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Abstract

Acute respiratory tract infections are a major cause of respiratory morbidity and mortality in

pediatric patients worldwide. However, accurate viral and immunologic markers to predict

clinical outcomes of this patient population are still lacking. Droplet digital PCR assays for

influenza and respiratory syncytial virus (RSV) were designed and performed in 64 respira-

tory samples from 23 patients with influenza virus infection and 73 samples from 19 patients

with RSV infection. Samples of patients with hematologic malignancies, solid tumors, or

sickle cell disease were included. Clinical information from institutional medical records was

reviewed to assess disease severity. Samples from patients with fever or respiratory symp-

toms had a significantly higher viral loads than those from asymptomatic patients. Samples

from patients with influenza virus and RSV infection collected at presentation had signifi-

cantly higher viral loads than those collected from patients after completing a course of osel-

tamivir or ribavirin, respectively. RSV loads correlated positively with clinical symptoms in

patients�5 years of age, whereas influenza viral loads were associated with clinical symp-

toms, irrespective of age. Patients receiving antivirals for influenza and RSV had a signifi-

cant reduction in viral loads after completing therapy. Digital PCR offers an effective method

to monitor the efficacy of antiviral treatment for respiratory tract infections in immunocom-

promised hosts.

Introduction

Acute respiratory tract infections are the leading cause of morbidity and mortality in infants

and children worldwide [1]. Respiratory viruses such as respiratory syncytial virus (RSV),

influenza virus, parainfluenza virus, adenovirus, and picornavirus play an important role in

the etiology of respiratory diseases in immunocompetent and immunocompromised patients,

especially those undergoing myelosuppression and hematopoietic cell transplant [2].
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Considerable advances have been made in predicting clinical outcomes for several systemic

viral infections (e.g., HIV), and measuring viral load and markers of immune activation have

become part of standard clinical care [3]. Unfortunately, this is not the case for influenza, RSV,

and other viral respiratory infections. Despite the enormous global health impact of viral respi-

ratory infections [4], accurate viral and immune markers to predict clinical outcomes for

patients are still lacking. Several methods have been used to precisely correlate viral copy num-

ber and disease severity [5–9]. Molecular quantitative assays have been suggested to detect and

monitor clinical viral respiratory disease, particularly in immunosuppressed pediatric patients

[10]. However, their results are conflicting and there continues to be a lack of clinical tests to

accurately measure viral load [5, 6, 8, 9]. Furthermore, respiratory infections in these patients

are associated with prolonged viral shedding and concerns for emergent antiviral resistance

(for those in whom the viral infection is treatable). Quantitative determination of viral load

may provide an important tool to directly evaluate the efficiency of antiviral therapy, to deter-

mine if changes in therapy are necessary and to assess need for further isolation to protect

transmission to other highly susceptible hosts. These problems highlight the importance and

potential value of developing assays for absolute, precise and reliable quantitative viral detec-

tion to improve the accuracy of clinical decision making in immunocompromised children

with viral respiratory infections.

Viral load is commonly determined by quantification of viral genomic fragments [11].

Quantitative determinations by real-time PCR are indirect and provide a relative quantifica-

tion of viral load [12]. However, the precision of such assays is limited by the nature of cycle

threshold (Ct) determination with resulting values having a relative standard deviation that

can exceed 50% [13–15]. In addition, assay workflow and design is complicated by the need

for quantitative calibrators, introducing error risk and requirements for consistent supplies of

well-characterized, commutable reference material. The latter can be particularly difficult to

obtain for less commonly quantified viruses in general, and particularly for RNA viruses, such

as those studied here [16–21]. Marked variation in assay performance characteristics and in

materials used as calibration has been described. The implementation of international stan-

dards, such as those that have been made available by the World Health Organization (WHO)

has led to reduction of this problem. However, standards are only available for a limited num-

ber of pathogens and can vary over time [22, 23].

