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Abstract
Hypoxia resulting from reduced oxygen (O ) levels in the arterial blood is
sensed by the carotid body (CB) and triggers reflex stimulation of breathing and
blood pressure to maintain homeostasis. Studies in the past five years provided
novel insights into the roles of heme oxygenase-2 (HO-2), a carbon monoxide
(CO)-producing enzyme, and NADH dehydrogenase Fe-S protein 2, a subunit
of the mitochondrial complex I, in hypoxic sensing by the CB. HO-2 is
expressed in type I cells, the primary O2-sensing cells of the CB, and binds to
O  with low affinity. O -dependent CO production from HO-2 mediates hypoxic
response of the CB by regulating H S generation. Mice lacking NDUFS2 show
that complex I-generated reactive oxygen species acting on K  channels confer
type I cell response to hypoxia. Whether these signaling pathways operate
synergistically or independently remains to be studied.
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Introduction
Systemic hypoxia, which arises from decreased oxygen (O

2
) 

levels in the arterial blood, is a fundamental physiological  
stimulus. The duration of hypoxia can be acute, ranging from  
seconds to minutes, or chronic, lasting hours to days. Acute 
hypoxia evokes rapid changes in the cardiorespiratory systems to 
ensure optimal O

2
 delivery to tissues. Cardiorespiratory responses 

to acute hypoxia are primarily reflexive in nature, initiated by  
sensory organs located in the carotid artery and aorta. Carotid  
bodies (CBs), which reside at the bifurcation of the common  
carotid arteries, are the major sensory organs for monitoring  
arterial blood O

2
 levels1. Although structures similar to CBs are 

seen at the aortic arch and in the abdominal arteries, much of 
the information on the mechanisms of hypoxic sensing has come 
from studies on the CB1. Here, we present studies reported in 
the past five years on the roles for heme oxygenase-2 (HO-2), a 
carbon monoxide (CO)-synthesizing enzyme, and NDUFS2, a  
mitochondrial complex I subunit, in hypoxic sensing by the CB.

Physiology of hypoxic sensing by the carotid body
The CB receives sensory innervation from the carotid sinus 
nerve, whose cell bodies reside in the petrosal ganglion. Under 
basal conditions (arterial blood pO

2
 of about 100 mmHg), sen-

sory nerve discharge (that is, frequency of action potentials) is 
low. In response to even a modest decrease in arterial blood pO

2
 

from 100 to 80 mmHg, the sensory discharge increases and the  
response is fast, occurring within a few seconds after the onset 
of hypoxia1. The increased sensory discharge is non-adapting 
and is maintained during the entire duration of hypoxia2 or may  
progressively increase during sustained hypoxia, lasting several 
hours3. The exquisite sensitivity and the speed of the response 
with little or no adaptation are the unique features of hypoxic 
sensing by the CB. The increased CB sensory nerve activity is 
relayed to brainstem neurons, leading to reflex stimulation of  
breathing and blood pressure (CB chemo reflex)1.

The CB tissue is made of two major cell types: type I cells (also 
called glomus cells), which are of neuronal origin, and type II 
cells, which resemble glial cells of the nervous system. Type 
I cells along with the nearby sensory nerve ending function as a 
“sensory unit”1. Stimulus response of breathing to graded hypoxia 
parallels the CB sensory nerve activity1. Consequently, carotid 
sinus nerve activity is measured as an index of CB hypoxic  
sensing1. Type I cell responses to acute hypoxia are measured 
by monitoring exocytosis and changes in [Ca2+]

i
 and K+  

channel conductance1. Although type I cells respond to hypoxia 
with elevated [Ca2+]

i
 or K+ channel inhibition (or both), they are 

not always reflected in the sensory nerve activity4,5, which is  
essential for evoking the physiologically important CB chemo  
reflex. Therefore, it is necessary to corroborate the cellular  
responses to hypoxia with the sensory nerve discharge for  
assessing the physiological relevance of CB hypoxic sensing.

Transduction mechanisms
The consensus is that hypoxia inhibits certain K+ channels in type 
I cells and the resulting depolarization leads to Ca2+-dependent 
release of neurotransmitter or neurotransmitters, which stimu-
late the nearby sensory nerve ending, leading to increased sen-
sory discharge1. The roles for K+ channels and AMP kinase 
(AMPK) in CB hypoxic sensing have been discussed in detail 

elsewhere1,6,7 and will not be presented in this commentary.  
The following section presents studies conducted in the past 
five years that have provided novel insights into the roles for 
HO-2 and mitochondrial complex subunit NDUFS2 in hypoxic  
sensing by the CB.

