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Abstract

A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the
biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a
transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that
deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to
this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE),
based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most
informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N.
crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism,
ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid
(including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor
complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396),
both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of
microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total
of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ
oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its
transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-
controlled genes.
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Introduction

To explain how a complex trait works, systems biology begins with

organizing macromolecules into a genetic network [1]. The biological

clock is an example of how a complex trait with numerous pleiotropic

phenotypes can emerge from the interaction of only a few regulatory

macromolecules. For two reasons much of what we know about the

clock at the molecular level comes from the study of the filamentous

fungus, Neurospora crassa [2]. First, this complex trait is easy to observe

and to manipulate in N. crassa (Fig. 1). Second, as a well-studied

microbial system, it has been possible to identify three molecular

building blocks of the clock, the genes white-collar-1 (wc-1), white-collar-2

(wc-2), and frequency (frq). The genes wc-1 and wc-2 encode PAS-

domain containing transcription factors [3] that turn on the clock

oscillator. The WC-1 protein also acts as a blue-light receptor [4].

The gene frq encodes the clock oscillator FRQ [5] and is activated by

the WHITE-COLLAR transcription factor protein complex

WCC = WC-1/WC-2. The FRQ protein in turn appears to function

as a cyclin to recruit an as yet to be identified kinase/phosphatase pair

for the phosphorylation-dependent inactivation of WCC [6].

This information enabled formulation of the detailed genetic

network shown in Fig. 2 that explains how the clock functions [7].

In this network model, the WCC protein activates the oscillator

gene frq. The active frq1 gene is then transcribed into its cognate

mRNA frqr1, which in turn is translated into its cognate protein

FRQ. The FRQ protein, in turn, deactivates the WCC in the P

reaction. FRQ thereby closes a loop of dynamical frustration

wherein WCC turns on the oscillator gene whose product shuts

down the activator WCC. This dynamical frustration (i.e., negative

feedback loop between WCC and FRQ) explains in part how clock

oscillations arise [7]. In addition, WCC activates a number of clock-

controlled genes (ccgs) that serve as outputs of this clock mechanism.

The number of these ccgs in the genome, and hence the extent of

clock control over metabolism, is largely unknown but see [8].

Our goal is to refine systematically the genetic network model of

the clock mechanism [7] and to explore the metabolic context of

the clock. To achieve this goal Locke et al. [9] proposed using an

iterative process of modeling and experimentation to identify and

validate genetic networks. Along these lines, we introduce a model-

driven discovery process called Computing Life in Fig. 3 [1,10]. In

this paradigm, a cycle of modeling and genomics experiments are

used to identify and, with each cycle, tighten our estimates on

model parameters and on model predictions for the biological

clock. The biological system is first perturbed. Measurements on

all relevant species are made by RNA and protein profiling [1]. An

ensemble of genetic network model parameters is generated for the
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process of interest [11–12,7]. Predictions are made from the model

ensemble and compared with available data. Revision of the

model then poses the difficult choice of what perturbation

experiment is to be done next to improve maximally our

knowledge of the genetic network?

One approach to the problem of ‘‘informative’’ experiment

design has been to assume that genetic networks are in steady state

and/or are linear, and under these conditions predictions are

made about the next round of perturbations [13–16]. This cannot

be done here because the biological clock is usually not in steady

state but rather approaching a stable limit cycle [17]. Also, the

steady-state approach discards most information contained in

observations on network dynamics, i.e., its time-dependent behavior.

Another approach is to generate an entire compendium of

profiling experiments for varied genetic and environmental

perturbations [18]. Such profiling experiments are costly,

however, and it is desirable that every experiment, at each stage,

be maximally informative about the underlying genetic network.

Here, we describe how this process of choosing the Maximally

Informative Next Experiment (or MINEing) can be guided by the

continuously refined network model in an intelligent and cost-

Figure 1. The clock of N. crassa is remarkably adaptive in its entrainment to varied artificial days. Replicate race tubes are inoculated at
one end and subject to a 6 hr, 18 hr, and 48 hr artificial day over 7 ordinary days. The clock is manifested by the appearance of orange bands (i.e.,
asexual production of spores) as the culture grows to the other end of the tube. In each artificial day the race tubes experienced (A) 3 hrs light and
3 hrs dark, (B) 9 hrs light and 9 hrs dark, or (C) 24 hrs light and 24 hrs dark. It can be seen that the number of conidial bands tracked the number of
artificial days experienced. Race tubes were prepared as described in [30] and in Materials and Methods and were inoculated using the bd mutation
(FGSC 1858).
doi:10.1371/journal.pone.0003105.g001

Figure 2. A genetic network for the biological clock from [7].
Molecular species (i.e., reactants or products) in the network are
represented by boxes. The white-collar-1 (wc-1), white-collar-2 (wc-2),
frequency (frq), and clock controlled gene (ccg) gene symbols can be
superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally
inactive (0) or active (1) gene or a translationally inactive (r0) or active
(r1) mRNA. Associated protein species are denoted by capitals. A phot
(in yellow) denotes a photon species. Reactions in the network are
represented by circles. Arrows entering circles identify reactants; arrows
leaving circles identify products; and bi-directional arrows identify
catalysts. The labels on each reaction, such as S4, also serve to denote
the rate coefficients for each reaction. Reactions labeled with an S, L, or
D denote transcription, translation, or degradation reactions, respec-
tively. Reactions without products, such as D8, are decay reactions.
Reactions, such as A and P, have cooperative kinetics: (A) n
WCC+frq0Rfrq1 and (P) WCC+m FRQRWC-2+m FRQ. The n and m
are Hill coefficients or cooperativities. Only one reaction, the ‘‘A’’
reaction, has a back reaction, (A), frq1Rn WCC+frq0, included, with non-
zero rate. The rate constants specify the right hand side of the kinetics
model in equation (1) through the Law of Mass Action in Materials and
Methods.
doi:10.1371/journal.pone.0003105.g002

Figure 3. Computing Life Paradigm. The ‘‘perturb’’ and ‘‘observe’’
steps represent the experimentation phase; the ‘‘fit’’, ‘‘predict’’ and
‘‘evaluate’’ steps are the main components of the genetic network
ensemble simulation phase; and the ‘‘select’’ step is the MINE design
phase which closes the Computing Life workflow cycle.
doi:10.1371/journal.pone.0003105.g003
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effective way while fully exploiting the information contained in

the observed network dynamics. Our tracing of three cycles

through the Computing Life paradigm in the context of refining

our network model for the biological clock’s mechanism in

Neurospora crassa illustrates this approach.

Materials and Methods

Describing the genetic network
All stages of the Computing Life paradigm in Fig. 3 involve the

use of the genetic network. The methods of describing, fitting,

predicting with, and evaluating the genetic network are first

described, and then we continue to trace the methodology used to

complete the cycle in Fig. 3, providing a methodological walk

through the Computing Life paradigm in Materials and Methods.
Kinetics model and the model ensemble. The starting

point for our MINE design approach is a kinetic rate equation

model for the time-dependence of the molecular species

concentrations in the network, based, e.g., on mass-action

kinetics. The model in Fig. 2, for example, specifies a system of

16 ordinary differential equations (ODEs) that describe the

temporal profiles of genes and their products. In general, these

ODEs have the form:

dX=dt~G X,t; h,uð Þ ð1Þ

where X;[X1, … XN]T is a N61 vector of species concentrations,

with N denoting the number of molecular species evolving

according to the kinetics rate equations; G;[G1, … GN]T

specifies the kinetics, i.e., Gn(X,t;h,u) is the net rate of

production of species n at time t, given the species

concentrations X. The model parameter vector or, for the short,

‘‘the model’’ h;[h1, …hM]T in G is the M61 vector of all

unknown model parameter variables, including, for example,

unknown reaction rate constants, species’ initial concentrations

and unit conversion factors. The rate functions G also depend on

an array of ‘‘control variables’’ which are known and can be varied

by the experimenter. These control variables specify, for example,

the nature of the perturbations and external conditions to be

applied to the biological system or, more generally, the experiment

to be done. This array of control variables is denoted by a vector u

(of unspecified dimension) and, for short, is referred to as ‘‘the

experiment’’ in the following.

Fitting, Predicting with, and evaluating ensembles of
genetic networks

Profiling experiments tend to generate data at only a few time

points, the reaction networks are large, and their kinetics models are

rich in unknown h-parameters. An ensemble method of genetic

network identification [11,12,19,20,7] is therefore used to constrain

the model parameters h, using the model likelihood or some other

criterion to select members of the model ensemble. The model

ensemble Q(h?) is a probability distribution on the parameter space of

rate coefficients and initial species concentrations [21]. When

viewed as a function of h, the ensemble Q(h) can be the likelihood

function. This model ensemble summarizes what we know and,

equally importantly, what we do not know about the biological

network, given the prior or ‘‘old’’ experimental data. We refer to

Ref. [7] for a detailed description of the construction of Q(h?) from

prior experimental data and its numerical implementation by way

of a Metropolis Monte Carlo ensemble simulation algorithm ens.f90.

With the ensemble in hand it is possible to make predictions

from the ensemble means of the species concentrations, as shown

in Results. It is also possible to take the expected species

trajectories of the ensemble member h and compare them to the

observed species trajectories using a figure of merit, such as the

likelihood Q(h) or x2 = 22 lnQ(h)+const, to evaluate goodness of

fit of the ensemble as described in [11,7]. A direct graphical

evaluation of the ensemble’s goodness of fit by can be assessed also

by overlaying the observed trajectories of species concentrations

onto the ensemble mean trajectories +/2 the ensemble standard

errors in these mean trajectories, as again shown in Results.

Selecting an optimal perturbation
The next stage in the Computing Life paradigm is selecting a

perturbation in Fig. 3. We describe for the first time a novel

method for selecting an optimal perturbation involving evaluating

the Maximally Informative Next Experiment.

MINE design as ‘‘microscopy’’ in model space. For a

given choice of model h, let f(h,u) denote a kinetics model

prediction for a single species log-concentration, log(y), to be

measured for a single time point by the next profiling experiment,

i.e., y is one of the elements of X, to be measured at some specific

observation time t. The vector u, as explained above, comprises all

control variables which are known and describe the externally

imposed conditions of the experiment. However, u should now be

understood also to comprise all control variables defining the

specific data point y to be measured, including, for example, the

choice of molecular species to be observed and the time of

observation. We will need to generalize this notation when the

planned next experiment measures multiple variables y1,…yd. Let

F(h, U): = [f(h, u1),…f(h, ud)]T denote d61 vector of the

corresponding predicted log-outcomes and U: = [u1,…ud] the

(super-)vector of corresponding control parameter vectors ui where

ui specifies the control variables for the measurement of the data

point yi for i = 1, …d. The log-variables to be observed, log(yi), will

also be referred to, for short, as the ‘‘observables’’ in the following

and U, for short, as ‘‘the next experiment’’. We are using log-

concentrations instead of the concentrations themselves here, in

order to obtain scale-free (i.e. concentration-unit-independent)

MINE criteria, as explained below.

Clearly, the question of which next experiment U is ‘‘maximally

informative’’ is not a mathematically well-defined problem. We have

to make an ad hoc choice for a design criterion and then try it out in

real-life applications. The basic conceptual ideas underlying this ad hoc

construction of a MINE criterion are borrowed from microscopy: we

want to use whatever experimental technique is available to us to

‘‘look into’’ or ‘‘image’’ the inner workings of the cell. A microscope

generates images of the cell’s material components in three-

dimensional physical space or in some lower-dimensional projection

thereof. Profiling experiments, by analogy, generate images of the

cell’s (very!) high-dimensional kinetics parameter space.

Ideally, we would like to be able to obtain highly resolved

images, allowing us to determine accurately a genetic network’s

‘‘location’’ in kinetics parameter space, specified by a unique

choice of parameter vector h. Unfortunately, and again in analogy

to microscopy, the images we do get from present-day profiling

experiments do not allow us to completely re-construct h: our

‘‘vision’’ in h–space is seriously blurred. The model ensemble Q(h)

captures the constraints imposed on h, i.e., what we know; but the

spread of Q(h) within those constraints in h-space, also captures

the blurring, i.e., what we do not know, given the prior

experimental data. Our goal is therefore to reduce this blurring

as much as possible when performing the next experiment: we want

to tune our ‘‘model parameter microscope’’ to get a different view

of h-space with the maximum possible resolution.

An important aspect to keep in mind here is that every imaging

procedure, be it optical microscopy or RNA profiling, requires a

Systems Biology
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mathematical model which relates the observed image (F) to the

underlying object (h). The mapping function F(h,U) captures that

imaging model. Without such an imaging model, we cannot, for

example, re-construct the shape, size and location (h) of a cellular

organelle from the light intensity pattern (F) of the cell’s magnified

image produced by an optical microscope. In the case of optical

and electron microscopes, the imaging model is, by now, well-

established, highly reliable, and commonly known as physical

optics. In the case of profiling experiments, an appropriate

imaging model framework may well be mass balance kinetics, but

the details, as illustrated by Fig. 2 or 4 are still very much subject to

debate.

Since the profiling experiment is sparse and noisy, we do not

have a sufficient amount of sufficiently diverse experimental data

to ‘‘look in all directions’’ of the kinetics parameter space. Each

experiment only yields a (in general non-linear) projection of

object points h in the M-dimensional kinetics parameter space

onto the image points F(h,U) in d-dimensional image space.

Sparsity and noise imply that typically only a lower dimensional

image sub-space, of dimension deff,M, can actually be resolved by

the experiment. The MINE design procedure cannot eliminate the

blurring of our vision; but it can help to minimize the blur.