Digital PCR (dPCR) is a PCR method for the detection and quantitation of nucleic acids

[14, 18, 24]. dPCR offers several advantages over real time methods [21, 25]. Digital PCR dif-

fers from real-time methods in the way the sample target is measured, by dividing up the reac-

tion into multiple, smaller endpoint reactions which allows direct absolute quantification of

the target [17, 26, 27]. dPCR methods do not depend on calibration curves [19, 25, 28] and are

less subject to enzyme inhibition as they employ endpoint amplification [26, 29, 30]. They are

more robust in the presence of viral sequence heterogeneity, showing less susceptibility to mis-

matches between primers-probe patient viral sequence. Such miss-matches are more likely to

cause false-negative results or under-quantitation using qPRC, compared to dPCR [11, 31, 32].

This is particularly important for RNA viruses which have high mutation rates and need only a

few weeks to escape immune response or to produce drug-resistant mutants [31, 33–36].

Finally, clinical results generated by dPCR are more precise, reliable and reproducible than

those by real-time PCR, thereby highlighting its potential diagnostic, prognostic, and predic-

tive utility. Although dPCR has been previously used for quantitative detection of systemic

viruses [17, 37, 38], its use has been more limited for localized viral infections such as those in

the respiratory tract.

In this study, we analytically and clinically validate two dPCR assays for quantitative detec-

tion of influenza virus and RSV in pediatric patients with hematologic malignancies, solid
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tumors, and Sickle-cell disease (SCD). Viral loads are also correlated with clinical symptoms

and provide one of the first demonstrations of this technology for monitoring therapeutic

response to antiviral agents.

Materials and methods

Ethical approval

The study was approved by St. Jude institutional review board. All samples were fully anon-

ymized before initiation of the study and the IRB committee waived the requirement for

informed consent.

Study population

St. Jude is a quaternary referral center for pediatric patients with cancer, including those

requiring hematopoietic cell transplant (HCT) and patients with SCD. Pediatric patients with

hematologic malignancies, solid tumors, or SCD with 2 or more consecutive respiratory sam-

ples positive for influenza virus or RSV were retrospectively identified through results of rou-

tine clinical testing by qualitative PCR (qPCR; FilmArray, BioFire Diagnostics) at St. Jude

Children’s Research Hospital (St. Jude, Memphis, TN) from 2014 to 2017. Medical records

were reviewed to extract information on age, gender, race, primary diagnosis, date of infection

with influenza or RSV, symptoms and clinical course, other laboratory results, supportive and

antiviral treatment. Lower respiratory tract infection (LRTI) was defined by crackles, hypoxia,

tachypnea, or apnea and/or radiographic evidence of pneumonia (infiltrates or consolidation).

The institutional infection control and prevention policies mandate that patients with either

influenza or RSV infection have a negative test in order to discontinue isolation precautions.

As a result, many patients get subsequent testing even in the absence of symptoms. Patients

were considered asymptomatic if there were no symptoms at the time of sample collection.

This study was approved by the St. Jude institutional review board.

Digital PCR assay

Remnant samples from nasopharyngeal washes obtained from 2014 to 2017 for routine care

were used for this study. Washes were performed using normal saline and immediately trans-

ported to the Clinical Virology Laboratory on ice and stored at 4˚C until testing (within 24

hours of collection). Sample remaining after clinical testing was stored for quality assurances

at –80˚C until used in this evaluation. Digital PCR (dPCR) assays for influenza were performed

using the RainDrop digital PCR system (RainDance Technologies) and ViroReal assay kits

(Ingenetix). Viral RNA stock generated by in vitro synthesis and purchased from Ingenetix

was used for analytical validation of the assay, along with viral stock material generated by

ATCC (quantified by ATCC using dPCR, plaque-forming units, and 50% tissue culture infec-

tive dose) and Zeptometrix. The assay for RSV was also designed for the RainDrop digital PCR

system and primer/probes previously designed for qPCR [39]. Synthetic viral RNA stock for

analytical validation of the RSV assay was purchased from Bio-Synthesis, Inc., along with addi-

tional viral stock material from ATCC and Zeptometrix.