Heme oxygenase-2
Type I cells express HO-2-like immunoreactivity8. HO-2 is 
remarkably sensitive to O

2
 availability, and graded hypoxia 

progressively decreases CO production in the CB9. Reduced 
CO production by hypoxia is also seen in HEK-293 cells with 
heterologous expression of HO-29, suggesting that HO-2 is  
inherently sensitive to O

2
. HO-2 binds to O

2
 with low affin-

ity with an apparent K
m
 of 65 ± 5 mmHg (about 80 µM). The O

2
  

sensitivity of HO-2 is due to Cys265 and Cys282 residues in the 
heme regulatory motif9. Intact Cys265 and Cys282 residues lower 
the affinity of HO-2 for O

2
 and thereby enable the enzyme to  

transduce changes in O
2
 into changes in CO production.  

Substituting Cys265 and Cys282 with alanine allows the HO-2 to bind 
to O

2
 with high affinity9.

It was proposed, based on the findings that CO inhibits CB  
sensory nerve excitation by hypoxia8–10 and that hypoxia reduces 
CO production in a stimulus-dependent way9, that low sensory 
nerve activity during normoxia is due to high CO levels inhibiting 
CB sensory nerve activity but that hypoxia, by reducing CO 
production, relieves the inhibition and thereby increases the  
sensory nerve discharge8. Recent studies determined how CO 
inhibits CB sensory nerve activity under normoxia9,10. Type I 
cells also express cystathionine gamma-lyase (CSE), an enzyme 
catalyzing hydrogen sulfide (H

2
S) production11. H

2
S is a potent 

stimulator of CB sensory nerve activity in rats, mice, rabbits, and  
cats11–13. During normoxia, H

2
S levels are low and hypoxia 

increases H
2
S levels in a stimulus-dependent manner11. The  

increased H
2
S production is not due to inherent O

2
 sensitiv-

ity of CSE; rather, it is due to changes in CO production9. High 
CO levels during normoxia inhibit CSE-derived H

2
S generation  

through protein kinase G (PKG)-dependent phosphorylation 
of Ser377 of CSE, and reduced CO generation during hypoxia  
relieves the inhibition of CSE, leading to increased H

2
S  

generation in the CB9. CSE inhibitors and CSE knockout mice 
exhibit impaired type I cell and sensory nerve and breathing 
response to hypoxia11,14. These findings suggest that low  
sensory discharge during normoxia is due to inhibition of H

2
S 

generation by high levels of HO-2-derived CO but that the 
increased sensory nerve activity by hypoxia is due to relieving  
inhibition of H

2
S synthesis by CO (Figure 1).

Genetic disruption of HO-2 increases baseline CB sensory nerve 
activity and elevates H

2
S levels under normoxia, a phenotype 

similar to hypoxia9. However, hypoxia further increased CB  
sensory activity and elevated H

2
S levels in HO-2 null CBs, indi-

cating the existence of a redundant hypoxic sensing mechanism  
(or mechanisms). This redundant hypoxic sensing was due to  
compensatory upregulation of neuronal nitric oxide synthase 
(nNOS) in type I cells of HO-2 null mice9. nNOS, like HO-
2, also binds to O

2
 with low affinity, and nitric oxide (a prod-

uct of nNOS), like CO, also inhibits CSE-derived H
2
S through 

PKG signaling9. Blockade of nNOS in HO-2 null mice renders 
CBs completely insensitive to hypoxia9. These findings suggest 
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that, in the absence of HO-2, nNOS contributes to CB hypoxic  
sensing by regulating CSE-derived H

2
S production9.

A recent study examined the role for HO-2–CO signaling 
in CB hypoxic sensing of three genetically distinct rat strains 
that are commonly used in experimental research10. As  
compared with Sprague-Dawley rat CB, Brown-Norway (BN) 
rat CB showed markedly attenuated sensory nerve and type I cell  
responses to hypoxia, and this phenotype was associated with 
higher CO and lower H

2
S levels in the glomus tissue. The  

elevated CO levels in the BN rat CB were due to high affinity 
of HO-2 to its substrate hemin10. The attenuated CB response to 
hypoxia is associated with a blunted chemo reflex. The CB chemo 
reflex is essential for ventilatory adaptations to high-altitude  
hypoxia15,16. BN rats exposed to hypobaric hypoxia showed severe 
pulmonary edema10, which is a sign of chronic mountain sick-
ness. Treating BN rats with a HO inhibitor restored the hypoxic 
response of the CB and prevented pulmonary edema caused  
by hypobaric hypoxia10.

