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Abstract: The applicability and safety of bacteriophage Delta as a potential anti-Pseudomonas aerugi-
nosa agent belonging to genus Bruynoghevirus (family Podoviridae) was characterised. Phage Delta
belongs to the species Pseudomonas virus PaP3, which has been described as a temperate, with cos
sites at the end of the genome. The phage Delta possesses a genome of 45,970 bp that encodes tRNA
for proline (Pro), aspartic acid (Asp) and asparagine (Asn) and does not encode any known protein
involved in lysogeny formation or persistence. Analysis showed that phage Delta has 182 bp direct
terminal repeats at the end of genome and lysogeny was confirmed, neither upon infection at low
nor at high multiplicity of infection (MOI). The turbid plaques that appear on certain host lawns
can result from bacteriophage insensitive mutants that occur with higher frequency (10−4). In silico
analysis showed that the genome of Delta phage does not encode any known bacterial toxin or
virulence factor, determinants of antibiotic resistance and known human allergens. Based on the
broad host range and high lytic activity against planktonic and biofilm cells, phage Delta represents
a promising candidate for phage therapy.

Keywords: Pseudomonas phage Delta; Pseudomonas virus PaP3; genome ends; bacteriophage in-
sensitive mutants (BIM); bacterial virulence factors; antibiotic resistance genes; human allergens;
therapeutic phage selection

1. Introduction

Bacteriophages are potential therapeutic agents against multidrug and pandrug resis-
tant bacteria which are used throughout the world [1]. One of the major problems of phage
application as antibacterial agents in the past was the incomprehension of bacteriophage
biology [2]. The first prerequisite that must be fulfilled before consideration of a phage
as a therapy candidate is its obligatorily lytic nature and good lytic efficacy. Temperate
phages can integrate their genome into bacterial DNA, and by an imprecise excision during
induction (i.e., initiation of a lytic cycle), they can excise bacterial DNA and transfer it
into a new bacterial host through specialised transduction [3]. Some of these genes can
contribute to the virulence or antibiotic resistance of infected bacteria. Both obligatorily
lytic and temperate phages can be responsible for generalised transduction, which occurs
during phage DNA packaging into procapsids. Sometimes bacterial DNA is packaged
into viral particles, and frequency of this phenomenon primarily depends on the DNA
packaging mechanism, which is the most prominent in phages that use the head-full mech-
anism [4]. In this context, careful phage selection should prevent the transfer of genes
encoding virulence factors, human/animal allergens or genes responsible for bacterial
resistance to antibiotics [5–8]. Some phages encode proteins involved in their own life cycle,
which also act as eukaryotic toxins or allergens; the best-known example is Vibrio phage
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CTXphi, whose zonula occludens toxin (Zot) is involved in phage extrusion [9]. So far,
many phages have been described, and their genomes were sequenced, including phages
of Pseudomonas aeruginosa. However, even today, beside a lot of information available,
crucial characteristics (e.g., phage temperate or obligatorily lytic nature) are not taken into
account during selection for in vivo studies and clinical trials.

Pseudomonas virus PaP3 (Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Cau-
doviricetes; Caudovirales; Podoviridae; Bruynoghevirus) has been described originally by Tan
et al. [10], and beside the type strain Pseudomonas phage PaP3, additional strains have
been described later. These phages share phenotypic characteristics: morphotype C1, with
short tail; broad lytic activity against various strains of P. aeruginosa and high in vitro lytic
efficacy. It is interesting to point out that a phage belonging to genus the Bruynoghevirus
is a part of a commercial preparation for human application (e.g., Intesti-bacteriophage,
Georgia) [11]. However, some properties important for the phage therapeutic application
have not yet been described, including involvement in production of toxins, allergens or
antibiotic resistance factors. On the other hand, some published data are controversial; for
instance, Pseudomonas virus PaP3 is described as a temperate phage with cohesive ends
(cos) [10], while Pseudomonas virus Luz24, was described as an obligatorily lytic phage with
direct terminal repeats (DTR), lacking the cos site [12].

The study aimed to examine genome of phage Delta, a new strain of species Pseu-
domonas virus PaP3, and other properties important from the aspect of phage therapy, by
determining the phage integrative properties, genome ends and potential presence of
genes for bacterial toxins, antibiotic resistance and known human allergens. Thus, here we
elucidated phage Delta safety for therapeutical application.

2. Materials and Methods
2.1. Phage Preparation

The previously isolated Pseudomonas phage Delta [13] was multiplied using original
host Pseudomonas aeruginosa strain PA-4U, precipitated in PEG6000 and NaCl, and puri-
fied in CsCl by density ultracentrifugation, as described previously [13,14]. The phage
suspension was dialyzed and further treated with DNase and RNase. The purified phage
suspension was used for all experiments.

2.2. DNA Sequencing

DNA was isolated from virions using standard phenol-chloroform procedure [15].
The isolated DNA was treated with RNase and re-precipitated. Whole genome sequencing
of phages was performed using Illumina technology, while de novo assembly of sequenced
fragments was carried out by CLC Genomics Workbench 6.5 software and Mira 4.

2.3. Phage Delta Genome Analysis

Open reading frames (ORF) in phage Delta genome were predicted using Gene-
markS [16] and MyRast [17]. The genomic DNA was compared using BLASTN algorithm
with other related strains and species of genus Bruynoghevirus, as well as from other related
genera (Krylovvirus, Vicosavirus and Bjornvirus). Phages of the same species share >95%
DNA similarity (identity × query coverage) and phage exemplars belonging to the same
species are considered phage strains [18].

The whole genome sequences of bacteriophages were obtained from GenBank and
used for phylogenetic analysis (listed in Table 1). Phage phylogeny was examined using
MUSCLE alignment and phylogenetic tree was constructed using MEGAX [19]. The major
capsid protein and terminase amino-acid sequences were compared among the phages
using ClustalW alignment and Maximum Likelihood method with Kimura 2-parameter
model and bootstrap value 1000 [20].

The presence of tRNA genes in the genomes were predicted for phage Delta and
(re)checked for other related phages using ARAGORN (http://mbio-serv2.mbioekol.lu.
se/ARAGORN/, accessed on 6 June 2016) [21] and tRNAScanSE Search Server (http://

http://mbio-serv2.mbioekol.lu.se/ARAGORN/
http://mbio-serv2.mbioekol.lu.se/ARAGORN/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
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lowelab.ucsc.edu/tRNAscan-SE/, accessed on 16 May 2016) [22]. BLASTN algorithm was
used to determine PaP3 related prophage existence in sequenced genomes of Pseudomonas
strains available in GenBank. The lifestyle of the phages was predicted using the PHACTS
algorithm (http://www.phantome.org/PHACTS/, accessed on 18 July 2016) [23].

