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Emodin, as a major active component of Rheum palmatum L. and Polygonum cuspidatum, has been reported to have antifibrotic
effect. However, the mechanism of emodin on antifibrotic effect for liver fibrosis was still obscure. In the present study, we aimed
to investigate whether emodin can alleviate carbon tetrachloride- (CCl

4
-) induced liver fibrosis through reducing infiltration of

Gr1hi monocytes. Liver fibrosis was induced by intraperitoneal CCl
4
injection in mice. Mice in the emodin group received emodin

treatment by gavage. Pretreatment with emodin significantly protected mice from liver inflammation and fibrosis revealed by the
decreased elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as reduced hepatic
necrosis and fibrosis by analysis of hematoxylin-eosin (HE) staining, Masson staining, 𝛼-smooth muscle actin (𝛼-SMA), and
collagen-I immunohistochemistry staining. Further, compared to CCl

4
group, mice in the emodin group showed significantly less

intrahepatic infiltration of Gr1hi monocytes. Moreover, emodin significantly inhibited hepatic expression of interleukin-1𝛽 (IL-1𝛽),
tumor necrosis factor-𝛼 (TNF-𝛼), transforming growth factor-𝛽1 (TGF-𝛽1), granulin (GRN), monocyte chemoattractant protein
1 (MCP-1), and chemokine ligand 7 (CCL7), which was in line with the decreased numbers of intrahepatic Gr1hi monocytes. In
conclusion, emodin can alleviate the degree of liver fibrosis by reducing infiltration of Gr1hi monocytes. These results suggest that
emodin is a promising candidate to prevent and treat liver fibrosis.

1. Introduction

Liver fibrosis, characterized by excessive deposition of extra-
cellular matrix (ECM), is a pathological change after chronic
liver injury including viral infection, toxic damage, metabolic
disorders, and alcohol abuse [1]. However, there is still a
lack of effective drugs for the treatment of liver fibrosis [2].

Understanding the mechanisms of liver fibrosis is important
for prevention and control of liver disease progression.

Different cell types in the liver make a network and
regulate liver fibrogenesis [3]. During the past decades,
it became apparent that hepatic macrophages play cen-
tral functions in initiating, perpetuating, and restricting
liver fibrosis [1, 4–6]. Hepatic macrophages participate in

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2018, Article ID 5738101, 11 pages
https://doi.org/10.1155/2018/5738101

http://orcid.org/0000-0001-5571-6477
http://orcid.org/0000-0002-1657-010X
https://doi.org/10.1155/2018/5738101


2 Evidence-Based Complementary and Alternative Medicine

liver fibrosis through various ways. Importantly, hepatic
macrophages mediate the transdifferentiation of hepatic stel-
late cells (HSCs) into collagen-producing myofibroblasts by
secreting several profibrotic factors, such as transforming
growth factor-𝛽1 (TGF-𝛽1), platelet-derived growth factor
(PDGF), and granulin (GRN) in liver fibrosis [1, 5, 7–9].
Besides, hepatic macrophages can release many proinflam-
matory cytokines such as tumor necrosis factor-𝛼 (TNF-
𝛼), interleukin-1𝛽 (IL-1𝛽), and IL-6 which may induce
liver cellular apoptosis and aggravate liver inflammation
[8, 10, 11]. Thus, hepatic macrophages are an attractive
target for novel therapeutic approaches to liver fibrosis
[12].

Hepatic macrophages comprise resident Kupffer cells
(KFs) and infiltrating monocyte-derived cells [13]. During
the development of liver fibrosis, macrophage pool of the
liver can be rapidly expanded by infiltrating phagocytes
that mainly originate from circulating monocytes [14–16]. In
mice, two major populations of circulating monocytes exist:
Gr1hi (Ly-6Chi) monocytes and Gr1lo (Ly-6Clo) monocytes.
In acute and chronic liver injury ofmice, Gr1hi monocytes are
massively recruited into the liver [8, 11]. As vigorous secretors
of proinflammatory and profibrotic factors including TNF-
𝛼 and TGF-𝛽1, they drive inflammation and activate HSC
thereby triggering a cascade of events leading to liver fibrosis
[10, 17].

