution of Pearson correlation values 

between each of the 11 singular vectors of matrices U and V. 

Assessing reliability with train-test resampling: For each iteration, the data is split at 

random into an 80/20 train/test split. The CCA and PLS analyses were initially performed on the 

train set, and the singular vectors were projected onto the cross-product matrix of the test set to 

solve for the singular values (details in McIntosh, 2021). The Z-test was performed on the 

distribution of predicted singular values. This test assesses the magnitude of the association 

between X and Y.  

Assessing stability with bootstrap resampling: Using a Monte-Carlo bootstrap approach, 

the data matrices X and Y were generated 1000 times by randomly selecting the participants with 

replacement until the total sample size was reached (N = 9191) while conserving the relationship 
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between X and Y. The CCA and PLS were separately conducted for each regenerated X and Y 

matrix, a procedure resulting in 1000 regenerated matrices of singular vectors U and V. We 

corrected for arbitrary sign flips that often occur in iterations of the SVD (see supplementary 

section 1.2 for details). The 1000 regenerated U and V singular vectors provide bootstrap 

samples that were used to create the bootstrapped distribution of each element in U and V. From 

these bootstrapped distributions, we computed the 95% bootstrapped confidence intervals of 

each element in U and V to quantify their stability. A stable variable in a given LV was 

determined by a corresponding 95% bootstrapped confidence interval that does not include zero.  

 

 

Figure 1. Overview of the analytical pipeline used in the current study. Panel A shows the main CCA and PLS analysis: the 
decomposition of the cross-product matrices to produce singular values and singular vectors (re-weighted in the case of CCA).  
Panel B shows the sum of squares permutation analysis to assess the statistical significance of each LV. Panel C illustrates the 
split-half analysis used to assess the similarity between respective singular vectors from each split-half. Panel D shows the train-
test resampling analysis which assesses how well the singular values from the training sample can predict the singular values of 
the test sample. Note: interpretation of the different resampling statistical analyses is independent from one another and are not 
sequential. The bootstrap confidence interval estimation, not shown here, was used to assess the stability of the parameter 
estimates of variable weights in the singular vectors.    
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Sensitivity analyses 

We ran two sensitivity analyses to ensure that the differences in the CCA and PLS results were 

not driven by socioeconomic status (SES) or history of head injury, both of which have been 

found to impact structural morphology metrics and/or behaviour (Lawson et al. 2013; Piccolo et 

al. 2016; Wilde et al. 2012). For both these samples, we performed the CCA and PLS analysis, 

permutation test, and split-half resampling analysis. We analyzed a subset of the sample with 

available household income data (N = 8399) which we used as a proxy for SES (Hill et al., 2016; 

Rakesh et al., 2021). In this analysis, household income data were included as a covariate in the 

linear regression model to extract residuals from the brain and behaviour matrices. In a separate 

analysis, we performed CCA and PLS in a subset of the sample including participants with no 

history of head injuries (N = 8139; see details in supplementary section 3). 

Post-hoc analyses  

Between- and within-method generalizability may be improved by stratifying the sample 

based on clinical severity when examining the relationship between cortical thickness and CBCL 

scores. We therefore implemented two post-hoc analyses to explore whether variations of the 

sample or measures improves the reproducibility of brain-behaviour relationships derived from 

CCA or PLS. Given the skewed nature of CBCL scores, we sought to determine whether 

participants with higher scores (i.e., greater behavioural problems) would have specific brain-

behaviour relationships that may be washed out when conducting the analysis in the full sample. 

We stratified the sample by participants who had a total CBCL T-score (normalized for sex-

assigned-at-birth and age) >60 which has been proposed as a subclinical cut-off (N = 1016; 
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(Biederman et al., 2020)). In a separate post-hoc analysis, in order to remove the zero inflation 

(Byrd et al. 2021) we removed participants with no endorsement (i.e., a score of 0) on any CBCL 

subscale to attain a sample with full subscale symptom endorsement (N = 5196; see 

supplementary section 4). We performed the CCA and PLS analysis, permutation test, and split-

half resampling analysis in both these subsets.  