Criterion 1: MINE by maximal distance in image

space. To develop these notions into a quantitative MINE

criterion, let us first consider the simplest case: the design of a

Maximally Informative Next Experiment to measure only a single

data point y. Suppose we randomly draw two possible choices of

models from the model ensemble Q, denoted by h and h’, which

both give predictions consistent with the ‘‘old’’ experimental data

(within the experimental uncertainties). To distinguish between

these two choices, we want to perform the next experiment with

control vector u. The predicted outcomes for this next experiment

would be, respectively, f(h?,u) and f(h’,u). The crucial point to notice

here is this: the more these two predicted outcomes f(h,u) or f(h’,u)

differ from each other, the ‘‘better’’ the next experiment will allow

us to discriminate between the two model choices. As a ‘‘metric’’

of the difference between the two members of the ensemble, we

could choose, for example,

Vh,h:
0 uð Þ~ f h,uð Þ{f h0,u

� �� �2.
2: ð2Þ

The Maximally Informative Next Experiment u is then the one

that maximizes this difference metric. Letting the joint distribution

Figure 4. Alternate genetic network for the biological clock from [33]. Molecular species (i.e., reactants or products) in the network are
represented by boxes. The terms are the same as described in the legend of Fig. 2. The main difference is that the WCC has a light and dark form
denoted WCCD and WCCL. When these two forms bind upstream of frq and ccg genes, this leads to two different transcriptionally active forms of the
gene, such as frq1D and frq1L. In addition, photons (in yellow) can enter the system to interact with WC-1 in four ways, depending on the bound state
of the WCC, in the reactions E1, E2, E3, and E4. All four of these reactions have been given nonzero back reaction rates. The final difference is that the
two forms of WCC lead to two deactivation reactions of WCC by FRQ, labeled P and Q. Reactions, such as A and P, have cooperative kinetics: (A) n
WCCD+frq0Rfrq1 and (P) WCCD+m FRQRWC-2+m FRQ. The n and m are Hill coefficients or cooperativities. Only for 6 reactions, such as the ‘‘A’’
reaction, is a back reaction, such as (A) frq1DRn WCC+frq0, included, with non-zero rate. The rate constants specify the right hand side of the kinetics
model in equation (1) through the Law of Mass Action in Materials and Methods.
doi:10.1371/journal.pone.0003105.g004
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of the randomly drawn pair Q(h,h’) = Q(h)Q(h’), the foregoing

criterion can be applied to an ensemble of models by choosing u

such that it maximizes the average of Vh,h?
’(u):

V uð Þ : ~

ð
h

ð
h0

Vh,h0 uð ÞQ hð ÞQ h0
� �

~E f :,uð Þ2
h i

{E f :,uð Þ½ �2: ð3Þ

Where #h denotes integration or summation over all h-components

and E[…] denotes the mean over the ensemble probability

distribution Q(h). Our MINE criterion V(u) is then the variance in

our prediction within the ensemble and can be evaluated by

Monte Carlo (MC) methods [11]. To achieve maximum

‘‘resolution’’ in model (h-) space, we thus ‘‘tune’’ the next

experiment u so that it will take us into those regions of

prediction (f-) space where there is the most uncertainty: the

MINE design criterion [3] rationalizes and advocates discovery.

A straightforward generalization of the foregoing criterion to the

case of the next experiment measuring multiple variables y1,…yd is

to replace the square of the predicted one-dimensional ‘‘image

difference’’, Df(h,h’,u): = f(h,u)2f(h’,u), in [2] by the corresponding

squared ‘‘length’’ of the d-dimensional ‘‘image difference vector’’

DF h,h0,U
� �

: ~F h,Uð Þ{F h0,U
� �

: ð4Þ

That is, we replace Vh,h
?
’ (u) in [2] by

Vh,h:
0 Uð Þ~ DF h,h0,U

� �2
���

���
.

2 ð5Þ

where |…| denotes the Euclidean norm, i.e., |W|: = (WTW)1/2 for

W= [W1,…Wd]T. Inserting this into [3] we get the MINE design

criterion

V Uð Þ~E F :,Uð Þj j2
h i

{ E F :,Uð Þ½ �j j2

~
X

i~1,...d E f :,uið Þð Þ2
h i

{ E f :,uið Þ½ �ð Þ2
� � ð6Þ

It is easy to see from [6] that maximizing this V(U) will collapse all

ui at the same u-point where the individual variance in the 1-

dimensional (single-variable) prediction space, E[|f(.,ui)|
2]2|E[-

f(.,ui)]|
2, is largest. So, this MINE criterion would demand that the

next experiment simply observe the same y-variable d times,

instead of observing d independent y-variables. Clearly, this

criterion lacks the ability to enforce independence of multiple

observables.

Criterion 2: MINE by maximal volume in image

space. To construct a likely more useful MINE criterion,

which does enforce some measure of independence of the

observables, we are again guided by the microscopy analogue.

Suppose we are ‘‘viewing’’ a certain ‘‘object space volume’’ no

through our microscope. By way of the mapping function, this

produces from no an ‘‘image difference volume’’ nD in d-

dimensional image difference space. That is, nD is the volume

swept out by the image difference vector DF(h,h’,U) for all pairs of

object points (h,h’) in no6no; or, formally, nD(no,U): =DF(no,no,U).

Our notation makes it explicit here that nD depends on the choice

of the control vector U, as well as on no.

To formulate an improved MINE criterion, we propose to

invoke the volume nD swept out by DF, instead of the Euclidean

norm of DF used in [6]. The basic microscopy-inspired idea here is

this: the greater the volume amount contained in nD(no,U), the

more detail we should be able to discern in no. In other words, we

should be able to gain more information about the contents of no if

we tune our microscope’s control vector U so as to increase the d-

dimensional image difference volume amount, denoted by

|nD(no,U)|. However, unlike the Euclidean distance criterion

[6], the requirement of sweeping out a higher-dimensional volume

nD will naturally enforce a certain degree of independence of the

observables. Notice here that the Euclidean norm measures just

the length of the DF-vector and this can be maximized even if DF

sweeps out only a 1-dimensional sub-manifold. By contrast, nD is

by construction a higher-dimensional manifold with a dimension-

ality of up to d or M, whichever is less.

The next question is then how to choose an appropriate no, or

the corresponding nD, in terms of the ensemble pair distribution

Q(h,h’) = Q(h)Q(h’). Again, this requires an ad hoc decision and we

are guided in making it by computational expediency. In fact, the

foregoing considerations of constructing a nD from an underlying

no in object (h-) space should only be regarded as a heuristic

motivation for introducing such a nD. As a practical matter, our

nD-based MINE approach is greatly simplified if we do not try to

construct an exact nD from a given no. Rather, we will define a

‘‘representative’’ nD, swept out by DF(h,h’,U) when h and h’ are

drawn from ‘‘typical’’ values prescribed by the ensemble pair

distribution Q(h,h’) = Q(h)Q(h’). This nD will be constructed from

the characteristic variance/co-variance ellipsoid of DF and it will

be again dependent on the control vector U.

To that end, it is conceptually (but not computationally) useful

to first define the ensemble distribution of DF

QD W,Uð Þ : ~

ð
h

ð
h0
d W{DF h,h0,U

� �� �
Q hð ÞQ h0

� �
ð7Þ

where W: = [W1, …Wd]T is any point in DF-space and d(…) is the

Dirac delta-function in d dimensions. QD(W,U) is the probability

density for DF(h,h’,U) to take on the value W, given that h and h’

are independently distributed according to Q(h) and Q(h’),

respectively. QD(W,U) defines an effective nD(U) in the image

difference (DF-) space by way of the characteristic ellipsoid of DF’s

d6d variance/co-variance matrix D(U), given by

Dik Uð Þ : ~

ð
W

WiWkQD W,Uð Þ=2: ð8Þ

Note that DF’s characteristic variance/co-variance ellipsoid is

centered at the origin, W= 0, since QD(W,U) is even in W. i.e.,

QD(2W,U) = QD(W,U) due to DF(h’,h,U) = 2DF(h,h’,U). The

squared half-axis lengths of the characteristic ellipsoid are the D-

matrix eigenvalues, with corresponding eigenvectors defining the

respective half-axis orientations. The ellipsoid’s half-axes are

orthogonal to each other and they define a rectangular prism in

DF-space whose volume amount, by a universal constant

prefactor, is proportional to that of the ellipsoid. Instead of the

ellipsoid itself, we therefore choose this ‘‘variance/co-variance

prism’’ of DF as our image difference volume nD(U). The square of

its volume amount, |nD(U)|2, is the determinant of D(U) and this

is what we can use as a possible MINE criterion to be maximized:

V Uð Þ : ~det D Uð Þð Þ~ nD Uð Þj j2: ð9Þ

This is sometimes referred to as the generalized variance, and its

distribution is known exactly if the predictions are Gaussian over

the ensemble [22, Th. 3.2.15.]

We should strongly emphasize here that our invocation of the

(co-)variance ellipsoid of DF does not imply or require the DF-

distribution QD(W,U) to be Gaussian. Via the matrix D(U) in [8],
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such an ellipsoid can be constructed for any QD(W,U). Given the ad

hoc character of the entire MINE approach, the resulting nD is ‘‘as

good as any’’ for purposes of representing a ‘‘characteristic

volume’’ swept out by DF(h,h’,U). The main advantage of this

construction is its computational feasibility: combining [4,7] and

[8], we can re-write Dik(U) in terms of ensemble means over Q(h)

as

Dik Uð Þ~E f :,uið Þf :,ukð Þ½ �{E f :,uið Þ½ �E f :,ukð Þ½ � ð10Þ

which can be calculated by ensemble Monte Carlo evaluation

[7,11] of the required ensemble means E[…]. We also note here

that the D-matrix, as well as the E-matrix defined below, is scale-

free, that is, independent of the choice of model concentration

units, since the definition of Dik(U) invokes only DF(h,h’,U) [4]

which involves only the differences of log-concentrations or,

equivalently, logs of only concentration ratios. Hence, the Dik(U)

matrix elements, the corresponding Eik(U) matrix elements defined

below, and all MINE criteria developed here based on these two

matrices are scale-free.

Hilbert Space picture of MINE formalism. The foregoing

results can also be re-stated in terms of a Hilbert Space (HS)

formalism, using a HS of functions defined on the kinetics model

parameter (h-) space where the (co-)variance serves as the HS

inner product. That is, for any pair of such functions, g(h) and h(h),

we define the HS inner product by:

g hjð Þ : ~E g :ð Þh :ð Þ½ �{E g :ð Þ½ �E h :ð Þ½ �: ð11Þ

The log variables log(yi) are now represented by HS vectors fi:

f i hð Þ : ~f h,uið Þ for i~1, . . . d; ð12Þ

and the (co-)variance matrix element Dik is simply the inner

product of HS vectors fi and fk,

Dik~ f i fkjð Þ: ð13Þ

The ensemble standard deviation of the observable predicted by fi
is the HS vector norm or ‘‘length’’, denoted by IfiI, where I…I
is defined by IgI: = (g|g)1/2. For notational convenience, we are

occasionally suppressing the dependence on U or ui for quantities

like fi or Dik.

Independence of observables log(y1),…,log(yd) is very naturally

represented in this formalism in terms of linear independence of

the corresponding HS vector set f1,…,fd. These d HS vectors span

a finite-dimensional subspace in HS which has dimension d, if

f1,…,fd are linearly independent; else it is less than d. A linearly

independent HS vector set f1,…,fd also spans a d-dimensional

prism in HS, and the MINE criterion [9] has a simple

interpretation in terms of this HS prism: from [13], it is easy to

show that det(D) is the square of the volume of this HS prism.

Hence, the characteristic (co-)variance prism nD in d-dimensional

DF-space has an alternative (‘‘dual’’) representation in terms of the

HS subspace prism volume. In contrast nD in DF-space, the HS

prism spanned by f1,…,fd is, in general, not rectangular since

f1,…,fd are not guaranteed to be mutually orthogonal with respect

to their HS inner product [11].

If the f1,…,fd become linearly dependent, their HS prism

collapses to a lower-dimensional one, and det(D) vanishes. In the

other extreme, if the observables are uncorrelated, the corre-

sponding f1,…,fd are mutually orthogonal in terms of the HS inner

product, i.e., they are maximally independent: their HS prism

volume is simply given by the product of their vector lengths IfiI
and hence det(D) = (If1I?…?IfdI)2. In general, for correlated

observables, the f1,…,fd are non-orthogonal and we have

det(D),(If1I?…?IfdI)2. The ratio det(D)/(If1I?…?IfdI)2 can

be regarded as a composite measure of the degree of independence

of the observables and this ratio, as discussed further below,

depends only on the HS ‘‘angles’’ between pairs of fi-vectors, but

not on their individual lengths IfiI. Maximizing V(U) = det(D(U))

therefore requires a compromise between maximal mutual

independence of all observables and maximal variance of each

individual observable.

We note in passing that the Euclidean distance criterion [6] can

also be expressed in terms of the (co-)variance matrix D: the right-

hand side of [6] is the trace of D(U). However, in contrast to the

volume criterion [9], for the Euclidean distance criterion [6], V(U)

is simply the sum of the squared HS vector lengths, i.e.,

V(U) = trace(D(U)) = If1I2+…+IfdI2, and that is maximized

when each individual HS vector length is maximal, that is, when

each observable has maximal variance, regardless of any co-

variance correlations between observables, as already discussed

under [6].

Criterion 3: MINE by maximal observational

independence. Based on these considerations, we propose

one further MINE criterion which more strongly than [9]

emphasizes independence of the observables. Instead of the

original HS vectors fi, we use normalized HS vectors

gi hð Þ : ~f i hð Þ= f ik k for i~1, . . . d; ð14Þ

to define a new ‘‘normalized’’ (co-)variance matrix or correlation

matrix, denoted by E, analogous to [13],

Eik Uð Þ~ gi gkjð Þ~Dik Uð Þ= fik k: fkk kð Þ

~E g :,uið Þg :,ukð Þ½ �{E g :,uið Þ½ �E g :,ukð Þ½ �
ð15Þ

This is the well known correlation matrix between the predictions

[22]. Our proposed third MINE criterion is then to maximize

V Uð Þ :~det E Uð Þð Þ~det D Uð Þð Þ
.

f1k k: . . . : fdk kð Þ2: ð16Þ

In contrast to [9], the variances of the observables do not affect

det(E(U)), only their degree of linear independence does. In HS

geometrical language, det(E(U)) is the squared volume of a prism

spanned by the HS unit vectors g1,…,gd, and that volume is

determined entirely by the pairwise ‘‘angular’’ relations between

the gi, not by their individual lengths which are all fixed at

IgiI = 1.

Such a MINE criterion is likely advantageous in applications

where the HS vectors of the observables, f1,…,fd, are ‘‘almost’’

linearly dependent. The greatest gain in information from the next

experiment is then likely achieved by improving the independence

of the observables, rather than by maximizing their individual

variances. This scenario of ‘‘almost’’ linearly dependent (i.e., highly

correlated) observables is what we have in fact encountered,

consistently, in our MINE calculations for the three Computing

Life cycles reported in this work. Maximizing det(E(U)) is therefore

the MINE criterion we have employed to guide the design of our

cycle 1, cycle 2 and cycle 3 experiments, subject to additional

numerical modifications now to be discussed.

There are several additional reasons why the det(E(U)) is the

preferred MINE criterion. The correlation matrix is a well known

measure of linear dependence between variables (i.e., the
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predictions F) as well as a well known measure of stochastic

dependence when the predictions F are Gaussian over the

ensemble. The det(E(U)) MINE measure is bounded between 0

and 1. The value of 1 denotes linear independence, and in the case

of Gaussian predictions, complete stochastic independence of the

predictions. The value 0 means perfect linear dependence of the

predictions, and in the case of Gaussian predictions, perfect

stochastic dependence. The measure is familiar and easy to

interpret, and finally, the det(E(U)) has well known distributional

properties, particularly when the predictions are Gaussian [22].