2.4. Lysogeny Formation

To examine possibility of phage Delta integration into bacterial DNA, phages and
sensitive P. aeruginosa PAO1 strain were incubated for 24 h at 37 ◦C at MOI 0.1 and 10. The
mixture was then plated on a Luria-Bertani medium to obtain colonies of survived bacterial
cells. Several colonies were picked up, transferred onto new medium and subsequently
their DNA was isolated using GeneJET Genomic DNA Purification Kit (Thermo Fisher
Scientific, Vilnius, Lithuania). The extracted DNA was digested using FastDigest endonu-
clease SmaI (Thermo Fisher Scientific, Inc., Waltham, MA, USA), which cannot cut phage
Delta DNA but can cut bacterial DNA, generating many small-sized fragments. In parallel,
DNA of non-infected bacteria was used as a control of enzyme activity and absence of
phage Delta DNA in the bacterial genome, while phage DNA was used as a negative
control of enzyme activity (i.e., control of phage DNA integrity after SmaI treatment). DNA
fragments were visualised on 0.7% agarose gels with ethidium bromide under UV light
and documented (BioDoc Analyse, Biometra, Germany).

2.5. Bacteriophage Insensitive Mutants (BIM)

The incidence of phage Delta insensitive mutants of P. aeruginosa was determined
using a modified method by O’Flynn et al. (2006) [24]. Two bacterial strains were used for
the experiment: PA-4U, a urine isolate UB-5296 and ear-infection strain OB-7025 [13]. To
obtain MOI = 10, 1 × 1010 CFUmL−1 of bacteria and 1 × 1011 PFUmL−1 of bacteriophage
were added. Based on the Poisson distribution, MOI of 10 gives 100% infection in a culture,
so only BIM can survive. The mixture of phage and bacteria was incubated at 37 ◦C for
15 min and then various volumes were poured over solid LB medium. The plates were
incubated at 37 ◦C, and the number of survived cells was determined by counting colonies
after 24 and 48 h. The mean colony numbers and standard deviations were calculated
from three independent experiments with three replicates. The frequency of occurrence of
mutants was calculated as the ratio of the number of grown colonies and the initial number
of bacteria per milliliter. Phage resistance and absence of (pro)phage genome in cells were
additionally performed.

2.6. Determination of Phage Genome Ends

The presence of cos sites at the ends of phage Delta genomic DNA was examined
by the coherence of the two terminal restriction fragments [25]. For this purpose, DNA
was restricted by BamHI that gives a few well distinctive bands. The restricted DNA was
heated at 75 ◦C 15 min and then cooled either slowly at room temperature or rapidly on ice.
The slow cooling conditions lead to annealing of cohesive ends, visible on an agarose gel
as an appearance of a larger size band, with loose or fainting of two smaller sized bands.
Under fast cooling conditions, the two terminal bands do not have time to anneal, giving
no change of the original RFLP pattern. The products were analysed by 1.0% agarose gel
electrophoresis detected with ethidium bromide under UV light and documented (BioDoc
Analyse, Biometra, Göttingen, Germany).

2.7. Potential Virulence Factors

Potential virulence factors encoded by phages were examined by BLASTP algorithm
against a virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/main.htm, ac-
cessed on 17 July 2016) [26]. Hits with more than 70% coverage and 30% identity were
considered as positive results or if E < 10−3.

http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.phantome.org/PHACTS/
http://www.mgc.ac.cn/VFs/main.htm
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2.8. Antibiotic Resistance Genes

Potential antibiotic resistance genes in the genome of Pseudomonas virus PaP3 were
examined by BLASTP against the resistance gene database, with setup value >10% identity
and E < 10−3 (https://card.mcmaster.ca/analyze/blast, accessed in 5 July 2016) [27].

2.9. Potential Allergens

The phage proteins were analysed to identify potential human allergenic proteins,
using tools available at http://www.allergenonline.com (accessed on 15 July 2016) from
the Food Allergy Research [28]. For the full-length alignments by BLASTP a possible
cross-reactivity was considered if E < 10−3. An additional method, using a sliding window
of 80 amino acid segments of each protein, was also carried out to confirm significance.
The best identities of phage proteins and allergens greater than 35% and E < 10−3 were
considered significant [29].

3. Results and Discussion

Phage Delta morphology corresponds to other strains of the species Pseudomonas virus
PaP3 with the head diameter of approx. 60 nm and morphotype C1 [25]. The genome
nucleotide sequence was deposited in the GenBank database under accession number
MG432151, and it consists of 45,970 bp with GC% 52.2 (Table 1). Three tRNA were detected:
tRNA- proline (Pro), asparagine (Asn) and aspartic acid (Asp), as in other strains of
Pseudomonas virus PaP3, with an exception of PaP3 phage that encodes tRNA for tyrosine
(Tyr) in addition. The genome encodes 69 proteins and approximately one third of genes
are in opposite orientation in comparison to the rest of the genome. The genome comprises
early genes, genes for DNA synthesis/replication, virion assembly and host lysis but lacks
integrase, repressor and known genes involved in prophage persistence.

The phylogenetic analyses based on amino-acid sequences of major head protein
(Figure 1A) and terminase (Figure 1B) showed relations of phage Delta to members of the
genus Bruynoghevirus from the family Podoviridae, but also to genera Krylovvirus, Vicosavirus
and Bjornvirus. Analyses of DNA similarity of phage Delta sequence confirmed that this
phage belongs to the species Pseudomonas virus Pap3, and that there are nine different
strains in total, along with phage Delta, isolated throughout the world that belong to this
species (Table 1).

The bacteriophage Delta has broad lytic activity against many P. aeruginosa strains
(72.7% from a culture collection) [13] and has prominent lytic activity against both plank-
tonic and biofilm cells [14]. Even though the phage is a promising candidate for phage
therapy, its close relative, phage PaP3, was proven to be temperate with genome containing
cos ends. This characteristic is not desirable from the aspect of phage application in therapy,
therefore the phage Delta was further examined.

https://card.mcmaster.ca/analyze/blast
http://www.allergenonline.com
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Table 1. Characteristics of Pseudomonas phage Delta and related (pro)phages.

Genus in
Family

Podoviridae
Species Strain 1

Access. No.
Genome

(bp)/No. CDS Origin (Country) Plaques (mm) Head
Diameter (nm) tRNA Similarity to

Delta (%) HflK/C/cos 1 Integrat.
Tolaasii/PaP3

Phage
Lifestyle 2 Ref.