Data and Code Availability: Data for the ABCD Study are available through the National 

Institutes of Health Data Archive (NDA; nih.nda.gov). The participant IDs included in these 

analyses and details on the measures used, can be found in this project’s NDA study (DOI: 

10.15154/1528644). The code for the analysis can be found on GitHub 

(https://github.com/hajernakua/cca_pls_comparison_ABCD).  

Results  

Participant Characteristics  

Table 1 provides the demographic details of the ABCD sample used in the current study. 

As shown, there were no substantial differences between the sex, household income, 

race/ethnicity, parental education, and behaviour measures between the analyzed sample (N = 

9191) and the total sample acquired from ABCD with complete data (N = 11804). See Table S1 

comparing diagnostic characteristics between the sample with full CBCL data (N = 9191) and 

analyzed subsamples (N = 8399, 8139) included in sensitivity analyses (see supplementary 

section 3 for details on sensitivity analyses). 
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Table 1. Demographic Characteristics of the ABCD subsample included in the current study and 
the acquired ABCD sample  
 
 
 

Included ABCD 
Sample (n=9191)  

Acquired ABCD 
Sample (n=11804)   

 Mean [range] SD Mean [range] SD  

Age (in months) 118.9 [107-133] 7.4 118.9 [107-133] 7.5  

CBCL Total T-Score 46.12 [24-83] 11.4 45.84 [24-83] 11.3  

CBCL Internalizing T-Score 48.73 [33-93] 10.7 48.45 [33-93] 10.64  

CBCL Externalizing T-Score 45.87 [33-84] 10.4 45.73 [33-84] 10.32  

 Total % Total %  

Sex (Female) 4369 47.5 5637 47.7  

Household Income      

<$50K 2531 27.5 3196 27.1  

$50-$100K 2381 25.9 3057 25.9  

>$100K 3487 37.9 4544 38.5  

Participant race/ethnicity      
White 4704 51.2 6150 52.1  
Black 1360 14.8 1755 14.9  

Asian 205 2.2 251 2.12  

Hispanic 1973 21.5 2401 20.3  
Other 948 10.3 1244 10.5  

Parent Education       

<HS Diploma 468 5.1 583 4.9  

HS Diploma 887 9.65 1120 9.5  

Some College 2389 25.9 3056 25.9  

Bachelors 2287 24.9 3003 25.4  

Post-Graduate 3150 34.3 4027 34.1  
Note: Some participants had missing household income, race/ethnicity or parent education information, thus, the total number of 
participants in each category reflect those with available data. SD = standard deviation; CBCL = Child Behavior Checklist, 
HS=high school. Internalizing behaviour is the summed broad-band measure which includes anxious/depressed, 
withdrawn/depressed, and somatic complaints scores. Externalizing behaviour is the summed broad-band measure which 
includes aggressive and rule-breaking behaviour. These broad-band measures are clinically meaningful, however, they do not 
allow the exploration of brain-behaviour relationships at the symptom level. The second analysis included all the participants in 
the first with available NIH Cognitive Toolbox data (n=9034). There were limited differences in demographic characteristics 
between the sample with complete CBCL data and the sample with complete NIH data.   
 

CCA and PLS Analyses 
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First Analysis (CBCL scores as the behavioural variable set): the sum of squares permutation 

test revealed 1 significant LV for both CCA and PLS (p < .001) when decomposing the 

Spearman’s cross-product correlation matrix. The relationship between the brain (U) and 

behaviour singular vectors (V) in LV1 was stronger in PLS compared to CCA (singular values: 

PLS = .39 [81.6% of covariance], CCA = .13 [19.3% of variance]). Figure 2 depicts un-

thresholded behaviour and brain loadings for PLS and CCA. LV1 from PLS identified an 

association between lower CBCL scores (i.e., less behavioural problems) and decreased cortical 

thickness; the strongest loading was between aggressive behaviours and the right pars 

triangularis. LV1 from CCA identified both positive and negative behaviour loadings linked to 

both increased and decreased cortical thickness; the strongest loading was between greater social 

problems and the greater thickness of the right superior temporal gyrus. See Figure S2 for CCA 

and PLS results when decomposing the Pearson correlation matrix. See supplementary section 

1.2 and Figure S4 for CCA results when implementing the structure coefficients. See 

supplementary section 3 and Figure S3 indicating similar results found for sensitivity analyses 

controlling for household income and head injuries in the sample. 