Volume collapse pathology. The lack of sufficient linear

independence of the g1,…,gd HS vector set (or, equivalently, of the

f1,…,fd set) is most easily diagnosed numerically by calculating the

d eigenvalues of the D-matrix, denoted by ln = ln(U) and

enumerated by n = 1,…d in descending order, with

corresponding complete, orthonormal d61 eigenvectors e(n).

Since D is non-negative, so are the exact ln. Given the exact ln

and e(n), we can decompose D into its eigenvector representation

D Uð Þ~
X

n~1,...dln Uð Þen Uð Þen Uð ÞT, ð17Þ

and det(D) is simply the product of the exact ln. However, in our

actual MINE calculations, we encounter the numerical difficulty

that the HS vector set is numerically ‘‘almost’’ linearly dependent.

This numerical pathology manifests itself in the fact that the ratio

of smallest eigenvalue ld to largest eigenvalue l1 becomes of order

or smaller than the machine precision Emp. All eigenvalues ln for

which the numerical ln/l1–ratio is comparable to or less than Emp

are then dominated by rounding errors, i.e., they are numerically

not calculable and neither, therefore, is det(D). In geometrical

terms this simply means that, in the D-matrix characteristic

ellipsoid, the ellipsoid half-axis along the corresponding

eigenvector direction e(n) has ‘‘almost’’ collapsed to zero and is

numerically indistinguishable from zero, !(ln) being the length of

that half-axis. However, such an almost collapsed ellipsoid still

contains useful information about the ‘‘range’’ swept out by the

image-difference function DF which can be exploited for MINE

design.

To remedy the ‘‘ellipsoid volume collapse’’ pathology, we

therefore propose to introduce a numerically stable lower cut-off

into the eigenvalue spectrum of D, by replacing ln with a modified

eigenvalue mn according to

mn Uð Þ~max ln Uð Þ,Ecutl1 Uð Þð Þ, ð18Þ

with a fixed ‘‘cut-off ratio’’ Ecut = 10210. This is typically at least 2

or 3 orders of magnitude larger than the machine precision Emp.

An almost collapsed characteristic ellipsoid is thus ‘‘fattened up’’ to

have a half-axis of at least !(Ecutl1) along every eigenvector

direction. The numerically inaccessible exact det(D) is then

replaced by the numerically stable determinant of a modified D-

matrix,

D cutð Þ Uð Þ : ~
X

n~1,...d mn Uð Þen Uð Þen Uð ÞT, ð19Þ

with

det D cutð Þ Uð Þ
� �

~m1 Uð Þ: . . . :md Uð Þ ð20Þ

for purposes of MINE calculations. To use the MINE criterion

[16] instead of [9], the same cut-off procedure can be employed to

generate a modified, numerically stable E-matrix with determinant

det(E(cut)(U)). This is what we have actually done in the MINE

calculations reported here. We also note in closing that the

Euclidean distance criterion [6], V(U) = trace(D(U)), is numerically

not affected by the ellipsoid volume collapse: trace(D) is the sum,

not the product, of the D-eigenvalues and it is therefore dominated

by the numerically well-controlled largest eigenvalues only.

Cycle 1–3 kinetics ensemble simulations and MINE

calculations. In all MINE calculations reported here, the

observables log(y1),…log(yd) were chosen to be the log-

concentrations of the 3 clock RNA species which are

represented in our network model shown in Fig. 4: log([frqr]),

log([wc-1r]), and log([wc-2r]) where [wc-1r] is the combined total of

the ‘‘r0’’ and ‘‘r1’’ versions of the wc-1-RNA, i.e., [wc-1r]: = [wc-

1r0]+[wc-1r1]. Each of these 3 RNA concentrations was to be

measured at 13 observation time points, tj with j = 1,…13; hence

there were d = 3613 = 39 data points y1,…yd to be observed in the

next experiment and the index ‘‘i’’ in the above sections therefore

represents both the time index j and the species index n, i.e.,

i«(j,n) with n = 1,2,3 for the 3 clock RNA species. The

observation times tj are chosen to have equidistant spacing tS,

after an initial time lag of tL, measured from the starting time of

the experiment, t = 0, where t = 0 is defined by the initial Light-to-

Dark (L/D) transition. Hence,

tj~tLztS j{1ð Þ for j~1, . . . 13: ð21Þ

In each MINE cycle, an ensemble simulation was performed for

the kinetics model for Fig. 4, using the same ensemble simulation

procedure as described in [7], to generate a ‘‘representative’’ MC

sample of 40,000 random h-vectors, drawn from the respective

ensemble distribution Q(h) for that cycle. A subset of 200 random

h-vectors from this sample was then used to calculate MC

estimates for the ensemble expectation values E[…] for evaluation

of the E-matrix via [15].

In the cycle 1 ensemble simulation, Q(h) was constructed, as

described in [7], from the same prior (‘‘old’’) experimental input

data as shown in Figs. 2 and 4 of Ref. [7], taken from the

literature, Refs. [3,23,24] and [25]. For the cycle 2 (cycle 3)

ensemble simulation, Q(h) was revised by adding the new

experimental data, from the new cycle 1 (cycle 2) experiment to

the cycle 1 (cycle 2) prior experimental data set. In addition, the

cycle 2 and cycle 3 ensemble simulations included conidiation

density data from the 48 hr artificial day, interpreted as a measure

of the CCG protein concentration in Fig. 1, as described in [7].

These conidiation data were generated in a race tube experiment

with a periodic light/dark (L/D) exposure with a 48 h period and

are the data shown in the right-most panel of Fig. 1.

In all new experiments reported here, where light exposure was

applied, the light intensity at the sample location was about

70 mmole(photons)/(s?m2) in Einsteinian units, or about 15 W/m2

in radiometric units, or about 5,300lux,490 ft-candles in

photometric units, assuming a ‘‘cool white’’ spectral distribution,

generated by our fluorescent light source. [The approximate

conversion factors are 1 W/m2«4.622 mmole(photons)/

(s?m2)«350.7lux = 32.58 ft-candles for the ‘‘cool white’’ spectrum,

as given in [26].] By contrast, the light intensity was only

20 mmole(photons)/(s?m2), with unspecified spectral distribution,

for the light exposure experimental data we have taken from the

literature [25]. Since our kinetics ensemble simulations for cycle 2

and 3 incorporate both our new experimental data and the

literature data [25] into the respective distributions Q(h), we have

assumed that both, the literature experiments and ours, were

performed with the same photon spectral distribution. We have
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therefore modeled all light exposure experiments in terms of

photon ‘‘concentrations’’ [entering into the reaction rate function

G in [1]] which are chosen proportional to the respective light

intensities. For all light-exposed experimental data used [25] or

reported here, the light exposure was periodic, starting at the

initial (t = 0) L/D transition, with a 50% duty cycle (i.e., the same

duration of D and L) and a phasing of either D/L (i.e. dark first,

then light) or L/D, as indicated in the discussion of the respective

results. This time-dependent light exposure was modeled, as in [7],

by a corresponding time-dependent periodic photon concentration

of rectangular pulse shape, entering into in the rate function G.

In cycle 1, V(U) = det(E(U)) was maximized with respect to tS
and tL, for a ‘‘next’’ experiment designed to measure the three

clock RNA species in the dark. The resulting optimal MINE

values of tS = 0 and tL = 5 h (see Fig. 5) were slightly modified, to

tS = 0 and tL = 4 h, so as to keep the total duration of the cycle 1

experiment below the ,50 h limit imposed by experimental clock

stability constraints in liquid cultures. The latter values of tS and tL
were then used, without further adjustments, in all subsequent

cycle 1, cycle 2, and cycle 3 RNA profiling experiments and in the

corresponding cycle 2 and cycle 3 MINE calculations.

In cycle 2, V(U) = det(E(U)) was maximized with respect to the

period tP of the alternating light exposure, for a ‘‘next’’ experiment

designed to measure the three clock RNA species subject to a 50%

duty cycle and D/L phasing. From the resulting optimal range of

tP ,20 h–24 h (see Results), tP = 24 h was chosen for the actual

cycle 2 experiment.

In cycle 3, V(U) = det(E(U)) was maximized with respect to the

‘‘gene knock-down’’ transcription ratio (TR), and with respect to the

choice of the gene species to be knocked down, for a ‘‘next’’

experiment designed to measure the three clock RNA species in the

dark, but with one of the three clock genes subjected to an

experimentally controlled reduction in its transcription rate

coefficient. The resulting ‘‘most informative’’ gene was found to

be wc-1, with a transcription rate coefficient reduced to TR = 10%

of the wild-type value (see Results). In the actual cycle 3 experiment,

this MINE-recommended knock-down value for wc-1 was approx-

imated, within the limitations of experimental control, by a TR of

about 30% of the wild-type value. The clock RNA data from this

wc-1 knock-down experiment were then incorporated with all other

prior (literature, cycle 1 and cycle 2) experimental data into the Q(h)

for one ‘‘terminal’’ ensemble simulation for the network in Fig. 2

and 4. The clock RNA results from this terminal ensemble

simulation, along with the respective new RNA data generated in

the 3 MINE cycles, are shown in Results for the network in Fig. 4.

Perturbing the genetic network
Once the MINE perturbation experiment is designed, the

perturbation is implemented at the next stage in the cycle in Fig. 3.,

as now described.

Strains. All but one strain used (namely OR-74A below)

carry a band (bd) mutation, permitting the observation of the clock

in race tubes. The bd mutation (Fungal Genetics Stock Center

1858) was used for the first series of microarray experiments in the

dark as well as the second series of microarray experiments

examining a light-response. Strain 87-84-6-8 [7] carrying a

mutation in wc-1 and an inducible copy qa:wc-1+ at the his-3

locus was used in the dial down of wc-1 expression [7]. Dial-down

was achieved by shifting liquid cultures from 0.3% quinic acid to

2% galactose. Strain 74A-OR23-1A was used in shift experiments

from sucrose (1.5%) to quinic acid (.3%) as a control to identify

QA inducible genes [27]. Strain 93-4 (frq2) qa:frq+ transformed

with pDE3dBHqa:frq+ was kindly provided by Deborah Bell-

Pedersen (Biology Department, Texas A & M University) to test

for auto-feedback loops in wc-1 and wc-2.

Liquid Growth Conditions for harvesting

RNAs. Establishment of liquid cultures followed Nakashima

[28] and [5], and the cultures were grown for 48 hrs in petri

plates. Half-cm mycelial disks were cut from the mat and dropped

into 500 ml flasks with 100 ml Fries+2.0% glucose+.5%

arginine+supplements [29].

Figure 5. MINE calculation to determine when to start sampling (tL) and how often (tS). The MINE surface is plotted as function of the lag
tL in hrs and spacing tS in hrs; higher values on the MINE surface suggest the preferred design points (tL, tS). Color contours of the log of the MINE
criterion det(E) are overlayed as a function of the lag (tL) and spacing (tS) to show points on the surface of similar MINE values. The MINE surface
suggests to start sampling immediately (small tL) and to make the spacing (tS) between observations as large as possible. The maximum permissible
spacing (ts) between observations is 5 hrs, as determined by two constraints. One, there is the cost constraint of 13 microaray chips per cycle, and
two, beyond a 50 hr experiment in cycle 1 stable oscillations in liquid culture are not guaranteed.
doi:10.1371/journal.pone.0003105.g005
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Cycle 1. In the first series of microarray experiments to

identify circadian genes (cycle 1) all flasks were placed in a shaker

(New Brunswick Scientific, Edison, NJ, Series 25) at 150 rpm and

at 25uC for the same period of time, 50 hrs, and also were given at

least 2 hrs of 70 micromoles per second per meter squared (mM/s/

m2) before L/D (light to dark) transition. A total of 13 flasks were

harvested by vacuum filtration, one flask every 4 hrs starting at

time 0, the L/D transition time, in such a way that the total

growth time of each liquid culture was kept constant [42]. After

the L/D transition initiating the experiment, the flasks were

shaken at 150 rpm and left in the dark. Cells were placed at

270uC to await RNA harvesting using a High Pure RNA kit

(Roche, Inc.). The harvested RNA was subjected to RT-PCR and

then microarray analysis as described below.

Cycle 2. In the second series of microarray experiments to

study the light-response (cycle 2) the total growth time was not

controlled, and 24 hrs after the L/D transition the light (70 mM/

s/m2) was turned back on for 24 hrs. 17 flasks were harvested at

time points 0 hr, 4 hrs, 8 hrs, 12 hrs, 16 hrs, 20 hrs, 24 hrs,

24 hrs+20 m, 24 hrs+40 m, 25 hrs, 26 hrs, 28 hrs, 32 hrs, 36 hrs,

40 hrs, 44 hrs, and 48 hrs.

Cycle 3. In the third series of microarray experiments to study

the WCC-response (cycle 3), prior to the L/D transition, mycelial

disks were transferred into 500 ml flasks with 100 ml Fries+0.3%

quinic acid [29]. Fourteen flasks received a total of 4 hrs of

70 mM/s/m2 before L/D transition. Cultures were transferred by

vacuum filtration to new 500 ml flasks with 2% galactose+Fries

medium and placed in the dark. Flasks were harvested at 0, 10 m,

20 m, 30 m, 40 m, 50 m, 1 hr, 2 hrs, 4 hrs, and 8 hrs. Four

additional replicate 0 time points were harvested as well.

Observing the outcome of the perturbation
Observing the outcome of the perturbation completes the cycle

through Fig. 3. Measurements are made on the system by a

combination of race tube assays, real-time polymerase chain

reaction (RT-PCR), and profiling with oliginucleotide arrays, as

now described.

Race tube assay for biological clock. Starter cultures were

made on 0.1% glucose+0.17% arginine+Vogel’s medium [29] and

subject to a 23 mM/s/m2 light source. Conidia were filtered with

glass wool as described in [30] and used to inoculate race tubes

layered with 20 ml of 0.1% Glucose+0.17% arginine+Vogel’s

medium or 0.001 M quinic acid+0.17% arginine+Vogel’s medium

[29]. A total of 135 replicates tubes were inoculated and either

subject to low (23 mM/s/m2) or high intensity pulses (70 mM/s/

m2) once per hour for 90 sec over a twelve hour period or

subjected to no light pulses to measure period and a phase

response as described in [30] and [31].

RNA isolation. RNAs were isolated using the High Pure

RNA isolation kit (Roche, Inc.). Their quality and quantify was

assessed using an RNA Nano LabChip (Agilent Technologies,

Inc.). Generally only samples with a ratio of at least 1.00 for 28S/

18S rRNA on the LabChips were used.