Bruynoghevirus

Pseudomonas
virus PaP3

PaP3
AY078382 45,503/72 Hospital

sewage/China Turbid (1.5) 55 Asn, Asp, Pro,
Tyr 96.2 N/Y N/Y 0.51 ± 0.04 L [10]

C1-14_Or
HE983844 45,469/64 Sewage

water/France N. A. 3 60 Asn, Asp, Pro 96.3 N/Y N/Y 0.51 ± 0.03 L [30]

P2-10_Or1
HF543949 44,030/71 Eliava

“Pyophage”/Georgia N. A. 58–60 Asn, Asp, Pro 96.8 N/Y N/Y 0.52 ± 0.05 L [30]

MR299-2
JN254801 44,789/68 Sewage from water

treatment plant N. A. 40–60 Asn, Asp, Pro 96.6 N/Y N/Y 0.53 ± 0.03 L * [31]

otherone
MT119373.1 44,930/67 Wastewater N.A. N.A. Asn, Asp, Pro 96.9 N/Y N/Y 0.53 ± 0.04 L [32]

Clash
MT119362.1 44,912/67 Wastewater N.A. N.A. Asn, Asp, Pro 96.8 N/Y N/Y 0.53 ± 0.06 L [32]

Delta
MG432151.1 45,970/69 Municipal

wastewater/Serbia
Clear/turbid

(2.5–5.0) 63 Asn, Asp, Pro 100.0 N/Y N/Y 0.54 ± 0.03 L * This ref.

vB_PaeP_fHoPae04
MW329986.1 45,491/70

Hospital
wastewater,

Finland
N.A. N.A. Asn, Asp, Pro 96.4 N/Y N/Y 0.53 ± 0.03 L [33]

Epa 1
MT108723.1 45,230/67 N.A. N.A. N.A. Asn, Asp, Pro 94.3 N/Y N/Y 0.52 ± 0.04 L N.A.

Pseudomonas
virus CHU

CHU
KP233880.1 45,626/76 Pond/Russia Variable N.A. Pro, Asp, Asn 92.1 N/Y N/Y 0.54 ± 0.06 L [34]

Pseudomonas
virus Pa223

Pa223
MK837012.1 45,703/71 N.A. N.A. N.A. Asn *, Tyr *, Pro * 78.4 Y/Y N/Y (1) * 0.58 ± 0.05 L * [35]

Pseudomonas
virus Luz24

Luz24
AM910650.1 45,503/68 Hospital

sewage/Belgium
Clear/turbid

(1.0–5.0) 63 Asn *, Tyr *, Pro * 74.3 N/N N/Y (1) 0.66 ± 0.12 L * [12]

Pseudomonas
virus Dl54

DL54
KR054029.1 45,673/71 crude sewage or

flood water/UK Clear/turbid 45 Ile *, Asp *, Pro * 77.1 Y/Y N/Y (1) 0.53 ± 0.07 L [36]

Pseudomonas
virus

C2-10_Ab22

C2-10_Ab22
LN610578.1 45,808/71

Carrefour de
l’Indénié/Ivory

Coast
N.A. N.A. Pro, Tyr, Asn 74.8 Y/N N/Y (1) 0.55 ± 0.08 L [30]

Pseudomonas
virus

phiBB-PAA2

phiBB-PAA2
KF856712.1 45,344/66 Hospital

sewage/Portugal N.A. N.A. Pro, Asp, Ile 81.8 N/Y N/Y (1) 0.58 ± 0.06 L * [37]

Pseudomonas
virus Pap4

Pap4
KC294142.1 43,895 */70 N.A. Transparent

(3.0–5.0) 50 No 75.3 Y/Y N/N 0.58 ± 0.05 L * [38]

phiPAO1-EW
MG589386.1 46,403/71 N.A. N.A. N.A. Ile, asp, Pro 75.5 Y/Y N/Y (3) 0.56 ± 0.05 L * N.A.
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Table 1. Cont.

Genus in
Family

Podoviridae
Species Strain 1

Access. No.
Genome

(bp)/No. CDS Origin (Country) Plaques (mm) Head
Diameter (nm) tRNA Similarity to

Delta (%) HflK/C/cos 1 Integrat.
Tolaasii/PaP3

Phage
Lifestyle 2 Ref.

phiPAO1_302
MG589385.1 46,093/70 N.A. N.A. N.A. Pro, Tyr, Asp, Ile 65.3 Y/Y N/Y (1) 0.54 ± 0.09 L N.A.

SaPL
MH973725.1 45,796/63 Samanabad Canal,

Lahore/Pakistan
Transparent

(4.0–5.0) N.A. Asn *, Asp *, Tyr
*, Pro * 64.5 Y/Y N/Y (1) 0.56 ± 0.07 L [39]

EPa4
MT118288.1 45,439/53 N.A: N.A. N.A. Asn *, Tyr *, Pro * 64.9 Y/Y N/Y (1) 0.56 ± 0.05 L * [40]

Pa222
MK837011.1 45,770/58 N.A. N.A. N.A. Asn *, Asp *, Tyr

*, Pro * 78.4 Y/Y N/Y (1) 0.56 ± 0.06 L * [35]

Oldone
MT119371.1 45,313/70 Wastewater N.A. N.A. Asn *, Asp *, Tyr

*, Pro * 78.8 Y/Y N/Y (1) 0.52 ± 0.07 L [32]

U47
MN562749.1 43,444/68 N.A. N.A. N.A. Asn *, Asp *, Tyr

*, Pro* 78.2 Y/Y N/Y (1) 0.59 ± 0.07 L * N.A.

Epa 2
MT108724.1 43,229/51 N.A. N.A. N.A. Asn *, Tyr *, Pro * 78.0 N/Y N/Y (1) 0.53 ± 0.06 L [41]

TL
HG518155.1 45,696/65 N.A. Transparent

turbid, large Asn *, Tyr *, Pro * 73.3 Y/N N/Y (1) 0.55 ± 0.08 L [42]

SL4
MF768469.1 44,194/65 Hospital sewage,

Germany N.A. 55 Asn *, Tyr *, Pro * 76.4 Y/N N/Y (1) 0.54 ± 0.05 L [43]

Krylovvirus

Pseudomonas
virus tf

tf
HE611333 46,271/72 N.A. N.A. N.A. Tyr * 23.1 N/N N/N 0.52 ± 0.04 L [44]

Pseudomonas
virus SCZY1

SCYZ1
MH518298.3 47,475/62 Soil N.A. N.A. Pro * 2.3 Y/N N/N 0.51 ± 0.04 L N.A.

Vicosavirus

Pseudomonas
virus NV1

NV1
NC_042107.1 45,058/64 Untreated sewage,

River Thames, UK Hazy(<2) No 35.0 Y/N Y (1)/N 0.52 ± 0.05 T [45]

Pseudomonas
virus UVF-P2

UVF-P2
JX863101 45,517/75 Dairy industry

wastewater, Brazil N.A. N.A. No 34.7 Y/N Y (2)/N 0.53 ± 0.03 T * [46]

Prophage
CP020369.1
(6815074..
6769117)

52.973/85 - - - No Y/N Y/N 0.50 ± 0.04 T This ref.

Bjornvirus Pseudomonas
virus Bjorn

Bjorn
NC_042103.1 45,936/69 Plant compost N.A. N.A. No 20.0 N/N N/N 0.53 ± 0.05 L N.A.