After thawing at room temperature, nucleic acids were purified from 200 μL each of the

previously frozen samples using the Specific A protocol of the bioMérieux NUCLISENS easy-

MAG nucleic acid extractor and stored at –20˚C. An internal control, intype IC-RNA (QIA-

GEN, Inc), was added to and extracted with each sample and read using the VIC channel

during dPCR. dPCR was conducted using the RainDrop Digital PCR system. ViroReal assay

kits (Ingenetix) were used for influenza A and B assays, whereas RSV assay primer/probes
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were adapted from a previously designed, laboratory-developed qRT-PCR assay [39]. An assay

volume of 25 μL was used for all virus samples. Standard qPCR protocols from Ingenetix and

QuantaBio were used for the master mix and cycling conditions. After cycling, reactions were

transferred to the RainDrop reader and data were analyzed using RainDrop Analyst II software

(v1.0.0.520). Results of copies per reaction were converted to log10 copies per milliliter of the

original patient sample pre-extraction.

Study validation and design

Validations for influenza and RSV included multiple lot numbers of all reagents and spanned sev-

eral months allowing between run variability to be assessed. All samples had Qiagen IPC added

prior to extraction to control for inhibition and ranged from 5,000–15,000 copies/mL. Cross reac-

tivity for all three assays was tested using the Zeptometrix respiratory panel. Validation also

included determination of limit of detection, positive cut-off value, linearity, within and between

run variability, and limit of quantitation. The limit of blank (LOB) was defined by the 95% cutoff

for all no template controls and was considered a baseline value to eliminate false positive results

due background noise. LOD95 was initially calculated by determining the lowest non-zero con-

centration for which 95% of the replicates gave a positive result. The LOQ was based on the per-

cent CV for linearity runs (lowest level with a CV<10%). As calculated LOD95 and LOQ were

both lower than the LOB. Clinical samples used in the validation were run blinded.

Statistical analyses

Descriptive statistical analyses are presented as proportions for categorical data and

mean ± standard deviation for continuous data. Statistical analysis was performed using the

chi-squared test or Fisher’s exact test, as appropriate, for categorical data, and Student’s t-test

for continuous variables. To account for difference in the number of samples per patient, a

mixed linear regression model was used to determine association between viral load and clini-

cal characteristics [Presence of symptoms, Number of symptoms and individual symptoms:

Fever, Cough and Nasal Congestion) (Figs 1 and 2), Lymphocyte count (Fig 3), Presence/

absence of co-infections, and Number of additional viruses (S2 Fig)], with the random variable

being the patient identifier. A similar mixed linear regression model approach was used to

determine association between lymphocyte count and presence of symptoms. Logistic regres-

sion using initial viral load upon clinical presentation was used to assess the correlation

between viral load and clinical complications in univariate and multivariate analysis. Paired t-

tests was used to compare samples before and after treatment. A P-value < 0.05 was consid-

ered statistically significant.

Results

Performance characteristics of dPCR

Analytic specificity for influenza A were 100%. Positive predictive value was 0.793 and negative

predictive value was 0.818 (S1 Table). Plotted linearity for influenza A had an R2 value of 0.997

(S1 Fig). Within run variation ranged from 0.24% CV to 0.85% CV for the high external con-

trol, and from 0.42% CV to 0.64% CV for the low external control. Between run variation was

0.87% CV for the high control and 0.70% CV for the low control (S2 Table). For influenza A

the limit of detection, limit of quantitation, and cutoff for positivity all coincided at 3.172 log10

copies/mL (S1 Table).

Analytic specificity was 100% for influenza B. The positive predictive value was 1 and the

negative predictive value was 0.682 (S1 Table). Plotted linearity for influenza B had an R2 value
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of 0.9887 (S1 Fig). Within run variation ranged from 0.06% CV to 0.56% CV for the high con-

trol, and 0.49% to 8.37% CV for the low control. Between run variation was 0.35% CV for the

high control and 4.8% CV for the low control (S3 Table). The limit of detection, limit of quan-

titation, and cutoff for positivity coincided at 3.309 log10 copies/mL.

Analytic specificity for RSV was 100%. The positive predictive value was 0.969 and negative

predictive value was 0.565 (S1 Table). Plotted linearity for RSVA had an R2 value of 0.96, while

plotted linearity for RSVB had an R2 value of 0.93 (S1 Fig). The within run variation ranged

from 0.05% CV to 0.55% CV for the high control and 0.56% to 0.94% for the low control. The

between run variation was 0.31% CV for the high control and 0.86% CV for the low control

(S4 Table). The limit of detection, limit of quantitation, and cutoff for positivity coincided at

3.389 log10 copies/mL. No cross-reactivity was detected for any of the three assays.