 

Figure 2. Unthresholded behaviour and brain loadings from the PLS and CCA analysis performed in the first analysis (n=9191). 
The highest behaviour loadings for PLS were aggressive behaviour, thought problems, and stress. The highest brain loadings for 
PLS were right pars triangularis, right inferior parietal cortex, and left posterior cingulate cortex. The highest behaviour loadings 
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for CCA were social problems, withdrawn/depressive symptoms, and attention problems. The highest brain loadings for CCA 
were left and right posterior cingulate cortex and left fusiform gyrus. Importantly, interpretation of the loading direction is 
relative. As such, it is accurate to say that in PLS negative behavioural loadings are linked to negative brain loadings or that 
positive behavioural loadings are linked to positive brain loadings as long as the relationship of the sign remains the same. The 
second farthest right column shows the latent scores between XU and YV for LV1. Prior to calculating the latent scores, the brain 
and behavioural loadings have been standardized by the singular values. The x-axis from the train-test distributions is the 
predicted singular values of the test sample for each iteration. Astericks indicate the LVs which showed a distribution with a Z-
score greater than 1.96 LV1 from CCA was found to be reliable (that is, LV1 of the training sample can reliably predict the 
singular values of LV1 from the test sample). OCD = obsessive compulsive symptoms, withdep = withdrawn/depression 
symptoms, sct = sluggish-cognitive-tempo, anxdep = anxiety/depression symptoms, rulebreak = rule breaking behaviour.  
 

Second Analysis (NIH Toolbox scores as the behavioural variable set): the permutation test 

revealed 6 significant LVs (LV1: PLS = .43 [75.5% of variance]; CCA = .21 [41.6% of 

variance]; Figure 3). In contrast to the first analysis, LV1 between cortical thickness and 

performance on the NIH cognitive toolbox were similar in CCA and in PLS, indicating the 

presence of between-method generalizability. In both CCA and PLS, this LV identified an 

association between decreased cognitive performance (across all variables) and increased cortical 

thickness in several frontal and temporal regions and decreased cortical thickness in several 

occipital regions (Figure 3). The strongest associations in LV1 were between the list sorting 

working memory task (working memory) and the picture vocabulary task (language abilities) and 

the left pars opercularis and left parahippocampal gyrus. See supplementary section 3 and Figure 

S7 indicating similar results found for sensitivity analyses controlling for household income and 

head injuries in the sample. 
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Figure 3. Unthresholded behaviour and brain weights from the PLS and CCA analysis performed between NIH Cognitive 
Toolbox scores and cortical thickness. The highest 2 behaviour loadings for PLS and CCA were performance on the list sorting 
task and the picture vocabulary task. The highest brain loadings for CCA were the left pars opercularis, superior frontal gyrus, 
and parahippocampal gyrus. The highest brain loadings for PLS were the left pars opercularis, parahippocampal gyrus, and 
medial orbitofrontal gyrus. The second farthest right column shows the latent scores between XU and YV for LV1. Prior to 
calculating the latent scores, the brain and behavioural loadings have been standardized by the singular values. Overall, there is a 
similar relationship between the brain and behavioural latent scores when comparing CCA and PLS. The fourth (farthest right) 
column shows the results of the train-test resampling analysis. Astericks indicate the LVs which showed a distribution with a Z-
score greater than 1.96. LV1 for both PLS and CCA was found to be reliable (that is, LV1 of the training sample can reliably 
predict the singular values of LV1 from the test sample). Flanker = Flanker Task, pattern = pattern comparison processing speed 
task, cardsort = dimensional change card sort task, reading = oral reading recognition task, picture = picture vocabulary task, list 
= list sorting working memory task, picvocab = picture vocabulary task.  
 