The accumulation of monocytes is critically due to
chemokines monocyte chemoattractant protein 1 (MCP-1)
and chemokine ligand 7 (CCL7) [8, 18–20]. When the liver
is damaged, liver cells, HSCs, macrophages, and endothelial
cells can secrete MCP-1 and CCL7 which combine with
the related receptor-chemokine receptor on peripheral blood
monocytes surface and recruit Gr1hi monocytes into liver
[8, 21, 22].

In the past two thousand years, Rheum palmatum L.
and Polygonum cuspidatum has been used as Traditional
Chinese Medicine to treat liver diseases, which has achieved
significant curative effects [23]. As the main active ingredient
of Rheum palmatum L. and Polygonum cuspidatum, emodin
has been demonstrated to have anti-inflammatory, antitumor,
and antifibrotic effects [24, 25]. Further study suggested that
emodin has certain antifibrotic effect on liver fibrosis [26, 27].
However, the mechanism of emodin on the antifibrotic effect
for liver fibrosis is still obscure. Therefore, in the present
study we investigated whether emodin could alleviate the
degree of carbon tetrachloride- (CCl

4
-) induced liver fibrosis

by inhibiting infiltration of Gr1hi monocytes.

2. Materials and Methods

�.�. Mice. Male C57BL/6 mice, 7-8 weeks old, weighing
25 ± 2 g, purchased from Beijing Vital River Experimental
Animals Technology (Beijing, China), were used in this
study. Mice were housed under laminar airflow hoods
in a specific pathogen-free room with a 12 h light and
12 h dark schedule and fed autoclaved chow and water
at a controlled temperature of 22 ± 2∘C, 50–60% relative
humidity.

�.�. Experimental Protocol. Mice were randomly assigned
to the control group, CCl

4
group, and emodin group. For

induction of liver fibrosis,mice in the emodin group andCCl
4

group were injected intraperitoneally with 0.6ml/kg dose of
CCl
4
(CCl
4
: olive oil = 1 : 4, 3𝜇l/g CCl

4
oil) twice weekly

for 4 weeks. Mice in the control group were injected with
equal volume of olive oil as control. Emodin was dissolved in
0.25% sodium carboxymethyl cellulose (CMC-Na) aqueous
solution to prepare the appropriate concentration. Emodin
was given by gavage at a dose of 20mg/kg/d in the emodin
group.This dose of emodin is the optimal dose proved by the
previous study [27]. For the control group and CCl

4
group,

mice were administrated orally with the same volume of
CMC-Na aqueous solution.

After 48 h of the last CCl
4
administration, mice were

sacrificed after anesthesia. Blood samples were collected for
ALT and AST detection. The liver tissues of mice were
collected.

�.�. Liver Function Detection. Blood samples were cen-
trifuged at 4000 rpm/min for 15min to get serum. ALT and
AST levels were determined with clinical testing technique
through biochemical instrument (Beckman Coulter, Inc.,
Brea, CA, USA).

�.�. Flow Cytometry. Isolation of liver-infiltrating lympho-
cytes was performed by an automated, mechanical disag-
gregation system (Medimachine, Becton Dickinson, USA).
The liver samples of mice were washed with PBS twice and
then cut into small pieces of 3-4mm3. Five pieces were
immediately put in a disposable disaggregator Medicon with
50 𝜇m separator mesh (Becton Dickinson, USA) and then
1ml PBS was added and processed in the Medimachine Sys-
tem for 1min. Disaggregated cells were removed and pressed
through 70 𝜇m cell strainers to obtain single cell suspensions.
Cells were used immediately for flow cytometric analysis.
Related antibodies were listed as follows: CD45 (557235, BD
Pharmingen, USA), CD11b (557397, BD Pharmingen, USA),
Gr1/Ly6C (560595, BDPharmingen,USA), Ly6G (551460, BD
Pharmingen, USA), and F4/80 (25-4801, eBioscience, USA).
Flow cytometric analysis was performed on a FACS Aria II
(BD Bioscience, USA).