Demographic and clinical characteristics

The analysis included 137 samples from 42 patients (64 samples from 23 patients with influ-

enza virus infection and 73 samples from 19 patients with RSV infection). Table 1 shows

demographic and clinical characteristics of patients. Five patients had a coinfection with influ-

enza virus and RSV. Median number of samples per patient was 2 (range 2–6) for influenza

and 3 (range 2–10) for RSV. Median age was 6 years (range 2–19) for patients with influenza

virus infection and 8 years (range 1–21) for those with RSV infection. Ten patients with

Fig 1. Correlation of influenza virus and RSV viral loads with clinical infection. Viral load and presence of fever, cough, and/or nasal congestion for (A) influenza

virus A, (B) influenza virus B, and (C) RSV. Viral load and presence of 1–3 symptoms for patients with (D) influenza A, (E) influenza B, and (F) RSV infection. P values

from mixed linear regression model �P< 0.05; ��P< 0.01; ���P< 0.001. yo, years old; viral loads (log10 copies/ml). Dotted line represents lower limit of quantification

for each assay.

https://doi.org/10.1371/journal.pone.0220908.g001
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influenza virus infection and six patients with RSV infection were�5 years of age. Of the 42

patients, 21 (50%) were male. By race, 20 (47.62%) patients were white, 19 (45.24%) were Afri-

can American, and 3 (7.14%) were Hispanic. By diagnosis, 25 (59.52%) patients had leukemia,

10 (23.80%) had solid tumors, 6 (14.28%) had SCD, and 1 (2.38%) had hemophagocytic lym-

phohistiocytosis. By virus type and strain, 13 (30.95%) patients had influenza B, 9 (21.43%)

had influenza A H3, 1 (2.38%) had influenza A H1N1, and 19 had RSV (45.24%). Eighteen

(42.86%) patients had chemotherapy delayed due to the viral infection (3 with Influenza A; 7

with Influenza B and 8 with RSV). Of 5 patients having coinfection of influenza and RSV,

influenza infection was detected first in 2 patients (in the series of samples from each patient),

RSV was detected first in 1 patient, and both viruses were detected simultaneously in the initial

positive sample in 2 patients. Two patients had influenza A and influenza B coinfection.

Median interval between collected samples was 10 days (range 1–49 days). Of 137 samples

Fig 2. Correlation of influenza viral load with clinical signs/symptoms. Influenza A viral load and presence of (A) fever, (B) cough, and/or (C) nasal congestion.

Influenza B viral load and presence of (D) fever, (E) cough, and/or (F) nasal congestion. RSV viral load and presence of (G) fever, (H) cough, and/or (I) nasal congestion.

P values from mixed linear regression model �P< 0.05; ��P< 0.01; ���P< 0.001. Viral loads (log10 copies/ml). Dotted line represents lower limit of quantification for

each assay.

https://doi.org/10.1371/journal.pone.0220908.g002
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Fig 3. Correlation of lymphopenia with viral load and clinical symptoms. Correlation between ALC and (A) influenza A viral load, (C) influenza B viral

load, and (E) RSV viral load (E). ALCs and the presence of clinical symptoms for (B) influenza A, (D) influenza B, and (F) RSV. P values from mixed linear

regression model �P< 0.05; ��P< 0.01; ���P< 0.001. Viral loads (log10 copies/ml).

https://doi.org/10.1371/journal.pone.0220908.g003
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initially positive in BioFire FilmArray1 analysis, 19 (13.86%) were below the established limit

of quantification by dPCR and were considered negative: 2 (8.0%) for influenza A, 7 (17.95%)

for influenza B, and 10 (13.69%) for RSV. All these corresponded to samples obtained after

antiviral treatment was completed. For samples included in the validation, the specificity for

influenza A was 82.05%, influenza B, 100%, and RSV was 86.66%. The clinical sensitivity was

92% for influenza A, 82.05% for influenza B, and 86.30% for RSV.