 

Reproducibility, Reliability, and Stability  

Split-half resampling (reproducibility of loadings): Figure 4 shows the distributions of Pearson 

correlation coefficients between the U (or V) singular vectors from the two halves. In the first 

analysis (CBCL scores as behavioural matrix), the Z-test of the distribution shows that the 

correlation between the loadings from both halves is not significantly different from zero across 

all LVs, indicating no reproducible singular vectors for CCA. A similar pattern was found in 

PLS except for the behaviour loadings for LV2 of which the mean coefficient of correlation is 

significantly different from 0 (Z-score = 2.17), a value indicating some reproducibility. In the 
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second analysis (NIH Toolbox scores as behavioural matrix), LV1 for the behavioural and brain 

loadings was found to be reproducible for both CCA and PLS (Z-score range = 2.9 – 25). LV3 

behavioural and brain loadings were found to be reproducible for PLS (Z-score = 2.15, 2.57, 

respectively).  

Train-test resampling (reliability of singular values): Figure 2 and 3 (farthest right panel) 

illustrates the distributions of predicted singular values of each test set iteration. In the first 

analysis (CBCL scores as behavioural matrix), the results showed that LV1 from CCA features a 

distribution significantly different from zero (Z-score = 2.31), indicating a reliable LV (i.e., the 

SVD results from the training set can reliably predict the singular values of the test set). No other 

LV showed reliable singular values in CCA or PLS. For the second analysis (NIH Toolbox 

scores as behavioural matrix), LV1 and LV3 were found to be reliable for both CCA and PLS (Z-

score range = 2.15 – 7.77), and LV2 was additionally found to be reliable for CCA (Z-score = 

2.02).  

 

 
Figure 4. This figure depicts the distributions of the resampled loadings from the split-half analysis for the first and second 
analyses. The x-axis from the split-half distributions are the Pearson correlation coefficients between respective loadings from 
each split-half analysis (e.g., U1 and U2 from the analysis comparing X1 and Y1 and separately, X2 and Y2). Astericks indicate the 
LVs which showed a distribution with a Z-score greater than 1.96. 
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Bootstrap resampling (stability of elements in LV1): Bootstrap analysis on the loadings from the 

first and second analyses revealed several stable brain and behavioural elements in LV1 (i.e., the 

95% confidence intervals did not include zero; see Figures S13-S14).  

 

Post-hoc analyses  

 In the subset of the sample with elevated total CBCL scores (elevated-CBCL sample, T-

score > 60; N = 1016), the correlations in the cross-product matrices RXY and Ω were overall 

stronger than those of the main sample (Figure S11). Accordingly, the first singular values were 

also larger than found in the main sample, a difference indicating a stronger relationship between 

the brain and behavioural variables (singular values of LV1: PLS = .67 [54% of covariance]; 

CCA = .33 [14.6% of variance]). The PLS analysis identified higher CBCL scores (i.e., greater 

problems) linked to lower cortical thickness across nearly all regions, the opposite finding to the 

main analysis using CBCL scores as the behavioural matrix (Figure S5). However, none of the 

LVs extracted from the elevated-CBCL sample from both PLS and CCA were statistically 

significant or reproducible. By contrast, from the subset excluding participants with full CBCL 

subscale endorsement (N = 5196), the relationships between brain and behaviour variables were 

similar to that of the main sample but were not statistically significant or reproducible (singular 

values of LV1: PLS = .38, CCA = .18; Figure S6).  