Real-time PCR to validate microarray

experiments. Results on Combimatrix chips were cross-

validated by real-time polymerase chain reaction (RT-PCR). cDNAs

were synthesized from 1.6 mg total RNA using a High-Capacity

cDNA Archive (synthesis) kit (Applied Biosystems, Inc.). The wc-1,

wc-2, frq, kal-1, rpn-4, rrg-1, pab-1, rok-1, lhp-1, and rRNA cDNAs

were detected by RT-PCR (ABI-Prism 7500, Applied Biosystems,

Inc.) according to manufacturer directions using Taq Man probes

against an rRNA standard. Triplicate reactions (50 ml) were

analyzed using the DDC. method (Applied Biosystems, Inc.).

Design of 12K Oligonucleotide Arrays (Combimatrix,

Inc.). These arrays were constructed with Version 3 of the

Neurospora crassa genome sequence [32] from a file labeled

neurospora_3_gene_dna_3205.txt downloaded from the Broad

Institute Web site. From this sequence Combimatrix, Inc. designed

12,000 oligonucleotides of ,35 nt to synthesize electrochemically

on their chips. Several genes were represented multiple times with

oligonucleotides derived from the following genes: wc-1 (5

duplicates); wc-2 (5); frq (5); rDNA (.7), qa-x (5); qa-2 (5), qa-4 (5);

qa-3 (5); qa-y (5); qa-y (5); qa-1F (5); qa-1S (5). In addition, 633

negative control oligonucleotides were added from bacterial, plant,

and l-phage sequences as well as features with no oligonucleotides

and quality control oligonucleotides. The rDNA derived

oligonucleotide sequences were treated as negative controls in

the microarray experiments as well because none of the at least

eight rDNA-derived oligonucleotides on each chip showed up in

an expanded Fig. 6 with 4721 circadian genes [33] with or without

a known LRE upstream. In addition 22 duplicate oligonucleotides

from each of 4 distinct l-phage sequences were added to be used

as positive controls for all but 4 arrays (by spiking them into the

amplified RNA (aRNA) probe). These positive and negative

controls were scattered at random on each array. The arrays with

their design are at http://www.yale.edu/townsend/Links/

ffdatabase/introduction.htm [34]. Their accession numbers are

13, 34, and 36 for cycle 1, cycle 2, and cycle 3, respectively. The

same design was used on all Combimatrix chips except for samples

48 hrs, 44 hrs, 40 hrs, and 36 hrs on cycle 1.

RNA amplification and oligonucleotide array

hybridization. 750 ng of total RNA (as determined by a

Nano LabChip (Agilent Technologies, Inc.)) was subjected to one

round amplification using the MessageAmp aRNA Amplification

Kit (Ambion Inc), which uses an ‘‘Eberwine type’’ amplification.

Biotin-11-UTP and CTP (Enzo Life Sciences, Inc.) were

incorporated during the in vitro transcription reaction. A total of

5 mg of amplified RNA (aRNA) was fragmented, A total of 10 pM

each biotinylated spike-in oligonucleotide (phage) was added with

hybridization solution, and hybridized according to

manufacturer’s protocol rev 2.03 (http://www.combimatrix.

com). Hybridization was performed at 45uC for 24 hrs using a

25% formamide based solution. Washing was done according to

manufacturers protocol rev 2.03. Streptavidin Alexa FluorH 647

conjugate (Invitrogen) was used at a final concentration of 1.0 mg/

ml to visualize hybridized targets. Laser confocal scanning was

performed on a GSI Lumonics ScanArray 5000 (now

manufactured by Perkin-Elmer, Inc.) using a single laser power

and a photomultiplier (PMT) gain setting adjusted less than 10%

between arrays. Versions of image software MI_Version_5_4_3,

MI_Version_5_5_0, MI_Version_5_6_0, and MI_Version_5_7_0

(Combimatrix, Inc.) were used to obtain spot intensities (such as

median foreground count) on each array feature for microarray

analysis.

Quality Control on RNAs. RNA samples was confirmed to

have a ratio of at least 1.00 for 28S/18S rRNA on the LabChips

(Agilent Technologies, Inc.). RNAs used for aRNA synthesis and

hybridization to chips were visually scanned for trends in the

foreground median count in control sequences in the (x,y)

coordinates. For the 4 l-oligonucleotides spiked into each

aRNA, the coefficient of variation (CV) in median foreground

count was computed, and if the chip had a CV greater than 0.65

(n = 88), the sample was usually not used and redone. All chips

were verified to have 51% of its features above median

background (with the exception of samples 48 hrs, 44 hrs,

40 hrs, and 36 hrs on cycle 1, which were at 44–45%). This

percentage (51%) of identified genes with expression above
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background is higher than that reported (38%) in [35] and close to

the 60% reported in [36]. RT-PCR was done in parallel on all

RNA samples, and if the relative quantification by RT-PCR with

DDC% method did not agree quantitatively with the median

foreground counts obtained on wc-1, wc-2, and frq from the

Combimatrix chip hybridizations, the aRNAs and hybridizations

to oligonucleotide arrays were redone. Two samples on cycle 1

and two samples on cycle 2 required redoing. Four samples of

cycle 3 required redoing because of gradients on the foreground

median counts on the arrays. Data are deposited in the Neurospora

crassa functional genomics database at http://www.yale.edu/

townsend/Links/ffdatabase/introduction.htm [34] under

accession numbers 13 (cycle 1), 34 (cycle 2), and 36 (cycle 3).

Microarray Analysis. The median foreground (FG) counts

were used on all 12K features. From each median foreground

count on an oligonucleotide array a background subtraction was

performed using the 5th percentile of the following negative control

oligonucleotide features: (1) plant; (2) bacterial; (3) phage not

spiked into aRNA; (4) quality control oligonucleotides (QC); and

(5) empty. Then the median foreground counts were normalized

within arrays by multiplying each feature’s median FG count on a

particular chip x (median FG across all chips in the cycle) /

(median FG count on the particular chip). A MIPS functional

classification was assigned each feature on a chip [37].

Hierarchical clustering of genes was implemented using the

methods proposed in [38] and implemented in Cluster 3.0 [39]

Figure 6. Transcriptional profile of approximately 2436 putative genes with LREs upstream at 0, 4, 8, …, 48 hrs (values staggered
on x-axis) after shift from light to dark (L/D) after background subtraction, normalization within arrays relative to the grand
median of each chip, logging, and clustering with average linkage using Euclidean distance between mRNA profiles of different
genes [38]. The bright green is 23, and the bright red is +3 is expression level on a decadic log scale. Data arose from 13 chips probed with a biotin
labeled aRNA. Over 43 known clock-associated genes are overlayed in the right margin of this microarray experiment including varied known ccg
genes. Genes in Fig. 2 are represented at least 5 times on each chip (explaining why frq appears 5 times in the margin). The 2436 putative genes with
LREs upstream were selected by fitting A0+A sin (vt+w) by nonlinear least squares [44] to the profile of each of the 11,000 genes, and those with a
significant regression sum of squares contribution with respect to the amplitude A in F1,9.5.12 (a= 0.05) [94] and with a period between 16 hrs and
30 hrs are displayed (see Fig. 1 in [5] for frqr mRNA peak separation of 16 hrs and 30 hrs). This work [5] establishes a standard for what is considered
acceptable variation in the estimated period of the oscillator. See text for a reexamination of this standard. The smallest significant F1,9 ( = 5.12)
observed among circadian genes with upstream LREs had an estimated amplitude of 497 and 3.98 fold variation in mRNA levels over time in contrast
to the amplitude of frq mRNA, 974+/279. The smallest significant amplitude (63 with an F1,9 = 8.29) estimated among circadian genes with LREs
upstream had 1.44 fold variation in mRNA levels over time. A gray bar at the bottom indicates lights off.
doi:10.1371/journal.pone.0003105.g006
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available at http://bonsai.ims.u-tokyo.ac.jp/,mdehoon/software/

cluster. Options selected for analysis were log transformation,

mean-centering and normalization followed by average linkage

(i.e., UPGMA) using Euclidean distance. Trees were displayed

with Java TreeView 1.0.12 [40] available at http://treeview.

sourceforge.net.

Searching for WCC and QA-1F binding sites in

silico. Putative WCC GATX-binding sites or Light-Response

Elements (LREs) were identified with the program pattern (Accelrys,

Inc.) operating on the 1000 nt upstream of each identified gene

[32] from file neurospora_crassa_#10BD2C.fasta from the Broad

Institute Web site. The offset used was 1 and overhang 0. A

mismatch of 2 was allowed. Patterns searched for were:

GATG{5,20}GATG{5,20}

GATC{5,20}GATC{5,20}

GATA{5,20}GATA{5,20}

GATT{5,20}GATT{5,20}.

Putative QA-1F-binding sites were identified with the program

pattern (Accelrys, Inc.) operating on the 1000 nt upstream of each

identified gene [32] from file neurospora_crassa_#10BD2C.fasta

from the Broad Institute Web site. The offset used was 1 and

overhang 0. Patterns [41] searched for were:

GGATAA{4}TTATCC, GGRTAA{4}TTATCC, GGGTA-

A{4}TTATCC, GGATAA{4}TTATCC, GGGTAA{4}TTAA-

GC, GGTTAT{4}TCATCC, GGATGA{4}TTAACC, GGCTA-

A{4}TTAACA, GGGTAA{4}TTTTCC, GGCAAA{4}TCA-

TCC, GGATAA{4}TAACCC, GGGGAA{4}TTATAG, GGAT-

GA{4}TTCTCC, GGCGAA{4}TTACCC, CGTTAA{4}T-

TATTC, and GGCTCA{4}TCATCA.

Results

Genetic networks for the biological clock guide the
MINEing for clock-controlled genes

The genetic network models in Figs. 2 and 4 [7,43] make three

predictions about each gene in the genome under clock-control: a

clock-controlled gene should: (1) maintain an endogenous circadian

rhythm when the organism is grown in the dark; (2) be light-

responsive when the organism is moved from Dark to Light (D/L);

(3) change its expression when the level of the transcription factor

WCC is dialed down (see Materials and Methods). The

Computing Life paradigm is used below to discover these clock-

controlled genes.

Maximally Informative Next Experiment (MINE)
The objective of the MINE approach is to develop a

quantitative criterion (or criteria) for the amount of additional

information that can be gained about the genetic network from the

‘‘next’’ experiment to be performed; and then to maximize this

‘‘measure of additional information’’, denoted by V(U), with

respect to the choice of the design or ‘‘control’’ parameters of the

next experiment, denoted by the control vector U. Control vector

U comprises all those parameters which are known to, and are to

some extent controllable by, the experimenter and which

completely characterize measurements to be performed and the

external conditions and perturbations applied to the biological

system during the experiment. Two critical inputs for the MINE

calculation are the underlying network kinetic rate equation model

of the genetic network and any available ‘‘prior’’ or ‘‘old’’

experimental data. In a recently developed ensemble simulation

approach [7,11], these two inputs are combined both to constrain

the unknown kinetics model parameters and to predict the likely

information content V(U) for the next experiment, given U.

Technical details and underlying conceptual ideas of the MINE

approach are described in the Materials and Methods. Here we

have used one of the MINE criteria in the Materials and Methods,

V(U) = det(E(U)), Eq. (16), to guide the design of new experiments

on the biology of the clock. This criterion is the determinant of the

ensemble correlation matrix E(U) between predictions. The predictions

here are of the log concentrations of wc-1, wc-2, and frq mRNAs

over time in the next experiment.

When the predictions of two models in the fitted ensemble (the

collection of all models consistent with available data) are highly

correlated, the models will be difficult to distinguish by the next

experiment U; when the predictions of two models in the ensemble

are less correlated, they will be more easily distinguished in the next

experiment U. A higher value of the MINE criterion V(U)

recommends the experiment U for which predictions between any

two randomly selected models in the fitted ensemble are more

uncorrelated and hence more distinguishable. Each MINE

calculation is done within the constraint of a fixed budget (i.e., 13

microarray chips per experimental cycle or equivalently, 13 time

points to be sampled). The budget and hence the number of time

points determine the dimension of the correlation matrix E(U).

Two possible hypotheses have been developed for the clock

mechanism in Figs. 2 and 4, from [7] and [33]. An older and

slightly more realistic genetic network [33,43] in Fig. 4 was used to

guide the MINEing because the simpler genetic network in Fig. 2

was developed while the MINE experiments were underway. The

older network [33] allows a light and dark form of WCC [4]. At

the conclusion of the Computing Life enactment, these two

different networks are tested against each other.

Cycle 1 - Which genes are circadian?
The first series of microarray experiments were designed to

determine how many genes are under clock-control. If such genes

were outputs of the clock mechanism in Fig. 4, then they should be

able to maintain an endogenous rhythm of ,22 hrs (hrs) in the

dark. The first experiment involves growing the organism in the

dark for 48 hrs to observe the endogenous rhythm. The initial

MINE design question concerns how often should we sample and

when should we start sampling. The spacing between observations

is denoted by tS, and the delay till the first observation by tL. The

maximum in spacing (tS) is limited by the time over which

circadian rhythms are maintained in liquid culture and the cost

constraint of 13 microarray chips (see Materials and Methods). A

MINE calculation using published data [3,23–25] results in Fig. 5,

based on the genetic network in Fig. 4.

The ‘‘best’’ experiment, with maximum det(E(U)) – in the upper

back corner of Fig. 5 – is to start sampling immediately and to use

the maximum spacing of 4 hrs between observations. This was the

microarray experiment, performed (see Materials and Methods)

with the results shown in Fig. 6. These experimental results would

suggest that as many as 43% of the genes could be clock-

controlled. A more detailed statistical analysis below reduces this

percentage to 25%. There are 2436 (22%) circadian genes with

light response elements (LREs) upstream [4] out of 11,000 genes,

which is still considerably higher than 2–10% of circadian genes

reported for Drosophila [44,45] and Arabidopsis [46–48], and 10%

higher than that reported in [8] for Neurospora. Our percentage,

however, is not out of line with estimates of 36% based on in vivo

enhancer traps in Arabidopsis [49].

In addition to the 11,000 N. crassa genes on each chip (including

43 genes used as positive controls), the chips carried 633 negative

control oligonucleotide sequences including those derived from

plant, bacterial, phage, and N. crassa rDNA sequences. The
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empirical false positive and false negative rates are reported in

Table 1 for each microarray experiment. For the first microarray

experiment (cycle 1), the empirical false positive rate is 18% with

the nominal significance level of the periodicity test used. Of these

4721 circadian genes, 2436 of them have a LRE upstream [4].