Correlation between respiratory signs/symptoms and viral load

Viral loads were significantly higher in patients with fever, cough, or nasal congestion than in

patients asymptomatic for influenza A (P< 0.001), influenza B (P< 0.001), and RSV

(P< 0.001) (Fig 1A–1C) infection. Viral loads in patients with all 3 signs/symptoms were higher

than for those having only 1 sign/symptom (Fig 1D–1F). These differences were significant for

patients with influenza A (P< 0.01), influenza B (P< 0.05), and RSV (P< 0.01) infections.

Fever was associated with higher viral load only in patients with influenza A infection

(P< 0.001) and not in those with influenza B infection (Fig 2A and 2D). Viral load for patients

with RSV was significantly higher in febrile patients�5 years of age (P< 0.05), but this differ-

ence was not significant for older patients (Fig 2G). Patients with cough had significantly

higher viral loads than those who did not have these signs/symptoms, irrespective of age or

virus type (Fig 2B–2E–2H). While nasal congestion was significantly associated with higher

viral for Influenza A and Influenza B, only patients > 5 years of age with nasal congestion and

Table 1. Demographic and clinical characteristics of patients (n = 42).

Variables Respiratory viral infections

(n = 42)

P value

Influenza A

(n = 10)

Influenza B

(n = 13)

RSV

(n = 19)

Gender (male) 5 (23.81%) 7 (33.3%) 9 (42.86%) 1

Age (mean [range], years) 8.73 (3.71–18.17) 7.83 (1.71–18.65) 9.70 (1.34–21.31) 0.84

Race

White 5 (25%) 5 (25%) 10 (50%) 0.27

African American 5 (26.32%) 8 (42.11%) 6 (31.58%)

Hispanic 0 0 3 (100%)

Diagnosis

Leukemia 2 (8%) 10 (40%) 13 (52%) 0.02

Solid tumor 4 (40%) 2 (20%) 4 (40%)

Sickle cell disease 4 (66.67%) 1 (16.67%) 1 (16.67%)

HLH 0 0 1(100%)

Initial symptoms

LRTIa 0 7 (53.85%) 6 (46.15%) 0.02

Oxygen 0 3 (27.27%) 8 (72.73% 0.03

ICU 0 2 (40%) 3 (60%) 0.49

Coinfection 6 (25%) 8 (33.33%) 10 (41.67%) 0.84

Absolute lymphocyte count 986 (0–2142) 958 (49–2925) 775.4 (0–2944) 0.80

Antiviral therapyb 10 (100%) 13 (100%) 8 (42.11%) <0.001

Death 0 0 2 (10.53%) 0.49

aLRTI characterized by crackles, hypoxia, tachypnea, or apnea and/or radiographic evidence of pneumonia (infiltrates or consolidation).
bOseltamivir for influenza and ribavirin for RSV

Abbreviations: HLH, hemophagocytic lymphohistiocytosis; ICU, intensive care unit; LRTI, lower respiratory tract infection; RLS, respiratory syncytial virus.

https://doi.org/10.1371/journal.pone.0220908.t001
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RSV infection had significantly higher viral load when compared to those who did not report

this symptom (Fig 2C–2F–2I).

Coinfection

Twenty-two patients had coinfection with 1 or more respiratory viruses. There was no differ-

ence in influenza virus or RSV viral loads (S2 Fig) between patients with single infection and

those with coinfections. This result was irrespective of the number of viruses detected (S2 Fig).

The most common viruses associated with influenza or RSV were rhinovirus or enterovirus,

followed by coronavirus OC43 and parainfluenza type 3. Oxygen requirement, intensive care

unit (ICU) admission, and number of deaths did not differ between patients with single infec-

tion and those with coinfections.

Absolute lymphocyte count

Twenty-six (61.90%) of patients had an absolute lymphocyte count less than 1000/mm3 at the

time of diagnosis. Fourteen (33.33%) had an ALC less than 300mm3, with 8 of them having

severe lymphopenia (ALC <100). Viral load was not significantly correlated with ALC for

patients with influenza or RSV infection (Fig 3A, 3C and 3E), regardless of age. ALC was also

not associated with the presence of clinical symptoms in patients with influenza A, influenza

B, or RSV infection (Fig 3B, 3D and 3F).