Discussion 

A challenge in clinical neuroscience research is identifying brain-behaviour relationships 

that are consistent across different samples and studies. Here, we aimed to better understand 

factors that influence between-method (i.e., CCA vs. PLS) and within-method (i.e., 

reproducibility/reliability/stability) generalizability of brain-behaviour relationships identified 
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using CCA and PLS applied to cortical thickness and behavioural data from the baseline ABCD 

sample. In our first analysis using CBCL scores, the results indicated that LV1 identified 

different multivariate patterns of brain-behaviour associations using CCA or PLS, a difference 

suggestive of limited between-method generalizability. Neither CCA nor PLS LVs were found to 

be consistently stable or reproducible when systematically examined through various resampling 

statistical approaches, suggestive of low within-method generalizability. In our second analysis 

using cognitive performance measures, LV1 identified similar brain-behaviour relationships 

using both CCA and PLS which were reproducible, reliable, and stable suggestive of both 

between- and within-method generalizability. Our findings suggest that using performance-based 

measures may be more optimal for delineating multivariate relationships that are generalizable 

(between- and within-method) between cortical thickness and phenotypic data in large 

community-derived samples, consistent with some prior work (Marek et al., 2020; Ooi et al., 

2022).  

CCA and PLS identifies different multivariate relationships between cortical thickness and 

parent-reported behavioural measures (i.e., low between-method generalizability) 

In our first analysis examining associations between cortical thickness and parent-

reported behaviour using the CBCL, LV1 derived from CCA indicated that both higher and lower 

CBCL scores were linked to both higher and lower cortical thickness values. The pattern of 

covariation found in CCA is consistent with prior work examining brain-phenotype relationships 

in large community derived samples. One such study found covariation of brain and phenotypic 

measures such that positive and negative environmental factors loaded in opposite directions and 

were linked to covariation of functional connectivity (Smith et al. 2015). CCA may be more 

likely to identify prominent patterns of covariation (i.e., positive and negative loadings) between 
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two data matrices due to the adjustment of the within-block correlation matrices in the cross-

product matrix (Ω) submitted to the SVD. This step removes the redundant within-block 

variance optimizing for uniqueness.  

LV1 derived from PLS, in contrast, identified lower CBCL scores (i.e., fewer problems) 

linked to mainly decreased cortical thickness. The limited covariation in LV1 (i.e., the various 

behavioural and brain variables load in the same direction) from PLS may be due to the 

optimization of redundant relationships given that the cross-product matrix does not adjust for 

within-block correlations. The limited covariation has been found in prior reports examining 

relationships between mental health symptoms and functional connectivity using PLS (Itahashi 

et al. 2020). Notably, the brain-behaviour relationship in LV1 for PLS in the main sample 

contrasts with prior univariate analyses reporting negative associations between CBCL measured 

behavioural problems and cortical thickness in clinically enriched or normative samples (Ameis 

et al., 2014; Ducharme et al., 2014, 2011; Jacobs et al., 2020; Vijayakumar et al., 2017). 

However, in the elevated-CBCL sample (i.e., participants with CBCL total t-scores >60; N = 

1016), we found that LV1 in PLS linked higher behavioural scores to lower cortical thickness. 

Although the results were not significant, the increased correlations in the cross-product matrix 

(Figure S11) suggest that a larger sample would be needed to find significant results. The 

contrast of these results suggest that brain-behaviour relationships identified at the population 

level may be washing out brain-behaviour patterns present in children with more pronounced 

behavioural problems. Overall, these findings indicate low between-method generalizability for 

multivariate relationships between parent-reported behavioural symptoms and cortical thickness.  