With a multiple test correction suggested for microarray analysis

by Storey [50] and implemented as in Benjamini and Hochberg

[51], the number of circadian genes with upstream LREs drops to

1460. In this multiple test correction the ranked list of genes sorted

by their P-values is simply trimmed from the high end near the

nominal significance level (of P-values) to control the False

Discovery Rate (FDR) as described in [52]. The target FDR is

set to the nominal significance levels in Table 1. If we subtract the

18% of false positives, then 43218 = 25% of the genome would

appear to be under clock-control. The estimated percentage of

circadian genes (25% corrected for false positives) is close to the

uncorrected percentage of circadian genes with LRE(s) upstream

(22%). Requiring the presence of an upstream LRE appears to be

a good filter for circadian genes.

Circadian oscillations are seen in Fig. 6 along rows by the

alternating pattern of red (high expression) and green (low

expression) for different genes, albeit with different phases. There

also appear to be two clusters of known clock-associated genes with

similar transcriptional profiles at the top and half way up Fig. 6

with different phases. The distribution of periods of oscillation is

found in Fig. 7A with a mean of 24.92+/20.09 hrs, implying the

oscillations are circadian as predicted. This compares well with the

average period between conidiating bands of 21.64+/20.05 hrs

obtained from 135 race tube assays (see Materials and Methods).

The phase of the clock-controlled genes is also interesting in Fig. 7B.

Dusk (L/D transition) is taken as the zero time. The phase w of

100% corresponds to being 360 degrees out of phase with genes at

midnight. There are morning and evening genes in Fig. 7B. The

frq mRNA has a phase of 48%+/216% as a typical morning gene,

and the wc-1 mRNA has a phase of 69+/212% as a typical dawn

gene, being a blue-light receptor [4]. RNA metabolism genes tend

to be dawn genes as well with a mean of 62+/25% (Fig. 7B), while

regulators tend to be dusk genes with a mean of 28+/29%. Cell

cycle genes among clock-controlled genes (in red in Fig. 7B) tend to be

morning genes with a mean of 47+/28%, as is the cell cycle

checkpoint kinase prd-4 [53]. This is consistent with light triggering

conidiation in Fig. 1. The phase of genes may provide some clues

as to how the clock allows the organism to adapt to its

environment (see Discussion).

A naı̈ve expectation might be that while the phase would vary

between different ccgs, as in Fig. 7B, the gene periods in Fig. 7A

would be expected to be the same. Several possible causes for this

variation in period of clock-controlled genes in Fig. 7A present

themselves. There is noise in mRNA profiling measurements on

which the period estimates are based; there is also intrinsic noise in

mRNA levels from cell to cell [54]; and we are observing the

system over a short time interval covering only 2 periods of

oscillation. As illustrated in [7], it can take longer than 2 periods

before the limit cycle is established and, during the transient prior

to that, neither period nor phase of oscillation are well-defined.

The finite observation time also limits the accuracy of the

measured period by way of an uncertainty principle [55]: the

shorter the observation time, the greater the uncertainty in

frequency and period.

Cycle 1 microarray results were validated by RT-PCR (see next

section) on twelve genes including wc-1, wc-2, and frq relative to an

rRNA standard with excellent quantitative agreement (Fig. 8). The

surprise was seeing oscillations in the wc-2 mRNA with a period of

22.17 hrs+/21.66 hrs, which have not been reported before (see

validation in the next section). The presence of a LRE upstream of

the wc-2 gene would suggest adding additional feedback loops to

wc-1 and wc-2 in Figs. 2 and 4 to make them autoregulatory.

Evidence for an autoregulatory loop for wc-1 has recently been

provided [56]. Oscillations in wc-1 mRNA are weak if plotted on

the same scale as frq mRNA levels, as expected [24,7]. The periods

for frq, wc-1, and wc-2 mRNA oscillations of 21.40+/21.69 hrs,

23.5+/22.47, and 22.17+/21.66, respectively, in Fig. 8 agree

well with the period of banding in race tubes above, namely

21.64+/20.05 hrs [31,33].

RT-PCR confirms microarray results in cycle 1
The cycle 1 microarray results were validated by RT-PCR (see

Materials and Methods) on twelve genes including wc-1, wc-2, and

frq relative to an rRNA standard with excellent quantitative

agreement (Fig. 8). This period of oscillation in wc-2 mRNA

(22.17 hrs+/21.66 hrs) in Fig. 8 is not significantly different from

that of the frq mRNA (21.40 hrs+/21.69 hrs). The cycle 1

experiment was repeated in its entirety as well as the measurement

of wc-2 mRNA levels by RT-PCR with almost the same results

(results not shown).

RNA metabolism genes. As a confirmation of microarray

results on RNA metabolism genes, an entire replicate of the cycle 1

experiment was conducted (results not shown and same replicate

used for validating wc-2 microarray results), and the levels of

LHP1, PAB1, and ROK1 homologs’ (denoted lhp-1, pab-1, and rok-1

in N. crassa) mRNAs were measured every 4 hrs over a 48 hr

window in the dark by RT-PCR (See Materials and Methods) in

two replicates of cycle 1 (including the original cycle 1 experiment

in the dark. A combined estimate of the amplitudes based on 26

time points was tested with an F-test (as described in the legend of

Fig. 6) and found to be F1,24 = 5.55, P = 0.04 for the lhp-1,

F1,24 = 3.60, P = 0.07 for pab-1, and F1,24 = 4.96, P = 0.04 for rok-1.

All three genes had an estimated period of 17 hrs.

Table 1. Observed fraction of false positives and false negatives among 633 negative controls on each microarray chip (see
Materials and Methods) and among 43 distinct genes as positive controls using reported clock-associated genes [93].

Microarray Experiment
Nominal significance
level (a)

Observed fraction
of false positives

Observed fraction
of false negatives estimated power

Circadian cycle (cycle 1) (in the dark) 0.05 0.18 0.37 0.63

Light-response (cycle 2) (D/L) 0.20* 0.17 0.47 0.53

WCC response (cycle 3) (turn WCC off) 0.20* 0.22 0.44 0.56

The estimated power is 1 – fraction of false negatives observed. The fraction of false positives observed can be compared with the nominal significance level used to
identify genes that are: (1) circadian; (2) light-responsive; (3) WCC-responsive.
*The nominal significance level was adjusted using the positive and negative controls to insure that the estimated power was high.
doi:10.1371/journal.pone.0003105.t001
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Regulators. An entire replicate of the cycle 1 experiment was

conducted (results not shown and same replicate used for

validating wc-2 microarray results), and the levels of kal-1 and

rpn-4 mRNAs were measured every 4 hrs over a 48 hr window in

the dark by RT-PCR (see Materials and Methods) in two

replicates of cycle 1 (including the original cycle 1 experiment in

the dark). A combined estimate of the amplitudes based on 26 time

points was tested with an F-test (as described in the legend of Fig. 6)

and found to be significant (F1,24 = 4.95, P = 0.04 with a period of

23 hrs for kal-1 and F1,24 = 6.65, P = 0.02 with a period of 30 hrs

for rpn-4).

Signaling. The gene rrg-1 has a role in the osmotic response

signaling pathway [57–58]. An entire replicate of the cycle 1

experiment was conducted (results not shown and same replicate

used for validating wc-2 microarray results), and the levels of rrg-1

mRNA were measured every 4 hrs over a 48 h window by RT-

PCR (see Materials and Methods) in two replicates of cycle 1

(including the original cycle 1 experiment in the dark). The

combined estimate of amplitude based on 26 time points was

tested with an F-test (as described in the legend of Fig. 6) and

found to be significant (F1,24 = 6.82, P = 0.02) with a period of

17 hrs.

Cycle 2 - Which genes are light-responsive?
Each of these 2436 circadian genes from cycle 1 could be under

the control of: (1) WCC; (2) a different oscillator [8]; or (3) multiple

oscillators [59]; or be false positives. The chance of the latter is

only 18% (see Table 1). As shown in Fig. 1, an important element

to the clock is light-entrainment. As the organism is grown under

different ‘‘artificial days’’, that is, different periods of alternating

light exposure, the organism speeds up or slows down its biological

clock.

If these genes were under WCC-control, then they should also

be light-responsive according to the genetic network hypotheses in

Figs. 2 and 4. This poses the question of what artificial day period

should be used for the experiment. A MINE calculation results in

Fig. 9 using published results [3,23–25] plus the data in Fig. 6

(cycle 1), i.e., the MINE calculations are cumulative with respect to

data already obtained.

The MINE results, shown in Fig. 9, suggest a long artificial day

with a half-period of daylight of between 19 and 24 hrs. A second

cycle of microarray experiments was therefore performed in which

the light was turned back on after 24 hrs in a 48 hour observation

period (see Materials and Methods). Results are shown in Fig. 10.

Among these 3374 light-responsive genes (or 31% of N. crassa

Figure 7. A. Blue bars show the frequency (count/2436) of 2436 genes in Fig. 6 by their period of oscillation in hrs. The mean period of
oscillation is 24.9 hrs+/20.09 hrs. B. Blue bars show the frequency (count/2436) of the 2436 genes displayed in Fig. 6 by their phase w. A phase w of
100% corresponds to a phase of 2 p radians. The phase is also reported in hours on a separate scale. For comparison, red bars show the distribution of
period and phase for clock-controlled genes in Fig. 15 as well. In Panel B the mean phase of clock controlled genes by functional category from Fig. 15
[37] in cycle 1 is reported in the inset. Categories are defined in the legend of Fig. 15. While suggestive, an F9,121 of 1.81 from a one-way ANOVA
between MIPS functional categories is not quite significant (P = 0.07).
doi:10.1371/journal.pone.0003105.g007
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genes), 1725 (or 16% of the genes) responded to light in Fig. 10

and possessed LREs upstream. With the Benjamini and Hochberg

[51] multiple-test correction, 1026 out of these 1725 genes with

upstream LREs remain significant. In a similar experiment Lewis

et al. [60] report detecting 22 light-responsive genes induced out of

1343 distinct genes arrayed as cDNAs, or 3%, and Ma et al. [61]

report 34% of the unique genes in Arabidopis thaliana induced or

repressed. Among the 31% of light-responsive genes detected here,

up to 17% could be false positives, leaving 14% = 31%217% as

light-inducible. Among the 31% of light-responsive genes, 56%

were induced (as opposed to repressed). The percentage of

0.56614% = 8% is still higher than the 3% of Lewis et al. [60] (and

less than the 31% of A. thaliana). The estimated percentage of light-

responsive genes (14% corrected for false positives) is close to the

uncorrected percentage of light-responsive genes with LRE(s)

upstream (16%). Requiring an upstream LRE also appears to be a

good filter for light-responsive genes.

A total of 768 genes were both circadian and light-responsive

(Fig. 11), and the chance that any one of these 768 genes is a false

positive would be (0.18)6(0.17) = 0.03 (Table 1), since the

experiments were done independently. These 768 genes then

remain candidates for ccgs in Fig. 2 or 4. The response by genes to

light falls into two clusters, one cluster being turned off (in the top

part of Fig. 10) and one cluster being turned on (in the bottom part

of Fig. 10). The positive response of some genes to light appears

largely transient with a burst of expression after the Dark-to-Light

(D/L) transition while other genes appear to have a sustained

response after the D/L transition. Most of the known clock-

associated genes fall within the bottom cluster of light-responsive

genes with LREs upstream, as expected.

As a control, these results from cycle 2 were compared with a

near replicate of this experiment reported in [60], using a different

microarray technology and only a sample of the genes in N. crassa.

With a power of 53% (Table 1) in our experiments, we would

expect to see around 53% concordance with the experiments

reported in [60]. In fact, we saw 64%+/220% of the genes

reported as light-responding in [60] in our cycle 2 experiments

with good agreement to the 53% expectation.

Cycle 3 - Which genes are under WCC-control?
Another prediction of the genetic networks in Fig. 2 or 4 is that

if WCC were dialed down (i.e., the mRNA level of wc-1 is reduced

by use of a QA-inducible promoter as described in Materials and

Methods), then a gene under its direct or indirect control should

experience a sudden change in its mRNA level. To test this with a

gene knock-down experiment, it is necessary to ascertain first what

gene should be perturbed to yield maximum information about

the genetic network in Fig. 4. A MINE calculation was done using

published results [3,23–25] plus the data in Fig. 6 (cycle 1) and the

data in Fig. 10 (cycle 2) as described in Materials and Methods.

The MINE calculation in Fig. 12, suggests that the most

informative knock-down is to reduce wc-1 to 10% of its original

Figure 8. RT-PCR results for cycles 1–3 validate results of oligonucleotide arrays for wc-1, wc-2, and frq mRNA levels in cycles 1–3 of
the Computing Life paradigm. The scale on the left is for fold expression change for oligonucleotide array measurements, and the scale on the
right is fold expression change for RT-PCR results. rRNA was used as a standard in the RT-PCR experiments. Time on the x-axis is in hrs. Grey bars
indicate lights off, and a white bar, lights on.
doi:10.1371/journal.pone.0003105.g008
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transcriptional activity. As detailed in Methods and Materials, the

knock-down was engineered with a mutation in the native wc-1

and with a quinic acid inducible copy of wc-1+ introduced at

another locus, producing a knock-down to 30% of its original

activity; the results are shown in Fig. 13. A total of 4655 WCC-

responsive genes were found to respond, but only 2323 of these

genes had a LRE upstream as reported in Fig. 13. With the

Benjamini and Hochberg [51] multiple-test correction, 1445 out of

these 2323 genes with upstream LREs remain significant. The

estimated percentage of WCC-responsive genes (20% corrected

for false positives) is close to the uncorrected percentage of WCC-

responsive genes with LRE(s) upstream (21%). Requiring an

upstream LRE remains a good filter for WCC-responsive genes.

Most of the frq gene mRNAs were dialed down, as expected.

The frq gene belongs to a cluster of genes being turned off in the

top part of Fig. 13. Both wc-1 and wc-2 responded differently than

frq and belong to the second larger cluster of genes being turned on

(at least transiently) in the bottom part of Fig. 13. They have a fast

transient response about 20–40 m after the QA/GAL (L/D)

transition and then a drop off (see Fig. 8).

Also of interest are the 440 genes that are both circadian and

light-responsive, but not under WCC control in Fig. 11. These 440

light-responsive and circadian genes which are not apparently

under WCC-control, could be responding indirectly to genes

under the control of WCC. They could also be false-negatives

under the WCC-responsive assay (Table 1); they could be

responding through a yet to be identified oscillator [8]; or they

could be responding through multiple oscillators [59]. The chance

that any one of them is a false positive is 0.03 = (0.18)6(0.17). The

genes cpc-1, NCU05429, and ccg-16 (WO6H02), have been

previously identified as candidates for being under the control of

another oscillator [8]. All three were found to be circadian here

(confirming the results in [8]), and cpc-1 and ccg-16 were found to

be light-responsive as well. All of them were found not to be

WCC-responsive here, although in the case of ccg-16 this appears

to be a false negative [59].