1 Type strain is written in bold; 2 Y—yes; N—no; number in parenthesis represent number of different nucleotides; 3 L—obligatorily lytic phages; T—temperate phages; Asterix (*) represent high confidence;
N.A.—not available.
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Figure 1. Phylogenetic relationships of phage Delta with other related phages (members of Bruynoghevirus—green,
Krylovvirus—red, Vicosavirus—orange and Bjornvirus—blue) and a prophage of P. tolassii, based on amino-acid sequences
of major coat protein (A) and terminase (B). The evolutionary history based on protein sequences was inferred using the
Maximum Likelihood method and JTT matrix-based model. Initial trees for the heuristic search were obtained automatically
by applying Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and
then selecting the topology with superior log likelihood value. Evolutionary analyses were conducted in MEGA X [18] and
the percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are
shown next to the branches [19]. Vibrio phage VPp1 was used as an outlier.

3.1. Is Bacteriophage Delta Temperate or Obligatorily Lytic Phage?

With the exception of PaP3, lysogeny formation was not confirmed neither for other
strains of species Pseudomonas virus PaP3, nor for other members of the genus Bruynoghevirus.

For PaP3 phage, a sequence in tRNA-Pro was postulated as an att site (GGTCG-
TAGGTTCGAATCCTAC), and it is in accordance with the fact that tRNAs are generally
considered an integration site into the bacterial genome [47]. This 21-mer sequence is
present in all strains of the species Pseudomonas virus PaP3 and phage phiCHU, while
almost all other members of the genus Bruynoghevirus have one A→G transition in the
sequence (Table 1). Even though this difference can be a reason why lysogeny have not
been proven in these phages, enzymes involved in recombination/integration usually are
not sensitive to the point mutations [48,49].

The phages of peripherally related genera Krylovvirus, Bjornvirus and Vicosavirus also
lack this postulated 21-mer att sequence, although Krylovvirus encode tRNA in contrast with
other two genera. Only for Vicosavirus lysogeny formation was confirmed, and it seems
that att site is different. Namely, when phage Delta genome, or genome of other members
of genus Bruynoghevirus are compared to Pseudomonas aeruginosa group (taxid:136841) or
Pseudomonas (taxid:287) by BLASTN algorithm in silico, no significant similarities were
detected, i.e., P. aeruginosa available genomes do not contain sequences similar to these
phages (the results are not shown). Among the sequenced genomes of various Pseudomonas
species, only one prophage of Pseudomonas tolaasii 2192T showed some similarity to phages
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of genus Bruynoghevirus (31.8–36.2%), and significant similarity with members of genus
Vicosavirus (72.1–89.3%) (Table 1 and Figure 1). The prophage in P. tolaasii genome, related
to Bruynoghevirus, neither encode tRNAs nor integrates in the proximity of bacterial tRNA.
For instance, prophage integration occurs at a tRNA gene for phages carrying Lambda
and P4-like integrases, although they do not encode any tRNA, but only small parts of the
gene [50]. However, Bailly-Bechet et al. (2007) [51] indicate that tRNA presence in phage
genome is not primarily because of integration but found a significant association between
tRNA distribution and codon usage, as phage tRNA codons are simultaneously highly used
by the phage genes, being rare in the host genome. They even found that obligatorily lytic
phages contain more tRNAs than temperate ones. Just as a comparison, the well-known
obligatorily lytic T4 also encodes tRNA [52], without ability to form lysogeny. Thus, the
presence of tRNA genes in Bruynoghevirus not necessarily indicates their temperate nature.

The alignment of postulated P. tolaasii 2192T prophage ends indicated 42-mer att
site with sequence GATGCAGATGGGCGTAATGCTCAACAAGAACCGCGAGGCTGC
(Table S1), which is different from postulated att site of PaP3 related phages, and can be
found only in Vicosavirus members (Table 1). Accordingly, even if the phages from the
genus Bruynoghevirus integrate into the host DNA, the integration site is different than
for Vicosavirus.

Furthermore, it seems that some phages of genus Bruynoghevirus contain genes po-
tentially involved in lysogeny formation. For instance, a protein conserved region from
SPFH superfamily (stomatin, prohibitin, flotillin and HflK/C) can be detected in some
related viruses, including the prophage of P. tolaasii (Table 1). This protein is frequently
annotated as „transposase fusion protein“. The similar protein HflK/C (High frequency
of lysogenization) plays a role in the decision making between lysogenic and lytic cycle
during Lambda phage infection, antagonising activity of FtsH ATPase/protease, that in E.
coli is involved in degradation of Lambda phage cII transcriptional activator, responsible
for lysogenisation [53,54]. The role of this protein is still not clear, since some phages
that are characterised as obligatorily lytic encode it, such as Pseudomonas phage KPP10,
PAK-P3, P3-CHA, CHA_P1 and PAK_P5 (Myoviridae), which were successfully used in a
cystic fibrosis mice model [55–57]. Thus, phages that encode this protein may be temper-
ate, but its presence in genome is not necessary confirmation of phage temperate nature.
Furthermore, the analysis showed that the protein with the conserved SPFH sequence is
absent in all strains of Pseudomonas virus PaP3, in phages phiCHU, Luz24, phiBB-PAA2,
Epa2 (genus Bruynoghevirus), tf (genus Krylovvirus) and Bjorn (genus Bjornvirus) (Table 1).

Even the lack of phage encoded integration enzymes in other PaP3 related phages
does not, however, undoubtedly confirm their obligatorily lytic nature, as prophages can
be formed by the activity of corresponding host enzymes [58]. For type strain PaP3, it has
been previously demonstrated that upon P. aeruginosa PAO1 infection, the phage genome
can be detected as an uncut band by PstI endonuclease in bacterial genomic DNA.

Using the SmaI enzyme, which cannot cut phage Delta genome, we have not confirmed
phage genome in bacterial DNA by RFLP upon infection of PAO1 strain (Figure 2II). The
absence of the phage DNA band confirmed a lack of its integration or extrachromosomal
presence in PAO1, both after infection with low (MOI = 0.1) or high number of virions
(MOI = 10). The two different MOIs were used, as it was confirmed that phage lambda, a
model for temperate phages, increases the frequency of lysogeny at higher MOI [59]. A
study of global transcriptomic analysis of P. aeruginosa PAO1 after infection with PaP3 at
MOI = 10 indicate lytic cycle, according to the gene expression and the one-step growth
curve, that reach a plateau after 80 min. with burst size approx. 30 [60], resembling to
a lytic cycle. Alemayehu et al. (2015) examining phage strain MR299-1 indicated that a
previous study calls into question the temperate nature of PaP3 [12], since no site-specific
recombinase is encoded up- or downstream of the attP site, and immunity or reactivation
of the prophage was not demonstrated.