Lack of consistently stable and reproducible LVs linking cortical thickness and CBCL 

scores (i.e., low within-method generalizability) 
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In the first analysis, there was no consistent reproducible or reliable LVs linking cortical 

thickness and CBCL scores as assessed by split-half or train-test resampling, respectively. The 

LV2 behavioural loading was reproducible when implementing PLS. The singular value for LV1 

in CCA was found to be reliable as assessed by train-test resampling, a result indicating a robust, 

albeit small, signal greater than random chance (McIntosh & Lobaugh, 2004). Further, there 

were stable CBCL and cortical thickness elements in LV1 as assessed by bootstrap resampling 

using PLS, but not with CCA. These findings suggest that tests of reproducibility, reliability, 

stability, and significance may not lead to consistent conclusions about the generalizability of 

brain-behaviour relationships as was found in prior reports (McIntosh, 2021). Notably, despite 

limitations in between- and within-generalizability, LV1 was robust (i.e., results remained similar 

despite changes to the sample, as noted by Huber, 2011) given that the sensitivity and post-hoc 

analysis in the subsample with full subscale endorsement did not substantially alter the 

relationship identified in LV1 for CCA or PLS. The statistical significance and robustness of LV1 

indicates that the results are meaningful to the present sample; however, the lack of consistent 

reproducibility and reliability suggests that the results are not generalizable to other samples.  

High between- and within-method generalizability between cortical thickness and cognitive 

performance  

In the second analysis examining associations between cortical thickness and cognitive 

performance from the NIH Cognitive Toolbox, LV1 derived from CCA and PLS linked cognitive 

performance scores to both higher and lower cortical thickness values. In contrast to the trends 

found when using parent-report CBCL as behavioural measures, CCA and PLS both found 

covariation in the brain loadings but not in the behavioural loadings. This difference may be due 

to the stronger between-block correlations in the cross-product matrix (RXY and Ω; Figure S10) 
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compared to the first analysis leading the NIH scores to exhibit the same directional relationship 

to cortical thickness regardless of whether CCA or PLS was implemented.  

Notably, the stability and reproducibility of LV1 across methods suggests that the results 

found are both meaningful to the current sample (given the statistical significance and 

robustness) and generalizable to other samples. Thus, between-method generalizability (i.e., 

similar LV1 between CCA and PLS) and within-method generalizability (i.e., consistent stability 

and reproducibility of LV1) suggest that performance-based measures may be better to use when 

exploring latent relationships between behavioural phenotypes and brain structural morphometry.  

Skewed data and low correlations may reduce between- and within-method generalizability  

In the first analysis, the lack of between- and within-method generalizability found 

between the brain and parent-report behavioural variables may have been driven by the low 

correlations (i.e., minimal effect size) as well as the skew of the CBCL variables (Figure S12). 

The skewed CBCL scores indicate that the variance of interest is present within a small subset of 

the model with the most extreme behavioural problems. Importantly, low brain-behaviour 

correlations and the skewness of behaviour scores are likely a feature of population-based 

samples, not the result of sampling error (Owens et al. 2021). In contrast, the NIH Toolbox 

measures are more normally distributed (Figure S12) and feature slightly stronger correlations 

between the brain and behavioural variable sets (i.e., cross-correlation matrix, Figure S10). 

These configurations likely contributed to the increased between- and within-method 

generalizability when using cognitive performance measures in the current study. The 

differences in within- and between-method generalizability between the first and second analyses 

may also be due to the distribution of the variance in the NIH toolbox scores compared to CBCL 

scores. To better understand the variance structure of CBCL and NIH Toolbox scores, we 
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submitted each of these two matrices to a separate principal components analysis. CBCL had a 

more compressed variance structure compared to NIH Toolbox scores (CBCL: 6/11 (54.5%) and 

NIH: 5/7 (71%) of the components were needed to explain 90% of the variance). This 

compressed variance structure may be another explanation contributing to the limited within-

method generalizability of the PLS and CCA models.  

Prior work has noted the limitations of clinical measures that are originally optimized to 

detect clinically significant symptoms which lead to skewed distributions when applied to 

population-based or community-derived samples (Alexander et al., 2020). More recent work has 

shed light on the importance of developing more rigorous phenotypic measures, particularly in 

population-based samples, as limited intraclass reliability has been shown to impact clinical 

neuroscience research (Nikolaidis et al. 2022). The results of the current study extend this prior 

work and provide evidence in support of either collecting larger samples of participants with 

greater clinical impairments and/or development of phenotypic measures that adequately capture 

the variation of behavioural presentations at the population level.  