Lewis et al. [60] conducted a related experiment that over-

expressed wc-1. Only 18% of the induced genes corresponded to

ones that we detected. A similar result was seen with overexpres-

sion of CLOCK in Drosophila [36]. There could be a variety of

explanations, but it is not unexpected in a signaling system that

over-expression leads to a different outcome than a knock-down,

particularly when there are other coupled interacting pathways to

those in Fig. 2 or 4. See, for example, the platelet-derived growth

factor b receptor (PDGFRb) signaling system [63] or the sonic

Hedgehog (shh) signaling system in neurogenesis [64], where high

and low levels of shh have different neurogenetic outcomes. The

response of the clock to wc-1 over-expression is apparently not the

same as lowering wc-1 expression. An additional MINE calculation

analogous to Fig. 12 (results not shown) also suggested that that an

over-expression experiment would not be as informative as a

knock-down.

The Computing Life paradigm has led us to the discovery of

328 clock-controlled genes supported by all three series of microarray

experiments and having an upstream LRE. Among these 328

genes, the chance of a false positive is (0.18)6(0.17)6(0.22) =

0.0067 (Table 1), the three microarray experiments having been

done independently. A total of 104 of these 328 genes survive the

multiple test correction in all three cycles [51]. These genes satisfy

the three predictions of the genetic network and constitute clock-

controlled genes (Fig. 11). Of these 328 clock-controlled genes, 314 of

them are distinct on the arrays (some genes are represented

multiple times; see Materials and Methods).

Direct test of the auto-feedback loops activating wc-1
and wc-2

All three cycles of microarray experiments support the presence

of auto-feedback loops for WCC activating wc-1 and wc-2. In cycle

1 there was evidence that wc-1 and wc-2 mRNAs were circadian in

Fig. 8. In cycle 2 there was a fast light-response by wc-1 and wc-2

(of less than an hour) in Fig. 8. In cycle 3 both wc-1 and wc-2 were

WCC-responsive in Fig. 8 and have upstream LRE elements. An

experiment with a short 6 hr artificial day is predicted by a MINE

calculation in Fig. 9 to be highly informative about the genetic

network in Fig. 4. A prediction of the genetic network in Fig. 4 is

that the auto-feedback loops added should permit entrainment to a

short artificial day of 6 hrs duration (as in Fig. 1) independent of

FRQ. To test this hypothesis, a strain (93-4) with a frq mutation

was subjected to a short artificial day as seen in Fig. 14A. As can be

seen, the rapid conidiation pattern with frq in Fig. 14A is

indistinguishable from a bd mutant in Fig. 1. To rule out that the

conidiation response to a short artificial day is under the control of

an independent light-response pathway, a mutant in bd, his-3, wc-1

(87-84-6) was generated by a cross, bd his-3 (87-84)6wc-1 (FGSC

3914). As can be seen (Fig. 14B), the wc-1 mutation almost entirely

removed banding under the artificial day of 6 hrs. To confirm this

finding, the bd, his-3, wc-1 (87-84-6) strain was transformed with a

plasmid containing a QA-inducible wc-1+ as described ([7] and

Materials and Methods) and was found to band weakly when wc-

1+ was induced and not to band when wc-1+ was not induced

(results not shown). This establishes that banding under a short

artificial day is under the direct clock control of wc-1. In a similar

entrainment experiment a double mutant wc-2KO, bd from the cross

wc-2KO (FGSC 11124, 65)6bd (FGSC 1858) was subjected to a

6 hr artificial day. As can be seen in Fig. 14C, wc-2 also nearly

removed all banding. As a final confirmation of these experiments,

the frq gene was over-expressed on .001 M QA as well as turned

Figure 9. MINE calculation to determine what artificial day to
use in cycle 2. Graph of the decadic log of the MINE criterion det(E) as
a function of the half period of the artificial day in hrs. The calculation
suggests trying a long artificial day with a half-period of daylight
between 19 and 24 hrs of light. The inset gives: (1) the photon
concentration of micromoles per second per meter squared (mM/s/m2);
(2) the starting time (tL), which was selected to be close to zero but not
zero to assist in the computation of the MINE criterion det(E)); (3)
spacing (tS) in hrs between observations; and (4) the total number of
time-points, at which mRNA levels were measured (the number of
arrays used).
doi:10.1371/journal.pone.0003105.g009
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off on glucose in a strain with a QA-inducible copy of the frq gene

(see Materials and Methods), and these two conditions had no

effect on the rapid banding (results not shown). These results serve

to confirm that the rapid light response to a 6 hr day is due to the

auto-feedback loops to wc-1 (and wc-2) and not due to the FRQ

oscillator.

The clock mechanism of three genes wc-1, wc-2, and frq
is pleiotropic in its effects on metabolism

These 314 clock-controlled genes identified are involved in a broad

range of biological functions: DNA metabolism, replication,

repair, cell cycle, RNA metabolism, transport, carbon and energy

metabolism, isoprenoid biosynthesis (including carotenoids), de-

velopment, and signaling (Fig. 15A). Periods and phases of all 295

(314–19; see below about 19) ccgs are similar in distribution to all

circadian genes (Fig. 7) with upstream LREs.

The connection of the clock to development has been reported

(ccg-2, ccg-4, ccg-6, and con-6). A recent connection to RNA

metabolism has been through the frequency RNA helicase (frh) gene,

whose product FRH co-immunopreciptates with FRQ [66]. The

microarray experiments here identified frh and 16 additional genes

in RNA metabolism under clock control (Fig. 15B). In addition to

frh, 4 additional genes with products homologous to ATP-

dependent RNA helicases in S. cerevisiae, namely ROK1, HAS1,

PRP16, and RRP3, are among the 295 clock-controlled genes. At least

three of these RNA helicases are involved in ribosomal RNA

processing. While ribosome transcription is not under clock

control (the ribosomal RNAs are not circadian in Cycle 1), almost

all of the ccgs in RNA metabolism are involved in ribosome

processing and assembly, i.e. ribosome biogenesis. These include

SEN2, SOF1, LHP1, RRP3, POP4, UTP5, RCL1, ABD1, and PAB1

homologs in S. cerevisiae. The yeast PAB1 is a poly-A binding

protein, and LHP1 is another distinct RNA-binding protein

involved in the maturation of tRNAs and snRNAs. LHP1 has been

implicated not only in the biogenesis of noncoding RNAs, but a

recent ChIP/chip experiment in S. cerevisiae has demonstrated that

Figure 10. Transcriptional profile of approximately 1725 genes with LREs upstream at 0, 4, 8, …, 24, 24.3333, 24.6667, 25, 26, 28, …,
48 hrs (values staggered on x-axis) after shift from light to dark (L/D) followed by D/L transition 24 hrs later, after background
subtraction, normalization within arrays relative to grand median of each chip, logging, and clustering with average linkage using
Euclidean distance between mRNA profiles of different genes [38]. The bright green is 23, and the bright red is +3 is expression level on a
decadic log scale. Data arose from 16 chips probed with a biotin labeled aRNA. Over 43 known clock-associated genes are overlayed in the right
margin of this microarray experiment including varied known ccg genes. Genes in Fig. 2 are represented at least 5 times on each chip (explaining
duplicate entries of frq, for example). The 1725 genes with upstream LREs were selected by a t-test comparing the mean of the first seven time points
in the dark with the mean of time points 24.333, 24.6667, 25, 26, 28, and 32 hrs in the light with those having |t11|.1.363 (a= 0.20) displayed. The
minimum observed t-value corresponded to a fold variation of 1.23 in the means before and after the light was turned back on. The mean observed
t11 of the frq mRNA was 1.92. Grey bar denotes lights off; white bar denotes lights on.
doi:10.1371/journal.pone.0003105.g010
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it targets a number of mRNAs [67]. The RNase P (POP4) binds to

the RPR1 RNA, which is also a target of Lhp1p, and the PAB1

mRNA is also apparently a target of Lhp1p in yeast as well [67].

Inada and Guthrie [67] also report enrichment of the gene

encoding the snoRNA U3 among targets of Lhp1p. The product

of UTP5 is part of the processome containing the U3 snoRNA and

involved in ribosome biogenesis. The clock’s regulation of the

ribosome appears to occur through its biogenesis rather than its

transcription. This is a novel mechanism by which the clock can

regulate clock-controlled genes post-transcriptionally.

Connections of the clock to DNA metabolism are recently

reported in humans [68]. A human clock CLK2 protein physically

associates with S-phase checkpoint components ATR, ATRIP,

claspin, and the checkpoint kinase, Chk1. Also human CLK2-

depleted cells accumulate DNA damage, engage in radio-

insensitive DNA synthesis, and fail to recruit proteins, such as

RAD51, functioning in human recombination pathways. Here

several putative checkpoint-associated proteins (e.g., NCU00560

and NCU04326) as well as 8 genes involved directly in purine/

pyrimidine metabolism (NCU0 7590, 8359, 4323, 6262, 3194,

5542, and 4195) and repair (uvs-6/NCU00901) appear to be clock-

controlled genes. The uvs-6 gene is a homolog of RAD50 in S. cerevisiae

involved in double-stranded break repair. As predicted from the

results on humans [68], the RAD51 homolog (mei-3/NCU02741)

was circadian and light-responsive in N. crassa in cycles 1 and 2,

but not WCC-responsive (cycle 3).

The clock connection to the cell cycle has been only recently

reported in Neurospora through prd-4, a homolog of Chk2 in

yeast, a second checkpoint kinase [53]. In addition to prd-4, we

have identified 2 other putative cell cycle checkpoint genes as clock-

controlled genes (NCU00560 and NCU04326), homologs of CDC4

and CDC28 in S. cerevisiae. Up to 16% of rhythmic genes (cycle 1)

may be involved in the cell cycle in some mouse tissues in contrast

to the 3% in Fig. 15A identified by more stringent criteria (i.e.,

positive in cycles 1–3) in N. crassa [69].

In that carbon metabolism showed up as significant and may

have arisen due to the use of the QA-inducible switch in the last

series of microarray experiments, one additional control was

performed with wild type (OR74A – see Materials and Methods)

in which many QA-inducible genes were identified with micro-

arrays by a shift from 1.5% sucrose to 0.3% QA over a 0 to 8 hr

window [11,27]. Of the 314 distinct clock-controlled genes identified,

only 19 of them were QA-inducible (with most of them being

unclassified in function). Only 2 of the QA-inducible clock-controlled

genes were involved in carbon metabolism. Subtracting the 19 QA-

inducible ccgs from the 314 distinct ccgs, 295 clock-controlled genes

remained.

Approximately one-half of these 295 clock-controlled genes are of

unknown function. The most prevalent known function among

these genes are phosphatases and kinases. They make up almost

half [11] of the 23 genes with products involved in protein

synthesis (Fig. 16B), processing, and degradation, and at least three

of the genes under DNA metabolism are known kinases/

phosphatases as well (CK1, HHP1 homolog, and PP1). This

plethora of phosphatases and kinases may reflect the role they play

in modifying/linking the functions of wc-1, wc-2, and frq as

regulators of (to) other pathways, as well as in the coupling of the

clock to varied signaling pathways and the cell cycle. For example,

the phosphatases PP1 and PP2a, dephosphorylate FRQ in vitro,

thereby altering oscillator behavior [70], and the kinases CK1a

and CKII mediate the phosphorylation of WCC [71]. After that,

DNA metabolism, RNA metabolism, and carbon/energy metab-

olism represent equally important outputs of the clock. The clock

outputs are representative of the frequency of these functions in

the proteome [37] with two exceptions: a deficit of transport and

unclassified genes that are ccgs.

While only one ccg in Fig. 15 has a product classified as a

transcriptional activator (PRO1 homolog) involved in fruiting body

development (kal-1, NCU07392, [72]), four other ccg genes were

classified as regulators. Their individual cyclical transcriptional

profiles are given in Fig. 16A. One of these putative regulators is

an inferred ornithine decarboxylase antizyme involved in sulfur

and nitrogen regulation (NCU07155) [37]. This connection has

also been reported in Arabidopsis [47,73]. The remaining putative

regulators identified under clock control in Fig. 2 or 4 were

NCU00045, NCU01640 (rpn-4), and NCU06108.

Earlier work has suggested a link between signal transduction

pathways for conidiation and the clock [74]. From microarray

analysis here the clock is tied into a number of other signal

transduction pathways as well, including stress (ccg-9/NCU09559),

oxidative stress (NCU05169), light (vivid/NCU03967), mating (ccg-

4/NCU02500, NCU03378, NCU07335), and osmo-sensing (os-1,

rrg-1, hpt-1). The last output to the clock has only been reported

recently (Fig. 16C). For example, cut-1 involved in osmo-sensing

has been reported to be under WCC control [75]. Jones et al. [57]

have reported a role of rrg-1 in osmo-sensing reminiscent of the os

mutants. The genes rrg-1 and hpt-1 have an upstream LRE and

were found to be circadian in cycle 1, but not light-responsive or

WCC-responsive [58].

Impact of standard that the period of a ccg is between 16
and 30 hrs

To provide insights on the impact of the standard [5] of

requiring genes to have a period between 16 and 30 hrs to be

declared clock-controlled genes, we tightened the standard to 17–

29 hrs because of the up turn at the extremes of the distribution of

periods in Fig. 7A. The result was declaring 2172 genes with

upstream LREs as circadian as opposed to 2436 genes in Fig. 6.

This reduces the number of clock-controlled genes identified by all

Figure 11. Classification of 4380 N. crassa genes with upstream
LREs in a Venn Diagram by their response in each of the three
microarray experiments: (1) cycle 1 (assay for circadian
rhythm); (2) cycle 2 (assay for light response); and (3) cycle 3
(assay for response to changing levels of WCC). The diagram
summarizes the microarray experiments in cycles 1–3 of the Computing
Life Paradigm.
doi:10.1371/journal.pone.0003105.g011
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three cycles of microarray experiments to 290. If the 14 duplicates

of frq, wc-1, and wc-2 as well as 18 remaining QA-inducible genes

are removed, we are left with 258 clock-controlled genes with a range

of periods between 17 hrs and 29 hrs. Genes affected in the text

can be determined from their reported periods. Further trimming

of the range of acceptable periods in Fig. 7A will gradually shrink

the number of clock-controlled genes identified.

Identifying an ensemble of genetic networks for the
biological clock of N. crassa

The culmination of Computing Life is the identification of an

ensemble of genetic networks describing how the clock functions

from 3 cycles of microarray experiments initiated from published

data [3,23–25]. Results are summarized in Table 2. For

69% = (100618/26) of the rate constants in common with

Table 1 [7], standard errors were reduced by the addition of data

from cycles 1–3. Measured lifetimes of the wc-1 mRNA and FRQ

protein remain concordant with estimated values in Table 2 with

an order of magnitude increase in the amount of data (see Table 3).