�.�. Histopathology. Mouse liver tissues were fixed in
paraformaldehyde for 48 h, then dehydrated, and finally
embedded with paraffin. Paraffin-embedded liver samples
were sectioned to 3 𝜇m thin slices, which were performed
with hematoxylin-eosin (HE) staining and Masson staining
according to standard protocols.

�.	. Immunohistochemistry. 3 𝜇m paraffin sections of mouse
liver samples were dewaxed and hyalinized. Endogenous
peroxidase was blocked with 3% H

2
O
2
. Antigen repair

was achieved by boiling in ethylenediaminetetraacetic acid-
(EDTA-) alkaline solution. Then, sample sections were incu-
bated with various primary antibody: 𝛼-smoothmuscle actin
(𝛼-SMA, ab5694, Abcam,USA), collagen-I (ab34710, Abcam,
USA), F4/80 (ab111101, Abcam, USA), CD45 (ab10558,
Abcam, USA), CD11b (ab13357, Abcam, USA), TGF-𝛽1
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Table 1: Sequences of primers used for real-time PCR [28].

Gene Direction Primer sequence (5-3)

TGF-𝛽1 Forward GTGGAAATCAACGGGATCAG
Reverse ACTTCCAACCCAGGTCCTTC

GRN Forward GCTACAGACTTAAGGAACTC
Reverse GAAATGGCAGTTTGATACGG

MCP-1 Forward ATTGGGATCATCTTGCTGGT
Reverse CCTGCTGTTCACAGTTGCC

CCL7 Forward CGTCCCGTAGACAAAATGGTGAA
Reverse GCCGTGAGTGGAGTCATACTGGAACA

IL-1𝛽 Forward GGTCAAAGGTTTGGAAGCAG
Reverse TGTGAAATGCCACCTTTTGA

IL-6 Forward CATTTCCACGATTTCCCAGA
Reverse TCCCTCTGTGATCTGGGAAG

TNF-𝛼 Forward AGGGTCTGGGCCATAGAACT
Reverse CCACCACGCTCTTCTGTCTAC

𝛽-Actin Forward GGCTGTATTCCCCTCCATCG
Reverse CCAGTTGGTAACAATGCCATGT

(ab92486, Abcam, USA), GRN (ab191211, Abcam, USA),
MCP-1 (ab25124,Abcam,USA), orCCL7 (orb315556, Biorbyt,
UK) overnight at 4∘C. Then the sections were stained with
secondary antibody (Life Technologies, USA) after multiple
flushing with PBS buffer. At last, generally diaminobenzidine
(DAB) stained, haematoxylin slightly stained, and neutral
balata fixed.

�.
. Histological and Immunohistochemical Evaluation.
Sections with HE staining were examined under light
microscopy by an experienced pathologist in a blinded
fashion for liver steatosis, necrosis, and leukocyte infiltration.

For Masson staining and immunohistochemical staining
of 𝛼-SMA and collagen-I, five ×100 magnification images
of Masson staining and immunohistochemical staining were
captured in each section. Positive staining area of Masson
staining (blue), 𝛼-SMA, or collagen-I immunohistochemical
staining (brown) per high-power field (HPF) of each image
was converted into pixels by Image-ProPlus software (Media
Cybernetics, USA). The percentage of positive area was
expressed as a fraction of the total number of pixels, averaged
across the 5 different regions per section.

Absolute counts of CD45+ cells (leucocytes), F4/80+ cells
(macrophages), and CD11b+ cells (monocytes) per HPF of
stained liver sections were manually assessed in 5 different
fields per section. All quantification was carried out blinded
and without prior knowledge of sections or groups.

�.�. Real-Time Gene Expression Analysis. Total RNA was
extracted from 50mg frozen liver tissues using TRIzol
according to the manufacturer’s instructions (Life Technolo-
gies, USA) and then reverse-transcribed to get cDNA by
using the PrimeScript RT Master Mix kit (Takara, China)
according to the relevant experimental manual. Real-time
PCR was performed on Step One Plus Real-Time PCR
Systems (Life Technologies, USA) using SYBR Premix Ex Taq

kit (Takara, China). All primers and PCR product sizes of this
study are listed in Table 1. 𝛽-Actin was used as an internal
control [28].