Viruses 2021, 13, 1965 9 of 14

Figure 2. Determination of Pseudomonas phage Delta properties and lifestyle: (I) PAO 1 genomic DNA (A, D and F) was
treated with SmaI (B) generating numerous fragments of small size; phage Delta DNA was not cut by SmaI (C); after PAO1
infection at MOI = 0.1 phage Delta genome was not detected in PAO1 genome (E), and similar was confirmed when PAO1
was infected at MOI = 10; (II) phage Delta DNA cut by BamHI show no change of restriction pattern after fast and slow
cooling, indicating absence of cos site; (III) DNA sequence of phage Delta showed elevation of reads typical for direct
terminal repeats; (IV) PHACTS algorithm showed that phage Delta is obligatorily lytic, with high confidence; (V) uncut
and SmaI-cut BIM genome showed absence of phage DNA and thus lysogeny; (VI) lysis of sensitive P. aeruginosa lawn by
phage Delta (a) and absence of lysis of BIM (b).

The application of PHACTS showed that all strains of species Pseudomonas virus PaP3
are obligatorily lytic, and the findings are confident for strains Delta (Figure 2V) and MR299-
2, but also for some other species of the genus Bruynoghevirus (Table 1). Similar pertains to
Krylovvirus and Bjornvirus, but Vicosavirus members are characterised as temperate (phage
UVF-P2 with high confidence). This additionally contributes to the obligatorily lytic nature
of Bruynoghevirus members, including phage Delta.

The turbid plaques produced by members of Bruynoghevirus on lawn of certain strains
cannot be simply explained by lysogeny formation. To elucidate this phenomenon, the
frequency of BIM was determined (Table 2). For original host PA-4U, the frequency of
mutant appearance was of order of magnitude 10−7, and for heterologous strains UB-6259
and OB-7025 frequencies were 10−6 and 10−4, respectively. The frequency of BIM was not
significantly changed after prolonged incubation. Since phage Delta form turbid plaques on
OB-7025 lawn, high frequency of BIM can partially provide an explanation for incomplete
lysis and faint plaques formation. The results indicate necessity to examine all host-phage
system to determine BIM frequency and to apply measures to decrease BIM frequency (by
using phage cocktails, combining phages and antibiotics etc).

Table 2. Frequencies of phage Delta insensitive mutant appearance of various strains.

BIM Frequency

Bacterial Host after 24 h after 48 h

PA-4U 3.30 × 10−7 ± 3.12 × 10−7 5.38 × 10−7 ± 5.56 × 10−8

UB-2596 2.36 × 10−6 ± 2.74 × 10−7 5.67 × 10−6 ± 1.67 × 10−6

OB-7025 7.95 × 10−4 ± 3.24 × 10−5 9.62 × 10−4 ± 4.12 × 10−5

Taking into account the above considerations, it is clear that there is no evidence that
strains of the species Pseudomonas virus Pap3 are temperate. Even if these phages are
temperate, their lysogeny is extremely unstable or integration is very rare.
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3.2. Is Pseudomonas Phage PaP3 Prone to Generalised Transduction?

There are several types of phage termini: cohesive ends (5′- or 3′-single-strand ex-
tensions), circularly permuted direct terminal repeats, short or long exact direct terminal
repeats (DTR), terminal host DNA sequences or covalently bound terminal proteins. A
particular termini type is a result of a phage packaging strategy: 5′cos (e.g., Lambda phage),
3′cos (e.g., phage HK97), headful with a pac site (e.g., phage P1), headful without a pac
site (e.g., phage T4), DTR (e.g., phage T7) and host fragment at genome ends (e.g., phage
Mu) [25,61]. The bacteriophages that pack DNA by means of headful mechanism can
more frequently form defective virions, carrying parts of bacterial DNA, being prone to
generalised transduction [61,62]. This is not a desirable property for a phage intended for
therapy, since phages can transfer genes involved in bacterial virulence. Experiments with
phage Delta genomic DNA restriction pattern with BamHI showed no difference if samples
heated to 75 ◦C and then cooled quickly or slowly (Figure 2III), indicating the absence of
cos site. A 20-mer sequence postulated as a cos in PaP3 (5′-GCCGGCCCCTTTCCGCGTTA-
3′) [10] is present in most phage genomes that encode tRNA-Pro (Table 1), identical or
with one base changed. The analysis of the phage Delta genome sequence did not confirm
cos genome ends. Still, it revealed presence of 182 bp long DTR in the genome assembly
(Figure 2IV), which is obviously as twice as the average sequence coverage [62].

It is believed that mechanism of packaging and type of termini can be successfully
predicted from amino-acid sequence of large terminase subunits, which is quite conserved
among the most tailed-phage proteins [63]. Previous analyses of phage LUZ24 and PaP3
terminases are strongly related to the terminase of phage P22, which catalyses the head-
ful packaging, leading to both terminal redundancy and circular permutations [12,64].
However, some studies showed that terminase amino-acid sequence is not very reliable
in determination of packaging mechanism [65], which is confirmed for Luz24, as well as
phage Delta, that both have long direct terminal repeats (182 and 184 bp, respectively).
Summarising our results on genome ends examination, it is clear that phage Delta has a
packaging mechanism similar to phage T7, being less prone to generalised transduction
than phages with a headful packaging strategy. Finally, even if some phage Delta related
phages have cos, they also rarely mediate in horizontal transfer by generalised transduction
as phages with DTRs [66].

3.3. Does the Phage Delta Genome Encode Undesirable Proteins?

The results of phage protein in silico examination, carried out to find genes for po-
tential virulence factors, antibiotic resistance proteins and allergens, are presented in
Supplementary Materials.

Only one protein encoded by members of Pseudomonas virus PaP3 showed some
similarity with a bacterial virulence factors—Dot/Icm type IV secretion system effector
SidK of Legionella pneumophila subsp. pneumophila, but below cut-off E value. In the phages,
this protein is a small terminase subunit and has no conserved domains similar to the
virulence factor. Thus, the phages do not encode known bacterial virulence factors.

Analysis of known antibiotic resistance genes showed that almost all members of
genus Bruynoghevirus possess a gene similar to B3 class of beta lactamase, i.e., metallo-beta
lactamase found in Massilia oculi. Similarly, members of Vicosavirus also encode a protein
similar to class A beta lactamase precursor RCP found in Rhodopseudomonas capsulata.
However, the observed similarities are not significant, indicating that phages do not carry
known antibiotic resistance genes.

It is well known that phages do not cause allergic reactions after application, but since
their structural proteins are antigenic [67,68], the potential production of IgE should not
be neglected. The full-length BLASTP alignments and 80-mer sliding method showed
similarity of PaP3, phiCHU and UFV-P2 prroteins to 30 kDa salivary gland allergen variant
2 of Aedes aegypti. In addition, ORF 54 of phage PaP4 is significantly similar to collagen
alpha-2(I) chain isoform X1 of Salmo salar, and ORF 53 of phage tf is significantly similar
to high molecular weight glutenin subunit 10 of Triticum aestivum. According to the
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FAO/WHO 2001 experts and the Codex Alimentarius Commission (2003), a >35% identity
to an allergen over of any segment of 80 or more amino acids indicates possible cross-
reactivity. Even though phages are generally safe for application [69,70], if these phages are
intended for therapy, further evaluation of IgE reactivity or clinical cross-reactivity may be
warranted to test for these potential allergens. In potential clinical trials, all these phages
should be used with precautions in individuals allergic to corresponding antigens.