The long lifetime of the wc-1 mRNA provided a critical test of the

genetic networks [7], and the long lifetime of the wc-1 mRNA of

7.4 hrs = D7
21 continues to be supported by microarray data here.

Transcription rates of frq, A and A, as well as the deactivation rate

of WCC, P, were previously identified as critical parameters for

maintaining oscillations through the negative feedback loop in

Fig. 2 [7]. These constants are now more sharply defined in

Table 2. Eleven of the 26 parameters identified in Table 1 of [7]

are not significantly different from those in Table 2, although a

majority of the rate constants are estimated more precisely.

Precision of cycles 1–3 are assessed further in the next section and

Table 3.

The behavior of the ensemble is displayed in Fig. 17. In cycle 1

the predicted oscillations of frq mRNAs are displayed with

microarray measurements. The predicted oscillations in wc-1

and wc-2 mRNAs are much reduced relative to the frq mRNAs. In

cycle 2 in the first 24 hrs the measurements and predictions track

those in cycle 1; the correlation over all 87808 = 1254467

microarray features between cycles 1 and 2 for the first 7 time

points is 0.82. When the light is turned back on at 24 hrs into the

cycle 2 experiment, the coordinated response of the ensemble and

microarray data (particularly the frq mRNA) to light can be seen as

the clock resets [62]. In cycle 3, the slow decline in the wc-1

mRNAs is seen corresponding to a lifetime of 7.4 hrs = D7
21. An

alternative ensemble in Fig. 2 from Yu et al. [7] was tested and

Figure 12. A 90% knock-down of the wc-1 gene is the MINE experiment. The decadic log of the MINE criterion det(E) is displayed as a
function of percent remaining activity of the three clock genes wc-1, wc-2, and frq. The matrix E is the correlation matrix of the predictions,
emphasizing independence of predicted data points f(.,ui). The predictions are for the mRNA levels of wc-1, wc-2, and frq over time.
doi:10.1371/journal.pone.0003105.g012
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performed about the same as the genetic networks in Fig. 4; the

distribution of chi-squared statistics [7] for the ensemble fitted to

Fig. 2 is largely overlapping with the distribution of chi-squared

statistics for the networks in Fig. 4 (results not shown). By Occam’s

Razor the simpler network with fewer parameters in Fig. 2 is then

preferred. The series of model-guided experiments now has

identified and selected an ensemble of genetic networks describing

the clock mechanism in Fig. 2.

Comparison of the precision and power of microarray
experiments in cycles 1–3 with other microarray
experiments

A standardized way of assessing progress in the Computing Life

paradigm as well for comparing the power of different microarray

experiments here with others in the literature and in the future

would be useful. Progress here is measured by the error per

observation s2 or error variance.

In linear and nonlinear models a standard approach to

estimating the precision of an experiment is to estimate the error

variance s2 [76], as it appears in the likelihood for the genetic

network [7]. Townsend [77] illustrates by simulation and data

analysis that such a common variance component can be extracted

from each of a variety of microarray experiments and used to

compare different experiments. Under the multivariate Gaussian

assumption leading to the likelihood in [7], a simple estimator for

the error per observation s2 can be constructed for successive

cycles of the Computing Life paradigm:

ŝs2~
1

n
x2

mins
2
0

where n is the number of observations, x2
min is the minimum chi-

squared statistic over the ensemble [7], and s0
2 is a preliminary

estimate of the error per observation in the multivariate Gaussian

Figure 13. Transcriptional profile of approximately 2323 genes with upstream LREs at 0, 0.1667, 0.3333, 0.5000, 0.6667, 0.8333, 1,
2, 4, 8 hrs (time points appear on x-axis) after shift simultaneously from light to dark (L/D) and from quinic acid (0.3%) to galactose
(2%) after background subtraction, normalization within arrays relative to grand median of each chip, logging, and clustering with
average linkage using Euclidean distance between mRNA profiles of different genes [38]. There were 5 replicate zero time points (labeled
on the x-axis with 4 hours of light before harvesting). The bright green is 23, and the bright red is +3 is expression level on a decadic log scale. Data
below arose from 14 chips (including 5 replicate zero time points) probed with a biotin labeled aRNA. Over 43 known clock-associated genes are
overlayed in the right margin of this microarray experiment including varied known ccg genes. Genes in Fig. 2 are represented at least 5 times on
each chip. The 2323 genes with upstream LREs were selected by t-test comparing the mean of the first five time points on quinic acid with the mean
of the last 9 time points on galactose with those having |t12|.1.356 (a

?
= 0.20) displayed. The minimum observed t-value (1.357) corresponded to a

fold variation of 0.70 in the means before and after wc-1 was turned off. The mean observed t11 of the wc-1 mRNA was 21.36. At the bottom of the
heat plot grey bar denotes lights off; white bar denotes lights on.
doi:10.1371/journal.pone.0003105.g013
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likelihood [7]. This preliminary estimate of s0
2 was allowed to

vary across observations. In the preliminary data drawn from the

literature [3,23–25], s0
2 is 0.02 for the genetic network in Fig. 2

[7] and used on the RHS of expression above. Preliminary

estimates of s0
2, 4s0

2, and 36s0
2 for published data [3,23–25],

microarray data in cycles 1–3, and for conidial banding data from

Fig. 1, respectively, were used in calculating x2
min. These

weightings were selected to give equal weight per time to different

experiments in the ensemble fitting process.

In Table 3, the progress in reducing the error variance in

successive cycles through the Computing Life paradigm is

reported. The fourth cycle began with a switch to the genetic

network in Fig. 2. In cycle 4 all experiments in different cycles

were allowed to have their own initial conditions for initial species

concentrations. An additional 842 data points of conidial banding

data were collected under the regimen of a 48 hr artificial day

(cycle 2). A downward trend in the estimated error variance across

cycles is evident.

The final estimate of s2 is 0.03, slightly larger than our initial

guess based on published data from Northerns, Westerns, and race

tubes [3,23–25]. The advantage of having this estimated error

variance is that it can be readily compared with other families of

models, such as simpler linear models, used in microarray analysis

[77] as well as to other experiments by other laboratories. The

estimated error variance also allows diagnosis of whether or not

further experiments will refine the model ensemble. Based on the

downward trend in the estimated error variance further cycles

would be predicted to be profitable.

In each cycle of the Computing Life paradigm we constructed a

test statistic (F or t) for a response on a gene by gene basis and

calculated the same for all genes with LRE elements. Imagine

extracting a ranked list of these significant statistics in a particular

cycle. Townsend [77] has shown that the median value of this

significant test statistic in this list is a good proxy for power from

simulations. This statistic is called the gene expression level 50

(GEL50). With each GEL50 statistic, there can be an associated

fold-change in expression level that can often be substituted for the

original statistic for ease of interpretation. The advantage of this

GEL50 statistic is that it allows easy comparison across experiments

reported in the literature and in the future. The GEL50 is reported

for cycles 1–3 in Table 3. These values are in the range of at least 5

other microarray studies [77].

Discussion

What we know and do not know about clock-controlled
genes

Model-guided microarray experiments through MINEing have

revealed much of what we know and do not know about the

biological clock in Fig. 11. At the center of the Venn Diagram

there is a highly cross-validated set of 295 distinct clock-controlled

genes behaving as the clock mechanisms in Fig. 2 or 4 would

predict. To date, only sixteen clock-controlled genes have been

discovered in N. crassa in over 40 years of clock biology [59]. This

set of 295 genes is circadian, light-responsive, and under WCC-

control and spans a broad array of functions (Fig. 15). It is quite

remarkable that only three genes, wc-1, wc-2, and frq, could have

such diverse and pleiotropic effects on the organism’s transcrip-

tome, and the full extent of the clock’s role in the metabolic web

has not been evidenced till now.

The series of model-guided array experiments also point to an

intriguing set of 440 genes or 57% ( = 1006440/(328+440) in Fig. 11)

of the genes that are circadian and light-responsive and not under

direct WCC control. No more than half of these 440 genes can be

explained by false negatives in the cycle 3 experiment assaying for

WCC control according to Table 1. These genes could be under the

indirect control of the clock mechanism. Some candidate regulators

implicated by all three microarray experiments include five genes,

NCU00045, NCU01640 (rpn-4), NCU06108, NCU07155, and

NCU07392 (kal-1). One of these may be a regulator of nitrogen

and sulfur metabolism (NCU07155), and another is a homolog to

PRO1 (called kal-1), a homeo-box containing transcription factor

with a typical GAL4-like DNA binding domain involved in fruiting

body development [72]. Another possibility is that some of these

mRNAs are modified post-transcriptionally by RNA-binding proteins

which are ccgs, such as the LHP1 and PAB1 homologs, to control

expression. In that RNA-binding proteins appear to have specific

mRNA target populations [78], they may provide another

mechanism for the combinatorial clock control of gene expression

post-transcriptionally.

Figure 14. Light entrainment response under short artificial
day by frq and wc-1 mutations provides evidence for autofeed-
back loops on wc-1 and wc-2 in Fig. 2. (A) Light entrainment
response of a frq, bd mutation (FGSC 93-4) during artificial days with
3 hrs of light followed by 3 hrs of dark in race tubes. (B) Light
entrainment response of a wc-1, bd mutation (87-84-6) during artificial
days with 3 hrs of light followed by 3 hrs of dark in race tubes. (C) Light
entrainment response of a wc-2KO, bd mutation [65] during artificial
days with 3 hrs of light followed by 3 hrs of dark in race tubes. A bd
mutation was cultured in race tubes as a control. See Fig. 1 as well for
‘‘wild type’’, namely the bd mutation.
doi:10.1371/journal.pone.0003105.g014
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Figure 15. The clock of N. crassa has 295 distinct clock-controlled genes of diverse function as outputs. A. 328 Genes (with putative WCC
binding sites) which are circadian, light-responsive, and WCC-responsive are classified by function (MIPS, [37]) in the outer wheel. 19 QA-inducible
genes are not included in the outer wheel. With the exception of the unclassified category, the standard errors on the percentages of the outer wheel
are 0.01–0.02. Gene products of the N. crassa proteome are classified by function as well (MIPS, [37]) in the inner wheel. The numbers below are a
MIPS coding of functional categories. The definition of the categories [37] is DNA, 1.03, 10.01; cell cycle, 10.03, 10; transcriptional control & regulation,

Systems Biology

PLoS ONE | www.plosone.org 21 August 2008 | Volume 3 | Issue 8 | e3105



There are WCC-responsive genes that are circadian only (612),

but not light-responsive as well as those that are light-responsive

only (396), but not circadian in Fig. 11. The genes, which are

circadian only and not light-responsive, could be explained by

other regulators involved with the clock mechanism that suppress

a light-response (or be under the control of an oscillator not

connected to the light-response through WCC as suggested by

Correa et al., [8]). The possibility of an oscillator not connected to

WCC is discussed in the next section below. Similarly, genes that

are light-responsive only, but not circadian, might also be

explained by regulators of the light-response that interact with

WCC to repress a circadian response (or be part of a light-response

pathway not connected to the known clock mechanism, but see

below). One potential list of candidates as modulators of the

circadian- and light-response are the 11 phosphatases and kinases

that are clock-controlled genes in Fig 15. These two functions of being

circadian and being light-responsive can be separated in the action of

WCC through the outputs of the clock. Other kinds of

posttranslational modifications of histones could be involved in

chromatin-remodeling of upstream sequences to clock-controlled genes

to determine gene activation through WCC [79].

Data on wc-1 cis-regulation by Kaldi et al. [56] and on frq cis-

regulation by Belden et al. [79] suggest a simpler hypothesis that

invokes only one new regulator class. The wc-1 gene has at least

two kinds of promoters upstream responding to WCC. The

CCAAT box promoter in front of wc-1 is not light-responsive,

while the TAATTA promoter in front of wc-1 for WCC is light-

responsive. The LREs determine light-responsiveness [4], while

other genes, such as clockswitch (csw-1), regulate accessibility to

promoters through chromatin-remodeling around the Clock Box or

C box upstream of frq to determine the endogenous circadian

rhythm. Froehlich et al. [80] have shown that the C box is

necessary and sufficient for endogenous circadian expression of frq.

An additional LRE more proximal to frq is light-responsive [4].

Genes (295 out of 328) that have both types of elements, C boxes

and LREs, might be circadian and light-responsive. Genes (612)

with a C box and no LRE might be circadian but not light-

responsive. Light-responsive genes (396) could be explained by

only having the LRE upstream. This alternative would also not

require any new regulators beyond the enzyme CSW-1 enabling

chromatin- remodeling around the C box. In Table 4 there is a

significant association of genes being light-responsive and not

circadian vs. being circadian and not light-responsive and the

number of upstream LREs. Unfortunately, there was no difference

in the incidence of the known Clock box among the circadian/

non-light-responsive (612) versus the 396 light-responsive/non-

circadian genes. Further characterization of Clock boxes in front

of other genes besides frq appears warranted.

Fig. 11 would suggest considerable limits on what we know

about the clock mechanism. There are 1056 genes that are

circadian only and not WCC-responsive and 561 genes that are

light-responsive only and not WCC-responsive, and no more than

half of these can be explained as false negatives in cycle 3 (WCC

response array experiment). These two sets of genes are not

explainable directly by WCC. A similar observation was made on

CLOCK in Drosophila [36]. This percentage of the unexplained

has increased from the earlier array experiments carried out by

Lewis et al. [60]. This would suggest that there are other genes

involved in the biological clock mechanism and other genes

involved in a light response.

From the model-guided array experiments there is a concluding

suggestion on a new direction for MINEing for clock-controlled genes.

There are 987 genes that apparently are not circadian or light-

responsive, but under WCC control. The clock is well-known to

respond to a variety of environmental cues or zeitgebers, such as

temperature [81]. The fact that these 987 genes do not respond to

light would suggest future cycles of discovery to examine how these

987 genes respond to temperature [82].

The circadian response of genes with upstream LREs is
stochastically independent of their light response
conditional on the WCC response

The microarray experiments in cycles 1–3 allow us to infer a

broad relationship of circadian, light, and WCC- responses by

different genes in the genome from Fig. 11. We have established in

Fig. 11 that the circadian and light-responses can be separated by

the response of clock-controlled genes. It is natural then to ask how

are these responses related in different genes? For example, we can

ask if the circadian and light responses of different genes with LREs

upstream are stochastically independent across all genes with an

LRE element. A simple contingency table model in which the

circadian and light- response of each of the 5702 genes with LRE

elements are conditionally independent given the WCC response

can be fitted as shown in Table 5 fairly well. The resulting goodness

of fit chi-squared statistic X2
2 is 7.20, which is barely a significant

departure from the model at the 0.05 level. What this implies is that

the circadian and light responses of genes with LREs upstream are

almost entirely explained by whether or not they have a response to

WCC. When the WCC response is off, then the circadian response

of a gene with an upstream LRE is more probable (pC.qC in

Table 5). When the WCC response is on, then the light response of a

gene with an upstream LRE is more probable (qL.pL in Table 5).