Lower respiratory tract disease

Lower respiratory tract infection (LRTI) developed in 13 (30.95%) patients: 7 (53.85%) had

influenza B and 6 (46.16%) had RSV infections. Only 11 (26.9%) patients required oxygen dur-

ing admission: 3 had influenza B and 8 had RSV infection. Further, 5 patients, 2 with influenza

B and 3 with RSV infection, were admitted to the ICU. Initial viral load was not significantly

higher in these patient subgroups when compared to those that did not have clinical complica-

tions (Table 2). Two patients that died in relation to RSV infection had an ALC of 0, had devel-

oped LRTI and were in the ICU at the time of death. Univariate and multivariate analyses

including age, initial viral load, and ALC as covariates did not reveal significant associations

with clinical complications (Table 3). In addition, initial viral load and initial ALC were not

significantly associated when considering all these complications together (S2 Fig).

Treatment

All patients with influenza infection were treated with oseltamivir within 24 h of diagnosis.

Influenza viral load after receiving treatment was significantly lower for both patients with influ-

enza A (P< 0.01) and influenza B (P< 0.01) infections (Fig 4A and 4B). Ribavirin was adminis-

tered to 8 (42.1%) patients with RSV infection: 7 patients inhaled ribavirin, and 1 patient

received intravenous ribavirin since the patient was on mechanical ventilation (Table 1). Viral

load was significantly reduced (P< 0.01; Fig 4C) after completion of treatment.

Discussion

We developed and validated two dPCR assays for quantitative detection of influenza virus (64

samples from 23 patients) and RSV (73 samples from 19 patients) in respiratory tract samples

from patients with hematologic malignancies, solid tumors, and SCD. Both in patients with

influenza virus and RSV infection, viral loads were associated with symptoms of infection. Fur-

thermore, patients receiving antiviral treatment had a significantly decreased viral load after

completion of therapy.

Viral respiratory load by digital PCR
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The correlation between viral load and severity of infection remains controversial for respi-

ratory viruses [6, 8, 9, 15, 40]. For RSV, viral load was significantly associated with severity or

presence of respiratory illness in children�5 years of age. An analysis of cycle threshold values

and disease severity in 4410 patients by Fuller et al. showed that in those with RSV infection,

viral load was associated with disease severity only in patients younger than 2 years of age [15].

DeVincenzo et al. reported that patients intubated because of RSV-induced respiratory distress

had higher viral loads than those who were not, and that higher viral loads were associated

with longer hospitalization [5]. We could not measure viral loads in lower respiratory tract

samples in our study. However, a study showed that viral loads in the upper and lower respira-

tory tracts are strongly correlated when measured at the same time [41]. In an autopsy study of

patients with fatal RSV LTRI, the viral antigen was extensively present in the lung tissue [42].

This points to a possible association between viral load and RSV disease severity. However,

many studies have not found this association [6, 7]. Gerna et al. reported a direct relationship

between viral loads and clinical symptoms in their patient cohort, but viral loads were not

associated with an increased risk of developing bronchiolitis [7].

Findings from previous studies on the association between influenza viral load and disease

severity, as in the case of RSV, are inconsistent. Some studies report higher viral loads in those

with more severe viral disease [9, 43, 44], whereas others do not show this association [6, 8, 45,

Table 2. RSV and influenza B initial viral loads and disease severity.

Variable RSV

(mean, 95% CI)

OR (95% CI) P value Influenza B

(mean, 95% CI)

OR (95% CI) P value

LRTIa

Yes 6.66 (4.6–8.72) 1.09 (0.61–1.95) 0.76 6.25 (4.450–8.01) 1.24 (.69–2.21) 0.46

No 6.4 (5.34–7.46) Reference 5.44 (3.05–7.83) Reference

Oxygen

Yes 7.33 (6.46–8.20) 1.88 (.89–3.94) 0.09 5.72 (1.14–12.59) .95 (0.49–1.84) 0.88

No 5.87 (4.54–7.19) Reference 5.92 (4.52–7.32) Reference

ICU

Yes 7.57 (6.15–8.99) 1.96(0.58–6.68) 0.28 7.18 (7.13–21.49) 1.64 (0.59–4.55) 0.34

No 6.28 (5.29–7.27) Reference 5.64 (4.24–7.03) Reference

Death

Yes 7.55 (0.32–14.79) 1.86(.44–7.79) 0.39 N/A N/A N/A

No 6.36 (5.42–7.29) Reference Reference Reference

aLower respiratory tract infection is characterized by crackles, hypoxia, tachypnea, or apnea and/or radiographic evidence of pneumonia (infiltrates or consolidation).