The results indicate that phage Delta proteins show no significant similarity to known
bacterial virulence factors, determinants of P. aeruginosa resistance to conventional antibi-
otics and allergens.

4. Conclusions

For most Bruynoghevirus members, including phage Delta, there is no evidence of
lysogeny formation, and DNA is packaged by the T7 model, indicating lower generalised
transduction capacity. The genome of the Delta phage does not encode known virulence
factors, antibiotic resistance determinants and allergens. These data, along with high lytic
efficacy and broad activity against various strains of P. aeruginosa recommend this phage as
a potent anti-Pseudomonas agent. Some shortfalls, such us high frequency of BIM can be
overcome by phage cocktail preparation, combination with antibiotics etc. If such thorough
analysis of a phage does not confirm undesirable properties, for the therapeutic phages
should be applied „presumption of innocence—everyone is considered innocent until
proven guilty“, i.e., a phage that fulfils criteria for application is considered safe for therapy
until proven otherwise.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13101965/s1, Table S1: Predicted PaP3 related prophage in genome of P. tolaasii 2192T
using various tools for prophage detection and manually predicted, Table S2: Potential virulence
factors, antibiotic resistance related proteins and allergens encoded by phage Delta and other related
(pro)phages.
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Response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J. Appl. Microbiol. 2011,
111, 245–254. [CrossRef]

15. Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring
Harbor, NY, USA, 2001.

16. Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes.
Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [CrossRef]

17. Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The
RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 75. [CrossRef]

18. Adriaenssens, E.; Brister, J.R. How to Name and Classify Your Phage: An Informal Guide. Viruses 2017, 9, 70. [CrossRef]
19. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing

Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef]
20. Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [CrossRef]
21. Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids

Res. 2004, 32, 11–16. [CrossRef]
22. Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res.

2016, 44, W54–W57. [CrossRef]
23. McNair, K.; Bailey, B.A.; Edwards, R.A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics

2012, 28, 614–618. [CrossRef] [PubMed]
24. O’Flynn, G.; Coffey, A.; Fitzgerald, G.; Ross, R. The newly isolated lytic bacteriophages st104a and st104b are highly virulent

against Salmonella enterica. J. Appl. Microbiol. 2006, 101, 251–259. [CrossRef]
25. Casjens, S.R.; Gilcrease, E.B. Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-

Bacteriophage Virions. Stem Cells and Aging 2009, 502, 91–111. [CrossRef]
26. Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on.

Nucleic Acids Res. 2016, 44, D694–D697. [CrossRef] [PubMed]
27. Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.;

Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids
Res. 2020, 48, D517–D525. [CrossRef] [PubMed]

28. Aalberse, R.C. Structural biology of allergens. J. Allergy Clin. Immunol. 2000, 106, 228–238. [CrossRef] [PubMed]
29. Codex Alimentarius Commission. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commis-

sion, Twenty-Fifth Session, Rome, Italy, 30 June–5 July 2003. Appendix III, Guideline for the Conduct of Food Safety Assessment
of Foods Derived from-DNA Plants and Appendix IV, Annex on the Assessment of Possible Allergenicity. 2003, pp. 47–60.
Available online: http://www.fao.org/3/y4800e/y4800e00.htm (accessed on 16 July 2016).

30. Colloms, S.D.; Sykora, P.; Szatmari, G.; Sherratt, D.J. Recombination at ColE1 cer requires the Escherichia coli xerC gene product,
a member of the lambda integrase family of site-specific recombinases. J. Bacteriol. 1990, 172, 6973–6980. [CrossRef]

31. Alemayehu, D.; Casey, P.G.; Mcauliffe, O. Bacteriophages φMR299-2 and φNH-4 Can Eliminate Pseudomonas aeruginosa in the
Murine Lung and on Cystic Fibrosis Lung Airway Cells. MBio 2012, 3, e00029-12. [CrossRef]

32. Olsen, N.S.; Hendriksen, N.B.; Hansen, L.H.; Kot, W. A New High-Throughput Screening Method for Phages: Enabling Crude
Isolation and Fast Identification of Diverse Phages with Therapeutic Potential. Phage 2020, 1, 137–148. [CrossRef]

33. Patpatia, S.; Yilmaz, O.; Ylänne, M.; Kiljunen, S. Isolation and Genomic Analysis of the Phage vB_PaeP_fHoPae04 Infecting
Pseudomonas aeruginosa. Microbiol. Resour. Announc. 2021, 10, e0007621. [CrossRef]

http://doi.org/10.1128/AEM.00872-15
http://doi.org/10.1126/science.272.5270.1910
http://doi.org/10.1111/j.1462-5822.2006.00804.x
http://doi.org/10.3390/v7122958
http://doi.org/10.1016/j.virol.2008.04.038
http://www.ncbi.nlm.nih.gov/pubmed/18519145
http://doi.org/10.1007/s00284-009-9417-8
http://www.ncbi.nlm.nih.gov/pubmed/19472004
http://doi.org/10.1111/j.1365-2672.2011.05043.x
http://doi.org/10.1093/nar/29.12.2607
http://doi.org/10.1186/1471-2164-9-75
http://doi.org/10.3390/v9040070
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.1111/j.1558-5646.1985.tb00420.x
http://doi.org/10.1093/nar/gkh152
http://doi.org/10.1093/nar/gkw413
http://doi.org/10.1093/bioinformatics/bts014
http://www.ncbi.nlm.nih.gov/pubmed/22238260
http://doi.org/10.1111/j.1365-2672.2005.02792.x
http://doi.org/10.1007/978-1-60327-565-1_7
http://doi.org/10.1093/nar/gkv1239
http://www.ncbi.nlm.nih.gov/pubmed/26578559
http://doi.org/10.1093/nar/gkz935
http://www.ncbi.nlm.nih.gov/pubmed/31665441
http://doi.org/10.1067/mai.2000.108434
http://www.ncbi.nlm.nih.gov/pubmed/10932064
http://www.fao.org/3/y4800e/y4800e00.htm
http://doi.org/10.1128/jb.172.12.6973-6980.1990
http://doi.org/10.1128/mBio.00029-12
http://doi.org/10.1089/phage.2020.0016
http://doi.org/10.1128/MRA.00076-21


Viruses 2021, 13, 1965 13 of 14

34. Magill, D.J.; Shaburova, O.V.; Chesnokova, E.N.; Pleteneva, E.A.; Krylov, V.N.; Kulakov, L.A. Complete nucleotide sequence of
phiCHU: A Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol. Lett. 2015,
362, 2014–2016. [CrossRef] [PubMed]