The results of the current study suggest that reproducibility, reliability, and stability of 

CCA and PLS are largely impacted by the variance structure of the phenotypic measure used 

when examining brain-behaviour relationships. Although we did not find major differences 

between CCA and PLS in the second analysis, these two approaches do have different 

underlying philosophies that may be important when considering which model to implement. 

The removal of the within-block correlations allows CCA to amplify the specific and unique 

variable(s) that most strongly categorizes the Ω. In contrast, PLS takes advantage of the 

redundancy of the within-block correlations and amplifies the collection of variables that most 

strongly characterizes RXY. Importantly, the one-to-one comparison between CCA and PLS was 
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possible in this study due to the use of ROI data for both analyses. Given that CCA maximizes 

for correlations, very high multicollinearity within a variable set will result in unstable LVs with 

CCA (e.g., if using voxel-wise data). In such cases, PLS should be used.  

Limitations  

There are some limitations to consider when interpreting the results of this study. First, 

we analyzed the baseline data from the ABCD Study which includes children between 9-11 years 

of age. This age range may not feature substantial variability of cortical thickness to facilitate 

strong relationships linked to parent-reported behavioural phenotypes. Second, we focused our 

analysis on classical CCA and PLS as opposed to more recent derivative approaches, such as 

kernel CCA or sparse PLS (Mihalik et al., 2019; Witten & Tihshirani, 2009). These derivative 

approaches add a penalty factor to the decomposition step, reducing the weight of variables that 

have weak contributions to the overall LV, thereby facilitating easier interpretability and 

increasing reproducibility of results. These approaches have typically been used in datasets 

which include a disproportionate ratio of participants to variables (i.e., low sample-to-feature 

ratio, Mihalik et al. 2019) which was not the case in the current sample. While comparing the 

derivative approaches is beyond the scope of the current paper, it is important to explore in 

future work. 

Conclusion  

Clinical neuroscience research is going through a translational crisis largely due to the 

challenges of delineating brain-phenotype relationships that are replicable, meaningful and 

generalizable, particularly with respect to behaviours linked to mental health diagnoses (Nour et 

al. 2022). There have been methods that address this challenge, such as the use of an external 

validation sample to determine generalizability (Scheinost et al., 2019; Walter et al., 2019; Yip et 
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al., 2020). Less emphasis has been placed on assessing generalizability of results when using 

different methods within the same sample. The results of the current study suggest that between- 

and within-method generalizability among CCA and PLS is influenced by sample/measurement 

characteristics. Low correlations between brain and behavioural measures coupled with skewed 

distribution reduces reproducibility, reliability, and stability of CCA and PLS models. The 

results of this study suggest that the measures inputted into CCA or PLS models play a more 

substantial role in the generalizability of the model’s results compared to the specific approach 

applied (i.e., CCA or PLS). One important implication of the current work is that performance-

based cognitive measures are likely a more promising phenotypic measure compared to parent-

reported behaviour in children when examining multivariate relationships with brain structure. 

There are several avenues of future work that should be examined to better understand how to 

improve brain-behaviour relationship delineation at the population-level. First, it is possible that 

different sub-groups of participants may show differing relationships between brain structure and 

complex phenotypic outcomes such as parent-reported CBCL scores, which may reduce the 

stability of findings when considering a single linear dimension across the entire sample. As a 

result, biotyping/clustering methods may be better suited when delineating brain-behaviour 

relationships using clinical report measures. Second, the current findings are specific to cross-

sectional investigations of cortical thickness and phenotypic measures. It is possible that using 

longitudinal phenotypic data, available per individual across different time-points, as part of the 

ABCD longitudinal data collection will reveal within-person stability and reproducibility of 

brain-behaviour relationships. Lastly, it is possible that using functional MRI acquisitions, which 

feature greater variability compared to structural MRI metrics, for the brain matrix, may result in 
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greater between- and within-method generalizability when linked to parent-report behavioural 

measures.  
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