�.�. Statistical Analysis. All data are expressed as the mean
± standard error of the mean (SEM). Statistical analysis was
performed using one-way analysis of variance (ANOVA) test
by SPSS 22.0 software. 𝑃 < 0.05 was considered to be
statistically significant.

3. Results

�.�. Emodin Attenuated CCl�-Caused Liver Inflammation.
The protective effect of emodin on CCl

4
-induced liver

injury was identified by liver function and HE staining. As
shown in Figure 1(a), the serum ALT and AST increased
significantly in mice of CCl

4
group as compared with

the control group. Emodin can significantly reduce the
increased liver enzymes. The liver tissues of mice in the
CCl
4
group showed liver steatosis, necrosis, and leukocyte

infiltration which were significantly relieved in the emodin
group (Figure 1(b)). These results demonstrated that emodin
can significantly reduce CCl

4
-induced liver inflammation

in vivo.

�.�. Emodin Alleviated Liver Fibrosis Induced by CCl�. Mas-
son staining was used to observe the collagen fibers of liver
tissues. As shown in Figure 2, fiber staining only appeared on
the central venous wall, part of portal area, and interlobular
septa in hepatic lobules of control mice. However, compared
to the control group, the collagen fibers in CCl

4
group were

significantly higher. The initial formation of interlobular
septa and significantly increased portal fiber deposition were
observed. The liver tissues of mice in the emodin group
also had fiber deposition, mainly distributed at the portal
area, fibrous septum, and central vein. But the density of
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Figure 1: Emodin attenuated CCl�-caused liver inflammation. (a) ALT and AST levels of mice in each group. (b) Hematoxylin-eosin staining
of the liver tissues. All data are expressed as the mean ± SEM. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01. Original magnification: ×100; bar = 50 𝜇m.

collagen deposition was significantly less than that of CCl
4

group. Moreover, the liver tissues of mice in the control
group had only a small amount of 𝛼-SMA and collagen-
I expression (Figure 2). However, the hepatic expression
of 𝛼-SMA and collagen-I significantly increased in the
CCl
4
group (Figure 2). Emodin treatment can significantly

reduce the expression of 𝛼-SMA and collagen-I induced by
CCl
4
(Figure 2). These results collectively demonstrated that

emodin can significantly reduce CCl
4
-induced liver fibrosis

in vivo.

�.�. Emodin Reduced Gr�hi Monocyte Infiltration. After CCl
4

challenge for 4 weeks, infiltrations of leukocytes, monocytes,
and macrophages increased significantly in the mouse liver
tissues of CCl

4
group. However, compared to CCl

4
group,

mouse liver tissues of emodin group had greatly reduced
infiltrations of leukocytes, monocytes, and macrophages
(Figures 3(a) and 3(b)). The proportion of Gr1hi monocyte
(CD45+Ly6G−CD11b+F4/80+Gr1hi) subset increased signifi-
cantly in the liver tissues of CCl

4
group as compared with the

control group. However, the proportion of Gr1hi monocyte
subset was significantly lower in the emodin group compared
to the CCl

4
group (Figure 4(b)). These results suggested that

emodin can significantly reduce infiltration of monocyte-
derived macrophages, especially Gr1hi monocyte in chronic
liver injury.

�.�. Emodin Inhibited the Expression of Gr�hi Monocyte Asso-
ciated Proinflammatory and Profibrogenic Cytokines. Gr1hi
monocyte can promote liver fibrosis through releasing many
proinflammatory and profibrotic cytokines [1, 5, 7–9]. As
shown in Figures 5 and 6, the intrahepatic mRNA expres-
sion of IL-1𝛽, IL-6, TNF-𝛼, TGF-𝛽1, and GRN significantly
increased after CCl

4
administration. Mice in the emodin

group had significantly lower intrahepatic expression of IL-
1𝛽, TNF-𝛼, GRN, and TGF-𝛽1 as compared with CCl

4
group.

As shown in immunohistochemical staining, emodin group
had significantly lower expression of TGF-𝛽1 and GRN
(Figure 6).