35. Fong, S.A.; Drilling, A.; Morales, S.; Cornet, M.E.; Woodworth, B.A.; Fokkens, W.J.; Psaltis, A.; Vreugde, S.; Wormald, P.-J. Activity
of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients. Front. Cell.
Infect. Microbiol. 2017, 7, 418. [CrossRef] [PubMed]

36. Alves, D.R.; Esteban, P.P.; Kot, W.; Bean, J.; Arnot, T.; Hansen, L.; Enright, M.; Jenkins, T. A novel bacteriophage cocktail reduces
and dispersesPseudomonas aeruginosabiofilms under static and flow conditions. Microb. Biotechnol. 2015, 9, 61–74. [CrossRef]
[PubMed]

37. Pires, D.P.; Kropinski, A.M.; Azeredo, J.; Sillankorva, S. Complete genome sequence of the Pseudomonas aeruginosa bacteriophage
phiIBB-PAA2. Genome Announc. 2014, 2, 7–8. [CrossRef]

38. Zhang, L.; Le, S.; Lu, S.-G.; Yao, X.-Y.; Zhao, Y.; Wang, J.; Tan, Y.-L.; Hu, F.-Q.; Li, M. Isolation and identification a novel
Pseudomonas aeruginosa phage PaP4. Microbiol. China 2013, 40, 609–616.

39. Alvi, I.A.; Asif, M.; Rehman, S.U. A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with
multi drug resistant Pseudomonas aeruginosa. Virus Res. 2021, 292, 198250. [CrossRef] [PubMed]

40. Campbell, R.A.; Farlow, J.; Freyberger, H.R.; He, Y.; Ward, A.M.; Ellison, D.W.; Getnet, D.; Swierczewski, B.E.; Nikolich, M.P.;
Filippov, A.A. Genome Sequences of 17 Diverse Pseudomonas aeruginosa Phages. Microbiol. Resour. Announc. 2021, 10, e00031-21.
[CrossRef]

41. Farlow, J.; Freyberger, H.R.; He, Y.; Ward, A.M.; Rutvisuttinunt, W.; Li, T.; Campbell, R.; Jacobs, A.C.; Nikolich, M.P.; Filippov,
A.A. Complete Genome Sequences of 10 Phages Lytic against Multidrug-Resistant Pseudomonas aeruginosa. Microbiol. Resour.
Announc. 2020, 9, e00503-20. [CrossRef]

42. Pleteneva, E.A.; Bourkaltseva, M.V.; Shaburova, O.V.; Krylov, S.V.; Pechnikova, E.V.; Sokolova, O.; Krylov, V.N. TL, the new
bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages. Russ. J. Genet.
2011, 47, 5–9. [CrossRef]

43. Latz, S.; Krüttgen, A.; Häfner, H.; Buhl, E.M.; Ritter, K.; Horz, H.-P. Differential Effect of Newly Isolated Phages Belonging to
PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth
Conditions. Viruses 2017, 9, 315. [CrossRef] [PubMed]

44. Glukhov, A.S.; Krutilina, A.I.; Shlyapnikov, M.G.; Severinov, K.; Lavysh, D.; Kochetkov, V.V.; McGrath, J.W.; De Leeuwe, C.;
Shaburova, O.V.; Krylov, V.N.; et al. Genomic Analysis of Pseudomonas putida Phage tf with Localized Single-Strand DNA
Interruptions. PLoS ONE 2012, 7, e51163. [CrossRef]

45. Storey, N.; Rabiey, M.; Neuman, B.W.; Jackson, R.W.; Mulley, G. Genomic Characterisation of Mushroom Pathogenic Pseudomon-
ads and Their Interaction with Bacteriophages. Viruses 2020, 12, 1286. [CrossRef]

46. Eller, M.R.; Salgado, R.L.; Vidigal, P.M.; Alves, M.P.; Dias, R.S.; de Oliveira, L.L.; da Silva, C.C.; de Carvalho, A.F.; De Paula,
S.O. Complete Genome Sequence of the Pseudomonas fluorescens Bacteriophage UFV-P2. Genome Announc. 2013, 1, e00006-12.
[CrossRef]

47. Reiter, W.D.; Palm, P.; Yeats, S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic
Acids Res. 1989, 17, 5. [CrossRef]

48. Lei, X.; Wang, L.; Zhao, G.; Ding, X. Site-specificity of serine integrase demonstrated by the attB sequence preference of φ BT 1
integrase. FEBS Lett. 2018, 592, 1389–1399. [CrossRef] [PubMed]

49. Mohaisen, M.R.; McCarthy, A.J.; Adriaenssens, E.M.; Allison, H.E. The Site-Specific Recombination System of the Escherichia coli
Bacteriophage Φ24B. Front. Microbiol. 2020, 11, 578056. [CrossRef] [PubMed]

50. Campbell, A.M. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 1992, 174, 7495–7499. [CrossRef] [PubMed]
51. Bailly-Bechet, M.; Vergassola, M.; Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 2007, 17,

1486–1495. [CrossRef]
52. Weiss, S.B.; Hsu, W.T.; Foft, J.W.; Scherberg, N.H. Transfer RNA coded by the T4 bacteriophage genome. Proc. Natl. Acad. Sci.

USA 1968, 61, 114–121. [CrossRef] [PubMed]
53. Kihara, A.; Akiyama, Y.; Ito, K. Host regulation of lysogenic decision in bacteriophage: Transmembrane modulation of FtsH

(HflB), the cII degrading protease, by HflKC (HflA). Proc. Natl. Acad. Sci. USA 1997, 94, 5544–5549. [CrossRef]
54. Rokney, A.; Kobiler, O.; Amir, A.; Court, D.L.; Stavans, J.; Adhya, S.; Oppenheim, A.B. Host responses influence on the induction

of lambda prophage. Mol. Microbiol. 2008, 68, 29–36. [CrossRef]
55. Morello, E.; Saussereau, E.; Maura, D.; Huerre, M.; Touqui, L.; Debarbieux, L. Pulmonary Bacteriophage Therapy on Pseudomonas

aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention. PLoS ONE 2011, 6, e16963. [CrossRef] [PubMed]
56. Uchiyama, J.; Rashel, M.; Takemura, I.; Kato, S.-I.; Ujihara, T.; Muraoka, A.; Matsuzaki, S.; Daibata, M. Genetic characterization of

Pseudomonas aeruginosa bacteriophage KPP10. Arch. Virol. 2012, 157, 733–738. [CrossRef] [PubMed]
57. Henry, M.; Lavigne, R.; Debarbieux, L. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary

Infections. Antimicrob. Agents Chemother. 2013, 57, 5961–5968. [CrossRef] [PubMed]
58. Essoh, C.; Latino, L.; Midoux, C.; Blouin, Y.; Loukou, G.; Nguetta, S.-P.A.; Lathro, S.; Cablanmian, A.; Kouassi, A.K.; Vergnaud, G.;

et al. Investigation of a Large Collection of Pseudomonas aeruginosa Bacteriophages Collected from a Single Environmental
Source in Abidjan, Côte d’Ivoire. PLoS ONE 2015, 10, e0130548. [CrossRef]

http://doi.org/10.1093/femsle/fnv045
http://www.ncbi.nlm.nih.gov/pubmed/25825475
http://doi.org/10.3389/fcimb.2017.00418
http://www.ncbi.nlm.nih.gov/pubmed/29018773
http://doi.org/10.1111/1751-7915.12316
http://www.ncbi.nlm.nih.gov/pubmed/26347362
http://doi.org/10.1128/genomeA.01102-13
http://doi.org/10.1016/j.virusres.2020.198250
http://www.ncbi.nlm.nih.gov/pubmed/33259872
http://doi.org/10.1128/MRA.00031-21
http://doi.org/10.1128/MRA.00503-20
http://doi.org/10.1134/S1022795411010091
http://doi.org/10.3390/v9110315
http://www.ncbi.nlm.nih.gov/pubmed/29077053
http://doi.org/10.1371/journal.pone.0051163
http://doi.org/10.3390/v12111286
http://doi.org/10.1128/genomeA.00006-12
http://doi.org/10.1093/nar/17.5.1907
http://doi.org/10.1002/1873-3468.13023
http://www.ncbi.nlm.nih.gov/pubmed/29512855
http://doi.org/10.3389/fmicb.2020.578056
http://www.ncbi.nlm.nih.gov/pubmed/33162958
http://doi.org/10.1128/jb.174.23.7495-7499.1992
http://www.ncbi.nlm.nih.gov/pubmed/1447124
http://doi.org/10.1101/gr.6649807
http://doi.org/10.1073/pnas.61.1.114
http://www.ncbi.nlm.nih.gov/pubmed/4880604
http://doi.org/10.1073/pnas.94.11.5544
http://doi.org/10.1111/j.1365-2958.2008.06119.x
http://doi.org/10.1371/journal.pone.0016963
http://www.ncbi.nlm.nih.gov/pubmed/21347240
http://doi.org/10.1007/s00705-011-1210-x
http://www.ncbi.nlm.nih.gov/pubmed/22218962
http://doi.org/10.1128/AAC.01596-13
http://www.ncbi.nlm.nih.gov/pubmed/24041900
http://doi.org/10.1371/journal.pone.0130548


Viruses 2021, 13, 1965 14 of 14

59. Coleman, S.; Yao, T.; Nguyen, T.V.P.; Golding, I.; Igoshin, O. Bacteriophage self-counting in the presence of viral replication.
bioRxiv 2021. [CrossRef]

60. Zhao, X.; Chen, C.; Shen, W.; Huang, G.; Le, S.; Lu, S.; Li, M.; Zhao, Y.; Wang, J.; Rao, X.; et al. Global Transcriptomic Analysis of
Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3. Sci. Rep. 2016, 6, 19237. [CrossRef]

61. Chen, J.; Quiles-Puchalt, N.; Chiang, Y.N.; Bacigalupe, R.; Fillol-Salom, A.; Chee, M.S.J.; Fitzgerald, J.R.; Penadés, J.R. Genome
hypermobility by lateral transduction. Science 2018, 362, 207–212. [CrossRef]

62. Garneau, J.R.; Depardieu, F.; Fortier, L.-C.; Bikard, D.; Monot, M. PhageTerm: A tool for fast and accurate determination of phage
termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 2017, 7, 8292. [CrossRef]

63. Casjens, S. Prophages and bacterial genomics: What have we learned so far? Mol. Microbiol. 2003, 49, 277–300. [CrossRef]
64. Eller, M.R.; Vidigal, P.M.P.; Salgado, R.L.; Alves, M.P.; Dias, R.S.; da Silva, C.C.; de Carvalho, A.F.; Kropinski, A.; O De Paula, S.

UFV-P2 as a member of the Luz24likevirus genus: A new overview on comparative functional genome analyses of the LUZ24-like
phages. BMC Genom. 2014, 15, 7. [CrossRef] [PubMed]

65. Savalia, D.; Westblade, L.F.; Goel, M.; Florens, L.; Kemp, P.; Akulenko, N.; Pavlova, O.; Padovan, J.C.; Chait, B.T.; Washburn,
M.; et al. Genomic and Proteomic Analysis of phiEco32, a Novel Escherichia coli Bacteriophage. J. Mol. Biol. 2008, 377, 774–789.
[CrossRef] [PubMed]

66. Schneider, C.L. Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. In Bacteriophages; Springer: Cham, Switzerland,
2017; pp. 1–42. [CrossRef]

67. Guttman, B.; Raya, R.; Kutter, E. Basic phage biology. In Bacteriophages; CRC Press: Boca Raton, FL, USA, 2005.
68. FAO; WHO. Evaluation of Allergenicity of Genetically Modified Foods Derived from Biotechnology; FAO: Rome, Italy, 2001.
69. Curtright, A.J.; Abedon, S.T. Phage Therapy: Emergent Property Pharmacology. J. Bioanal. Biomed. 2012, S6, 2. [CrossRef]
70. Petrovic Fabijan, A.; Lin, R.C.Y.; Ho, J.; Maddocks, S.; Ben Zakour, N.L.; Iredell, J.R.; Westmead Bacteriophage Therapy Team.

Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 465–472. [CrossRef]

http://doi.org/10.1101/2021.02.24.432718c
http://doi.org/10.1038/srep19237
http://doi.org/10.1126/science.aat5867
http://doi.org/10.1038/s41598-017-07910-5
http://doi.org/10.1046/j.1365-2958.2003.03580.x
http://doi.org/10.1186/1471-2164-15-7
http://www.ncbi.nlm.nih.gov/pubmed/24384011
http://doi.org/10.1016/j.jmb.2007.12.077
http://www.ncbi.nlm.nih.gov/pubmed/18294652
http://doi.org/10.1007/978-3-319-40598-8_4-1
http://doi.org/10.4172/1948-593X.S6-002
http://doi.org/10.1038/s41564-019-0634-z

	Introduction 
	Materials and Methods 
	Phage Preparation 
	DNA Sequencing 
	Phage Delta Genome Analysis 
	Lysogeny Formation 
	Bacteriophage Insensitive Mutants (BIM) 
	Determination of Phage Genome Ends 
	Potential Virulence Factors 
	Antibiotic Resistance Genes 
	Potential Allergens 

	Results and Discussion 
	Is Bacteriophage Delta Temperate or Obligatorily Lytic Phage? 
	Is Pseudomonas Phage PaP3 Prone to Generalised Transduction? 
	Does the Phage Delta Genome Encode Undesirable Proteins? 

	Conclusions 
	References