In contrast to BN rat CBs, CBs of spontaneous hypertensive 
(SH) rats showed heightened sensitivity to hypoxia, and this 
phenotype is associated with low CO levels and high H

2
S lev-

els in the CB10. The low CO levels in SH rat CBs were due to 
low hemin affinity of HO-210. Current evidence suggests that a 
hyperactive CB chemo reflex is a major contributor of hyperten-
sion in SH rats17,18. Systemic administration of a CSE inhibitor  
normalized CB sensory nerve and type I cell responses to 
hypoxia and reduced hypertension10. Although chronic ablation 
of CB also reduced hypertension to the same level as seen with 
a CSE inhibitor, combined CB ablation and CSE inhibitor treat-
ment had no further effect on blood pressure10. These findings 
suggest that CO-regulated H

2
S contributes to a hyperactive CB 

in SH rats. It has long been known that the CB chemo reflex  
exhibits substantial inter-individual variations in humans and 
experimental animals19–21. Studies on BN and SH rats indicate 
that inter-individual variations in chemo reflex are due in part to  
variations in HO-2–CO signaling in the CB.

A recent study suggests that HO-2–CO signaling in the CB also 
plays an important role in the pathology of sleep apnea (SA), 
which is a highly prevalent respiratory disease22. SA is char-
acterized by episodic cessation of breathing leading to chronic 
intermittent hypoxia (CIH). Patients with SA and CIH-exposed 
rodents exhibit a heightened CB chemo reflex, leading to chronic 
elevation of sympathetic nerve activity and hypertension23–26.  
Rodents exposed to CIH exhibit elevated reactive oxygen species 
(ROS) levels in the CB27,28. Peng et al. showed that ROS inhibit 
CO generation by HO-2 by acting on the Cys265 residue in the 
heme regulatory motif, thereby increasing H

2
S levels in the CB22. 

Pharmacological or genetic blockade of CSE-derived H
2
S pre-

vents CIH-induced CB hyperactivity, sympathetic nerve excita-
tion, and hypertension22. Collectively, these studies suggest that 
disrupted HO-2–CO signaling in the CB leads to dire physiological  
consequences.

Although the studies described above suggest that CO-regulated 
H

2
S is an important mediator of CB hypoxic sensing, a recent study 

questioned this possibility. Kim et al.29 reported that inhibitors 
of H

2
S synthesis had no effect on [Ca2+]

i
 and TASK K+ chan-

nel responses of type I cells to anoxia (pO
2
 of about 5 mmHg). 

Peng et al.5 re-examined the role for CSE-derived H
2
S in the 

CB sensory nerve and type I cell [Ca2+]
i
 responses to hypoxia 

(pO
2
 of about 37 mmHg) and anoxia (pO

2
 of about 5 mmHg). 

The authors found that hypoxia increased H
2
S levels in the  

CB, stimulated sensory nerve activity, and elevated [Ca2+]
i
 in 

Figure 1. Heme oxygenase-2 (HO-2) signaling in hypoxic sensing by the carotid body (CB). Ca2+, calcium channel; CO, carbon monoxide; 
CSE, cystathionine gamma-lyase; H2S, hydrogen sulfide; K+, potassium channel; mito, mitochondria.
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type I cells and all of these responses were blocked by a CSE 
inhibitor and in CSE knockout mice. In striking contrast, anoxia, 
though producing very low pO

2
, had no effect on H

2
S levels in 

the CB and produced only a weak CB sensory nerve excitation 
as compared with hypoxia. CB sensory and type I cell responses 
to anoxia were unaffected by CSE inhibitors and in CSE knock-
out mice. Moreover, anoxia (100% N

2
) depressed breathing 

whereas hypoxia (12% O
2
) stimulated breathing5. CSE knockout  

mice showed an absence of breathing stimulation by hypoxia, 
whereas the depressed breathing by anoxia was unaffected 
in these mice5. These findings suggest that hypoxia and 
anoxia are not the same stimuli for studying CB physiology 
and that HO-2–CO-regulated H

2
S mediates CB response to  

“physiologically relevant” hypoxia but not anoxia.

NADH dehydrogenase Fe-S protein 2 (NDUFS2) 
mitochondrial complex I subunit
Mitochondrial electron transport chain (ETC) inhibitors mimic 
the effects of hypoxia on CB sensory nerve activity1 and type 
I cells30–33. Mills and Jöbsis34 reported that CBs express a puta-
tive cytochrome aa3 with two O

2
 affinities: one with high and 

another with low affinity for O
2
. Based on spectral analysis, sub-

sequent studies suggested that CBs express a cytochrome, which 
is half-reduced at a pO

2
 of 60 to 80 mmHg, and this cytochrome 

is not expressed in either the superior cervical or the nodose gan-
glion35,36. Acute hypoxia increased the NADH/NAD ratio and 
decreased mitochondrial membrane potential in type I cells, and 
these effects were not seen in other non-chemoreceptor tissues such 
as dorsal root ganglion37. These studies led to the suggestion that  
mitochondrial ETC participates in CB hypoxic ensing.