Abbreviations: CI, confidence interval; ICU, intensive care unit; N/A, not applicable; OR, odds ratio; RSV, respiratory syncytial virus

https://doi.org/10.1371/journal.pone.0220908.t002

Table 3. Univariate and multivariate analysis for complications related to viral respiratory infections.

Variable Univariate analysis Multivariate analysis

OR (95% CI) P value Odd ratio (CI 95%) P value

Age 0.98 (0.87–1.11) 0.8 0.97 (0.85–1.10) 0.63

Viral loada 0.94 (0.59–1.49) 0.79 0.95 (0.58–1.57) 0.84

ALCb 1 (0.99–1.01) 0.67 1 (0.99–1.01) 0.59

aInitial viral load during clinical presentation (log10 copies/ml).
bInitial ALC upon clinical presentation.

Abbreviations: ALC, absolute leukocyte count; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0220908.t003
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46]. Fuller et al. reported that patients hospitalized for influenza infection had higher viral

loads than those managed on an outpatient basis and asymptomatic controls [15]. Lu et al.

described a significant association between higher H1N1 influenza virus load and pneumonia

[44]. In contrast, Meschi et al. found no significant increase in mean values of viral RNA con-

centration in patients with pneumonia. This inconsistency in results may be due to lack of

standardized methods to quantify respiratory viruses in respiratory secretions, technical diffi-

culties in precisely quantifying viral load at the mucosal surface, and the need to collect sam-

ples over several days for accurate analysis.

Studies on viral dynamics in coinfections and its impact on disease severity have recently

gained interest, but results have been inconsistent. Some studies show that viral coinfections

are similar to single-virus infections [47, 48], whereas others report an association between

viral coinfection and increased [49, 50] or decreased [51, 52] disease severity. Our study did

not find significant differences between viral load and signs/symptoms in patients with viral

coinfections versus those with a single infection. The presence of one or more viruses did not

impact RSV or influenza viral load. Pinky et al. showed that fast-growing viruses can impair

the replication of remaining viruses during a coinfection, whereas slow-growing viruses can be

inhibited in the presence of other viruses [53]. This mechanism of viral competition during

coinfections might explain the discrepancies among studies [53].

Another study showed that the relationship between viral loads and multiple virus infec-

tions is virus specific [52]. The limited sample size of our study did not allow us to further

explore viral load in relation to each different virus, which might explain why we did not see

an overall change in influenza or RSV viral loads in cases of viral coinfection.

Lymphocytes play an important role in viral respiratory infection [42, 54]. An ALC count

below 100/mm3 or 300/mm3 is significantly associated with increased risk of progression to

LRTI [42, 55]. In addition, patients receiving T-cell therapy have decreased viral loads, viral

clearance, and resolution of clinical symptoms [56]. Although symptomatic patients had a

lower lymphocyte count than did asymptomatic patients, this difference was not significant by

age or virus.

The association between viral load and therapeutic response seen in our study has some

precedents in the literature [57, 58]. Reduction of influenza and RSV viral loads by using dif-

ferent treatments has been reported in several animal models [59, 60]. However, few studies

report the reduction of viral loads after treatment that are associated with clinical improve-

ment in humans, particularly children at high risk of severe infection. Clinical trials of adults

experimentally infected RSV show reduction in viral loads after treatment [61, 62]. Khanna

Fig 4. Influenza and RSV viral loads after antiviral treatment. Influenza viral load before and after oseltamivir treatment for (A) influenza A and (B) influenza B. (C)

RSV viral load before and after ribavirin treatment. �P< 0.05; ��P< 0.01; ���P< 0.001. Viral loads (log10 copies/ml); Dotted line represents lower limit of

quantification for each assay.

https://doi.org/10.1371/journal.pone.0220908.g004
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et al. reported a decrease of>2 log10 copies/mL in RSV load in 11 (58%) of 19 adult patients

with hematologic malignancies within 7 days of initiating treatment [63]. Several case reports

and case series have described the role of oseltamivir in decreasing viral load in respiratory

secretions [40, 64, 65]. The significant reduction in viral load for both influenza virus and RSV

seen in our study agrees with these studies.