This would suggest that any gene, such as csw-1 [79], acting on the

light or circadian response of a gene with an upstream LRE would

need to act through WCC. The only explanation for light and

circadian responses of ccgs in Fig. 2 or 4 is WCC. If there were

another oscillator acting on genes with upstream LREs, then its

outputs would be constrained to behave in the same way as the

known clock mechanism. That is, an additional oscillator would be

coupled to the known clock mechanism in Fig. 2 through WCC and

would have an independent light and circadian gene outputs

conditional on a gene’s response to WCC. If there were additional

information, such as the number of upstream LREs (as in Table 4),

then more could be said. This conditional independence result does

not hold across all 11,000 genes, if the same model in Table 5 is

fitted to all genes (X2
2 = 771.70, P,0.001).

Clock as adaptation
The clock-controlled genes and their time of action in Fig. 7B

provide a possible narrative on adaptation. This complex trait

controls levels of asexual reproduction as shown in Fig. 1. The

complex trait has a clear genetic basis in Fig. 2. Variation in the

clock trait in natural populations has been demonstrated in D.

1.02.04, 11.02.03.04, 16.0; RNA, 11.02, 11.04, 16.03.03; protein, 12.01,12.07, 14.04, 14.13, 14.07, 1.20; transport, 20.09, 20.03, 20.01; carbon and energy
metabolism, 1.05, 2.01; isoprenoid, 1.06; development and growth, 40.01, 40.02, 41.01, 43.01; signaling, 30.01, 32.01, 32.05, 34.11; clock, wc-1, wc-2,
frq; other, 16.19, 1.01, 1.02, 1.07,1.20, 2.04, 2.13, 2.19, 2.45,18.02, 34,70.01, 70.02, 70.04, 70.10; unclassified, 99 or no number. B. pre-rRNA processing.
Proteins involved contain a ‘p’, and proteins in red are encoded by clock-controlled genes. An arrow from Lhp1p indicates that the encoding mRNA is a
target of Lhp1p as well as the U3 snoRNA in S. cerevisiae. A, B, C, D are cleavage sites. Modified from Emery et al. [95].
doi:10.1371/journal.pone.0003105.g015
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Figure 16. Transcriptional profiles of individual genes with
upstream LRE elements in the dark (cycle 1) in the functional
categories of: (A) regulation (MIPS functional classification
categories 1.02.04, 11.02.03, and 16, [37]); (B) putative
phosphatases/kinases (functional classification category
14.07.03); (C) signal transduction (categories 30.01, 32.01,
32.05, 34.11); (D) Development and growth (categories 40.01,
40.02, 41.01, 43.01). The mean mRNA level of each gene was
subtracted from the 13 individual mRNA levels measured on each gene
in Fig. 6. Data are from Fig. 6.
doi:10.1371/journal.pone.0003105.g016

Table 2. Rate coefficients in the genetic network model
(Fig. 4) of the biological clock (n = m = 4) based on data from
cycles 1–3 predicting the clock’s observed oscillations, light
response, and wc-1 perturbation (Fig. 17).

X k ,X. s(X)

A 5 0.0313 0.00974

A 1 0.1108 0.00498

B 5 4.010E-4 1.020E-4

B 1 0.382 0.0412

S1 1 0.000420 0.0000048

S2 1 0.0220 0.00838

S3 1 5.47E-5 1.597E-4

S4 1 1.252 0.286

D1 1 6.607 1.399

D2 1 0.153 0.0247

D3 1 0.798 0.134

C1 2 1.047 0.220

L1 1 94.39 4.346

L2 1 0.3698 0.2207

L3 1 63.93 21.5

D4 1 0.00451 0.0118

D5 1 0.00890 0.00242

D6 1 0.205 0.00899

D7 1 0.135 0.0148

D8 1 0.0122 0.00304

C2 2 3.322 0.912

P 5 0.2233 0.2701

Ac 5 0.1293 0.0826

Bc 1 0.6091 0.1718

Sc 1 2.572 2.757

Lc 1 3.664 8.993

Dcr 1 0.579 0.137

Dcp 1 0.5536 0.1173

E1 2 0.003125 9.865E-4

E1 1 0.0965 0.0104

E2 2 2.614 2.607

E2 1 0.0128 0.0298

S5 1 8.924 0.696

D9 1 1.234E-4 3.259E-4

AcL 5 0.0524 0.0156

Q 5 4.812E-4 6.111E-4

D10 1 2.865E-4 9.257E-4

C3 2 5.5593 1.7937

Bc_L 1 0.00576 0.00633

Sc_L 1 0.07454 0.1344

E3 2 0.00974 0.00288

E3 1 0.000542 0.00188

E4 2 1.335E-5 3.456E-5

E4 1 0.0121 0.00682

Ensemble mean ,X. and ensemble standard deviation s(X): = [,X2.2,X.2]1/2

for rate coefficients (X) in the n = m = 4 biological clock model of Fig. 4. For a kth

order reaction (with k = 1,2, or 5), the rate coefficient is given in units of 1/
(hour6cuk21) where ‘‘cu’’ represents the arbitrary, but common model unit of
concentration for all species, except for the photon species where 1
cu(photons) = 0.20 mmole(photons)/(s?m2), see also Materials and Methods. The
estimated value of 1/ÆD6æ<5 hrs is consistent with the FRQ protein life-time of <4–
7 hrs, estimated from the FRQ-decay data of [96].
doi:10.1371/journal.pone.0003105.t002
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melanogaster [83], A. thaliana [84], and N. crassa [85]. There may be

the opportunity for natural selection to act on the clock network

[86] through simple sequence repeats, for example, in WC-1 and

FRQ [85]. It is clear that the clock controls fecundity in the

asexual part of the life cycle in Fig. 1. In addition, longevity is in

part under clock control. The bd mutation as an allele of ras-1 [87]

is a well-known longevity gene in S. cerevisiae [88]. In addition, the

longevity assurance gene LAG1 homolog [89] (designated

NCU00008 in N. crassa) is under WCC-control from the cycle 3

experiments. There appears to be a strong connection between the

clock and the fitness components of fecundity and longevity, as has

been reported in other model systems [90].

The organism needs to protect its DNA from light. Light

triggers the onset of conidiation at dawn, thereby placing the DNA

into these environmentally robust packages, spores. Prior to cell

cycle initiation in the morning to produce the spores, DNA

synthesis must be reinitiated and completed before entry into cell-

cycle checkpoints on the following day (Fig. 7B). The development

of structures to produce these spores requires carbon and energy as

well as activation of the developmental program in the morning

(Fig. 7B) as well as some initial groundwork by regulators ‘‘as early

immediate genes (IEGs)’’ in the evening. Implementation of the

developmental program is timed through clock-controlled genes

positioned in the Central Dogma played out in ribosome assembly,

protein synthesis, modification, and degradation taking place in

the morning. One of the features of spores that make them so

resistant to environmental insults is the synthesis and incorporation

of the isoprenoids as pigments. Apparently their biosynthesis is

sufficiently important that the organism continues working on

these protective factors in the afternoon. The clock mechanism

can tune the phase of clock-controlled genes by adjusting the rate

constants (particularly the degradation constants of CCGs) in the

genetic network for ccgs in Fig. 2 as well as their level of expression.

Setting the phase may set the level of WCC experienced by the ccg

as shown in (Fig. 7B). This adaptationist interpretation of the role

of different clock-controlled genes helps to explain why the clock

orchestrates such a diverse set of players in the cell.

Using the Maximally Informative Next Experiment (MINE)
and its Consequences

While the MINE is the next experiment U* to give us the most

new information about the network in Fig. 4, U* is defined within a

set of possible experiments that are ultimately specified by the goal(s)

of the experimenter. Within the constraint of a particular biological

goal, such as finding clock-controlled genes, finding the MINE U*

provides an avenue to obtain the most information about the genetic

network in each successive cycle through the Computing Life

paradigm. This still leaves the choice of a set of possible

experiments, from which U* is drawn, in the hands of the

experimenter. In the present case, the biological goal of identifying

clock-controlled genes sets the stage on which MINE plays. Identifying

clock-controlled genes leads us to ask the genetic network in Fig. 4 for

their predicted behavior, thus establishing the set of experiments in

cycles 1–3 to be considered. In this context MINE is a tool to

achieve a particular biological goal. One could naively make the

biological goal coincident with the unconstrained objective of

learning the most about the genetic network, the criterion of MINE,

but then the set of possible experiments U becomes very large and

the optimization of V(U) computationally intractable. Adopting a

particular biological goal, such as finding ccgs, puts structure on the

design question and thereby enables the researcher to parameterize

the optimization of the next experiment U.

There have been several consequences to the use of model-

guided discovery by MINE through the choice of experiments. In

detecting circadian rhythms in cycle 1 MINE involved a design

with even spacing between observations of 4 hrs and with

sampling starting immediately without delay (Fig. 5). This design

in cycle 1 conforms to practice in previous experiments [5].

However, in detecting the light-response in cycle 2 and the WCC-

response in cycle 3 there is a departure from conventional wisdom.

In cycle 2 prior experiments on light-entrainment, researchers

have avoided a very short 6 hr artificial day [25], and as a

consequence have missed an opportunity to examine the

autofeedback in the networks as in Fig. 14. In detecting a response

to perturbations in the clock mechanism in cycle 3, conventional

wisdom would have us focus on perturbing the oscillator gene frq

[8]. In contrast the MINE calculations in Fig. 12 pointed to

engineering mutations in wc-1 to obtain more information about

the network. Even when a mutation in the transcription factor

WC-1 or CLOCK was pursued [36,60], experimenters have

elected to overexpress the transcription factor. The result has been

a paucity of responding genes [36,60]. The MINE calculations in

Fig. 12 suggested that a knockdown would be more informative

about the genetic network in Fig. 2 or 4, and this was the

Table 3. The quality of fit of the model usually improves in successive cycles through the Computing Life paradigm. Several
measures of fit are reported.

Profiling Experiment n x2
min ŝ2$ GEL50* fold-change

data from literature (cycle 0) 333 1188 0.0714 - -

circadian cycle (cycle 1) (in the dark) 553 2918 0.1055 2.82% -

light-response (cycle 2) (D/L) 1927 3938 0.0409 1.97 1.89

WCC-response (cycle 3) (turn WCC off) 2165 5528 0.0511 1.97 2.48

genetic network – Fig. 2 (cycle 4) 3007 4640 0.0309 - -

The number of data points (n) used in fitting, x2 goodness of fit measure [7], which is cumulative across cycles, estimates of the error variance s2, Gene Expression Level
50 (GEL50)* as a proxy for power [77], and the fold-change in expression level corresponding to the GEL50 are reported to allow comparison with future and existing
models and microarray experiments. The genetic network fitted is shown in Fig. 4 (except cycle 4).
*The gene expression level 50 (GEL50) was the median value of the test statistic among genes with a significant F or t statistic for a circadian, light-, or WCC-response and
with LREs upstream. This measure is an indicator of power [77] to detect one of these three responses, allowing comparisons with other microarray experiments. The
fold-change in expression level (e.g., D/L) corresponding to the reported GEL50 is reported in the last column when applicable.

$The estimated error variance was computed from the number of observations (n), the preliminary estimate of s0
2 = 0.02 [7], and the x2

min over the ensemble using the
formula: ŝs2~ 1

n
x2

mins
2
0.

%The square-root of this F1,9-statistic is reported using the fact that F1,9 = t9
2 to allow a comparison with other t-statistics in the same column.

doi:10.1371/journal.pone.0003105.t003
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experiment adopted here. As a consequence, by following

conventional wisdom without the input of MINE, it is likely our

screen would have missed the clear and unbiased identification of

295 clock-controlled genes in Fig. 15 or as precise an identification of

the genetic network (see Table 3). The connection of the clock to

ribosome biogenesis in Fig. 15B in particular is then an outcome of

MINE suggesting a new direction of exploration in microarray

experiments to refine our understanding of the clock mechanism.

It may at first seem surprising, or accidental, that MINE design

actually helps increase the experimental sensitivity for ccg

detection: the MINE approach, as described in Materials and

Methods, optimizes the experimental sensitivity for discerning

between unknown model parameter vectors H; it does not per se

optimize the next experiment for detection of new molecular or

gene species (such as ccgs) that are not explicitly included in the

network model in Fig. 2. However, these two seemingly unrelated

features are actually closely linked, as we will now explain.

The MINE optimization does tend to select experimental

conditions U* which enhance the predicted response for the

molecular species to be observed in the next experiment. (If the to-

be-observed species were responding weakly their observation

would hardly improve discrimination between different H). One of

those to-be-observed molecular species in each of our 3 MINE

cycles was the frq RNA. The frq gene, however, is co-regulated (by

WCC) with all clock-controlled genes. For purposes of external

perturbation response, the frq gene itself is in fact like a typical ccg.

Thus, by choosing the MINE U* to enhance the frq response we

are in effect also enhancing the response of all other ccgs, since they

are subject to similar regulatory control. Hence, the MINE-

directed discovery of our 295 new clock-controlled genes is not

accidental; it is an expected and highly desirable by-product of the

MINE optimization. The broader conclusion to be drawn from

these considerations is that, for gene-regulatory systems, MINE

optimization, in general, will improve the conditions for

Figure 17. An ensemble of genetic networks predicts the mRNA levels of wc-1, wc-2, and frq for cycles 1–3. The decadic log (lg) of each
gene’s mRNA level is measured at least 5 times on an array for each time point. Some data points are from the literature [3,23–25]. The curves
represent the mean prediction of the ensemble of genetic networks in Fig. 4 +/2 2 ensemble standard errors about the ensemble mean. In Fig. 8 the
averages of the 5–6 replicates of each mRNA level at each time points are displayed. Grey bars denote lights off; white bars denote lights on.
doi:10.1371/journal.pone.0003105.g017
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experimental detection of new, unknown gene species which are

co-regulated with the already known species targeted by the next

experiment.

There are three advances here over earlier analyses of the

genome-wide logical circuitry [1,91,92] of fundamental processes,

such as development, carbon metabolism, and the clock. One, a

working kinetics model of the clock [7] gives a complete

quantitative description of genetic network dynamics in Fig. 17.

Two, an ensemble method was developed for identifying a genetic

network with many parameters from limited data [7] with the

results in Table 2. Three, a new methodology (i.e., MINE design)

was developed for a model-driven discovery workflow cycle

(Computing Life) in profiling experiments. This new methodology

resulted in the identification of most downstream clock-controlled

genes in Fig. 15A and an unexpected connection between the clock

and ribosome biogenesis in Fig. 15B.
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