Rotenone, an inhibitor of the mitochondrial complex I, selec-
tively blocks the type I cell response to hypoxia32. NDUFS2 is a  

component of the complex I, which binds to ubiquinone38–40. Recent 
studies examined the role for complex I in CB hypoxic sensing in 
mice with targeted deletion of Ndufs2 in tyrosine hydroxylase- 
positive (TH+) cells such as type I cells41. Mice lacking NDUFS2 
in TH+ cells showed an absence of breathing stimulation by 
hypoxia and of hypoxia-evoked exocytosis and K+ channel  
inhibition in type I cells. However, type I cell responses to severe 
hypercapnia (20% CO

2
) were intact41. Given that these mice 

have a deletion of NDUFS2 since birth, the lack of breathing 
response to hypoxia might be secondary to metabolic adaptations  
during development. Additional studies were performed on adult  
(2-month-old) mice with conditional knockout of Ndufs2  
(ESR-NDUFS2 mice). Like the TH-NDUFS2 mice, mice with 
conditional knockdown of Ndufs2 showed an absence of stimu-
lation of breathing as well as type I cell responses to hypoxia41.  
The lack of cellular responses to hypoxia was associated 
with decreased complex I activity, complex I formation, and  
complex I-dependent O

2
 consumption, whereas the functions 

of other mitochondrial complexes were intact. These studies  
suggest that NDUFS2 of the mitochondrial complex I contributes  
to hypoxic sensing by the CB.

How might NDUFS2 confer hypoxic sensitivity on type I cells? 
Mitochondrial ETC-generated ROS have been implicated in 
pulmonary artery myocyte responses to acute hypoxia42–44.  
Acute hypoxia increased ROS in wild-type type I cell cytosol 
and mitochondrial intermembrane space, and these responses 
were attenuated in NDUFS2 null type I cells41. Intracellular  
application of H

2
O

2
, like hypoxia, inhibited background K+  

currents in type I cells41. These findings led to the suggestion that  
inhibition of NDUFS2 leads to an increase in ROS production, 
which in turn (by inhibiting K+ currents) leads to depolarization  
of type I cells by hypoxia (Figure 2).

Figure 2. NADH dehydrogenase Fe-S protein 2 (NDUFS2), a mitochondrial complex I subunit, signaling in hypoxic sensing by the 
carotid body (CB). Ca2+, calcium channel; K+, potassium channel; ROS, reactive oxygen species.

Page 5 of 8

F1000Research 2018, 7(F1000 Faculty Rev):1900 Last updated: 05 APR 2019



Summary and future directions
It has long been thought that an O

2 
sensor or sensors in type 

I cells initiate hypoxic sensing in the CB1,45,46. To be considered 
an O

2
 sensor, a molecule should satisfy certain criteria, namely 

(a) its presence in type I cells, (b) low-affinity binding to O
2
, 

(c) altered function by hypoxia should initiate signaling events 
leading to increased CB sensory nerve activity, and (d) loss of  
CB hypoxic sensing by disrupting its function. HO-2 satisfies 
the proposed criteria for an O

2
 sensor in the CB and contributes 

to CB sensory excitation by regulating H
2
S production through  

O
2
-dependent CO production. However, further studies are needed 

to delineate the cellular mechanism(s) underlying CB activa-
tion by H

2
S. H

2
S donors, like hypoxia, depolarize47 and inhibit 

K+ channel conductance in type I cells12,48 and increase NADH  
auto-fluorescence in type I cells, an effect attributed to the inhi-
bition of mitochondrial ETC47. It is likely that H

2
S mediates 

sensory nerve excitation by hypoxia by inhibiting mitochon-
drial ETC, thereby affecting K+ conductance of type I cells  
(Figure 1).

Studies with genetically engineered mice suggest that the inactiva-
tion of NDUFS2 is an important step for the type I cell response 
to hypoxia. However, it remains to be determined whether graded 
hypoxia inhibits NDUFS2 and establishes the affinity of O

2
 for 

this enzyme. NDUFS2 is a ubiquitously expressed enzyme in 
the body. However, unlike many other tissues, CBs are highly 

sensitive to changes in O
2
 levels. Consequently, the uniqueness  

of NDUFS2 signaling in the CB remains to be established.

Finally, whether HO-2 and NDUFS2 signaling operates inde-
pendently or works in concert is not clear. The CB responds 
to a wide range of pO

2
 values (about 80–20 mmHg). It was  

proposed that interactions between multiple signaling pathways  
working in concert as a “chemosome” enable the CB to sense a 
wide range of pO

2
 values45,46. Given that high concentrations of  

H
2
S can inhibit mitochondrial ETC47, HO-2 and NDUFS2 signal-

ing might work in concert as a “chemosome” for the full expres-
sion of the CB to a wide range of hypoxia, a possibility that  
remains to be investigated.
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