�.�. Emodin Inhibited the Expression of MCP-� and CCL
.
MCP-1 and CCL7 are the primemonocyte chemotactic factor
[8, 18–20]. Mice in CCl

4
group have strongly increased

hepatic expression of MCP-1 and CCL7, which may be
responsible for increasing numbers of intrahepatic Gr1hi
monocytes (Figure 7). However, it is obvious that emodin
effectively inhibited the hepatic expression of MCP-1 and
CCL7 (Figure 7), which may explain why emodin could
reduce the infiltration of monocytes.

4. Discussion

Hepatic macrophages, especially monocyte-derived macro-
phages, hold a central position in the pathogenesis of chronic
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Figure 2: Emodin reduced CCl�-caused liver fibrosis in mice. (a) Masson staining, 𝛼-SMA staining, and collagen-I staining of the liver tissues.
(b) Statistical analyses of collagen deposition. All data are expressed as the mean ± SEM. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01. Original magnification: ×100;
bar = 50 𝜇m.

liver injury and have been proposed as potential targets for
liver fibrosis [13, 22, 29]. In acute and chronic liver injury,
Gr1hi monocytes will firstly be recruited into inflamma-
tory region and release proinflammatory and profibrogenic
cytokines which will aggravate liver inflammation and fibro-
sis of liver [8, 17]. In the present study, we confirmed that, after
repeated CCl

4
injections, Gr1hi monocytes were markedly

increased in the liver tissues of mice.
Pharmacological inhibition of Gr1hi hepatic monocytes

may be capable of limiting chronic liver injury and fibro-
sis in vivo [30]. Emodin, as a major active component

of Rheum palmatum L. and Polygonum cuspidatum, has
been reported to have anti-inflammatory, antitumor, and
antifibrotic effect [24, 25]. Emodin can ameliorate hepatic
steatosis through endoplasmic reticulum-stress sterol regu-
latory element-binding protein 1c pathway in liquid fructose-
feeding rats [31]. Liu et al. also reported that emodin could
ameliorate liver steatosis and decrease hepatic triglyceride
in mice fed with ethanol [32]. In addition, emodin could
also significantly inhibit the growth of HSC-T6 cells in
vitro [33]. Emodin can also protect the rat liver from CCl

4
-

induced liver fibrosis by inhibiting HSCs activation in vivo
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Figure 3: Emodin reduced infiltrations of leukocytes, monocytes, and macrophages in liver fibrosis. (a) Immunohistochemistry staining of
leukocytes, monocytes, and macrophages in the liver tissues. (b) Statistical analyses of leukocytes, monocytes, and macrophages. All data are
expressed as the mean ± SEM. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01. Original magnification: ×400; bar = 200 𝜇m.

[27]. In the present study, we also confirmed that emodin
could reduce liver inflammation and fibrosis in mouse
model induced by CCl

4
. Recent studies show that emodin

can inhibit homologous lymphotoxins-induced monocytes
migration [34]. On this basis, we used immunohistochem-
istry staining and flow cytometry to observe the changes
of monocytes, especially Gr1hi monocytes. We found that
emodin significantly reduced the infiltration of Gr1hi mono-
cytes which is novel mechanism of the antifibrotic effect of
emodin.

Gr1hi monocytes can release many proinflammatory and
profibrogenic cytokines, including TNF-𝛼, IL-1𝛽, GRN, and
TGF-𝛽1. TNF-𝛼 and IL-1𝛽 are mainly from monocytes and
macrophages in the acute and chronic liver injury [35] and
may trigger the production of many other proinflammatory
cytokines and induce hepatocyte death through the recruit-
ment of neutrophils [36, 37]. TGF-𝛽1 is considered to be the
most potent profibrogenic cytokine [38, 39]. TGF-𝛽1 can pro-
mote liver fibrosis through multiple pathways, for example,
activatingHSCs, stimulating collagen gene transcription, and
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Figure 4: Emodin reduced infiltrations of Gr�hi monocytes in liver fibrosis. (a) Gating strategy of Gr1hi monocytes for flow cytometric analysis.
(b) Proportions of Gr1hi monocytes in the liver tissues. All data are expressed as the mean ± SEM. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01. Original
magnification: ×400; bar = 200 𝜇m.

suppressing the expression ofmatrixmetalloproteinases [40].
TGF-𝛽1 mainly comes frommonocyte-derived macrophages
[29, 40]. GRNs is a family of protein growth factors that are
involved in cell proliferation. Macrophage-secreted granulin
may activate resident HSCs into myofibroblasts resulting in
a fibrotic microenvironment [7]. In our present study, we
found that the hepatic expression of proinflammatory and
profibrogenic cytokines IL-1𝛽, IL-6, TNF-𝛼, TGF-𝛽1, and
GRN was significantly increased following CCl

4
injection.