Our study is relevant because no studies have been previously published on the use of

dPCR to determine viral loads of RSV and influenza virus in pediatric patients with hemato-

logic malignancies, solid tumors, or SCD. Assays reported to date have been performed using

real-time PCR. dPCR provides advantages such as endpoint quantitation without the need for

calibration curves, improved precision, and reduced likelihood of quantitative bias based on

amplification efficiency or inhibition [17, 26, 27]. From 137 samples that were initially positive

by BioFire FilmArray1, 19 were negative by dPCR. All 19 samples were collected after com-

pletion of antiviral treatment. This might be anticipated due to subsampling error in patients

with very low viral load or due to some degree of sample degradation in similarly low load

samples (near the assay LOD). These results are in agreement with previous work from our

group and others on cytomegalovirus, showing that although dPCR exhibits increased preci-

sion over qPCR at higher viral loads, diminished sensitivity can be seen in samples with low

viral load values, potentially attributable to reduced input sample volume in the dPCR system

[66–68].

Our study was limited by its sample size. Patients were selected on the basis of availability

of samples that previously tested positive for either influenza virus or RSV. Hence, the timing

of acquiring the second or subsequent samples with respect to clinical disease and treatment

varied among patients, as did the volume retrieved during nasal washes collection. Clinical

information was obtained retrospectively by chart review. Given the lack of commercially

available quantitative standards it is difficult to develop quantitative real time PCR methods.

Therefore, we did not develop a real time assay to perform a direct comparison of quantifica-

tion between real-time methods and dPCR but rather sought to develop and validate a digital

PCR assay that performs well, correlates with clinical disease and can be used to monitor

response to antiviral therapy. A highlight of our study was that most patients in our cohort

were immunocompromised and represented a population in which respiratory infections can

be severe and could therefore potentially benefit from reliable measurement of viral loads.

Conclusion

We found that RSV viral load correlates with the presence of clinical symptoms in patients�5

years of age, whereas influenza viral load is associated with presence of clinical symptoms, irre-

spective of age. Patients receiving antiviral agents had a significant reduction in viral loads of

both influenza virus and RSV after completion of therapy. Digital PCR offers an effective

method to monitor the efficacy of antiviral treatment for respiratory tract infections in immu-

nocompromised hosts with the potential to aid in decisions regarding therapy and isolation.

Large-scale prospective studies are needed to explore the potential benefits of dPCR-based

methods for risk stratification and their impact on patient management.

Supporting information

S1 Fig. Linearity plot during validation. Plot and linearity of measured concentrations (log10

copies/ml) from original sample and known control for (A) Influenza A, (B) Influenza B, (C)

RSV A, and (D) RSV B.
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S2 Fig. Influenza and RSV viral load does not show significant differences in the presence

of viral coinfections when compared to single virus infections. Viral load (log10 copies/ml)

in single infections and coinfections for (A) influenza A, (B) influenza B and (C) RSV. Viral

load in the presence of 1, 2, and 3 or more viruses for (D) influenza A, (E) influenza B and (F)

RSV. P values from mixed linear regression model �P< 0.05; ��P< 0.01; ���P< 0.001. Dotted

line represents lower limit of quantification for each assay.

(EPS)

S3 Fig. Complications of respiratory viral infections are not associated with viral load or

lymphocyte count. Initial viral load (log10 copies/ml) and the presence of clinical complica-

tions for influenza B (A) and RSV (C). Initial absolute lymphocyte count and the presence of

clinical complications for influenza B (B) and RSV (D). �P< 0.05; ��P< 0.01; ���P< 0.001.

Dotted line represents lower limit of quantification for each assay.

(EPS)

S1 File. Institutional policy for collection of nasopharyngeal-washes.
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