However, emodin administration was able to decrease the
hepatic expression of IL-1𝛽, TNF-𝛼, GRN, and TGF-𝛽1 in

the liver fibrosis model, which also explains why emodin can
alleviate liver inflammation and fibrosis.

CCL7 andMCP-1 are the major cytokines for the recruit-
ment of Gr1hi monocytes in the liver [41, 42]. MCP-1 has
been well studied in liver fibrosis. In acute and chronic liver
injury, MCP-1 can induce liver fibrosis through recruitment
of Gr1hi monocytes [28]. In the present study, we also found
that the hepatic expression of MCP-1 was significantly higher
in the CCl

4
group as compared with the control group. In

Balb/C mice fed on the methionine/choline-deficient diet,
a lack of MCP-1 was associated with lower ALT levels and
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Figure 5: Emodin inhibited Gr�hi monocyte associated proinflammatory cytokines. All data are expressed as the mean ± SEM. ∗∗𝑃 < 0.01;
∗
𝑃 < 0.05.
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Figure 6: Emodin inhibited the Gr�hi monocyte associated profibrogenic cytokines. (a) Immunohistochemical staining of GRN and TGF-𝛽1 in
the liver tissues. (b) Hepatic mRNA expression of GRN and TGF-𝛽1 in the liver tissues. All data are expressed as the mean ± SEM. ∗∗𝑃 < 0.01;
∗
𝑃 < 0.05. Original magnification: ×400; bar = 200 𝜇m.
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Figure 7: Emodin inhibited the expression of chemokines MCP-� and CCL
. (a) Immunohistochemical staining of MCP-1 and CCL7 in the
liver tissues. (b) Hepatic mRNA expression of MCP-1 and CCL7. All data are expressed as the mean ± SEM. ∗∗𝑃 < 0.01; ∗𝑃 < 0.05. Original
magnification: ×400; bar = 200 𝜇m.

reduced infiltration of inflammatory cells, together with a
lower degree of liver fibrosis [43]. Pharmacological inhibition
of MCP-1 by mNOX-E36 can also significantly reduce the
infiltration of Gr1hi monocytes in the process of acute
and chronic liver injury and can reduce the degree of
liver fibrosis in vivo [21, 30, 44]. CCL7, previously known
as monocyte chemotactic protein-3, belongs to the MCP
subfamily of CCLs. CCL7 is expressed at multiple sites of
inflammation and is produced by monocytes, fibroblasts,
endothelial cells, and mast cells [45–48]. Compared to MCP-
1-deficient mice, CCL7-deficient mice showed less infiltra-
tion of monocytes in the encephalitis model caused by
West Nile virus infection, which indicates that CCL7 has
a stronger chemotactic activity than that of MCP-1 [49].
Inhibition of CCL7 could significantly reduce the infiltration
of monocytes/macrophages to lung tissues of mice infected

with rhinovirus [50]. Our study also found that MCP-1 and
CCL7 expression increased significantly during liver fibrosis,
suggesting thatMCP-1 and CCL7may play important roles in
liver fibrosis. After emodin treatment, the hepatic expression
of MCP-1 and CCL7 was significantly reduced which was
in line with the reduction of Gr1hi monocytes infiltration.
However, the related mechanisms regarding how emodin
reduces the secretion of MCP-1 and CCL7 needs further
investigation.

In conclusion, we found that emodin has inhibitory
effects on liver fibrosis, which may be associated with reduc-
ing the Gr1hi monocytes infiltration by the inhibition of
MCP-1 and CCL7. These results suggest that emodin may
be considered a promising candidate in the prevention and
treatment of liver fibrosis. However, the clinical effect of
emodin on liver fibrosis deserves further investigation.
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