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Abstract: Urban freshwater lakes play an indispensable role in maintaining the urban environment
and are suffering great threats of eutrophication. Until now, little has been known about the seasonal
bacterial communities of the surface water of adjacent freshwater urban lakes. This study reported
the bacterial communities of three adjacent freshwater lakes (i.e., Tangxun Lake, Yezhi Lake and
Nan Lake) during the alternation of seasons. Nan Lake had the best water quality among the
three lakes as reflected by the bacterial eutrophic index (BEI), bacterial indicator (Luteolibacter) and
functional prediction analysis. It was found that Alphaproteobacteria had the lowest abundance in
summer and the highest abundance in winter. Bacteroidetes had the lowest abundance in winter, while
Planctomycetes had the highest abundance in summer. N/P ratio appeared to have some relationships
with eutrophication. Tangxun Lake and Nan Lake with higher average N/P ratios (e.g., N/P = 20)
tended to have a higher BEI in summer at a water temperature of 27 ◦C, while Yezhi Lake with a
relatively lower average N/P ratio (e.g., N/P = 14) tended to have a higher BEI in spring and autumn
at a water temperature of 9–20 ◦C. BEI and water temperature were identified as the key parameters
in determining the bacterial communities of lake water. Phosphorus seemed to have slightly more
impact on the bacterial communities than nitrogen. It is expected that this study will help to gain
more knowledge on urban lake eutrophication.

Keywords: eutrophication; bacterial community; 16S rRNA gene; seasonal changes; bacterial eu-
trophic index; nitrogen to phosphorus ratio

1. Introduction

Urban lakes play an irreplaceable role in regional environments for humanity and
nature [1]. Urban lakes can maintain biodiversity, adjust the temperature, balance the water
in the air and soil, increasing air humidity and alleviating storm flooding [2]. In addition,
urban lakes can be simply deemed a kind of scenery of the city. However, with the human
activity of urban development, the detrimental effect on urban lake environment has
become increasingly prominent [3]. The deterioration of the lake environment is usually
associated with the eutrophication [4], which is mainly caused by the excessive input of
nitrogen and phosphorus [5] from the discharge of domestic wastewater in cities [6]. Hence,
knowing the water quality of urban lakes is favorable to prevent eutrophication.

It is well known that microorganisms play an important role in material and energy
conversion and metabolism in aquatic ecosystems [7,8]. Bacteria are widespread in aquatic
ecosystems and can contribute to the self-purification of water bodies. The shifts in the
planktonic bacterial colony can somewhat reflect the water environment [9,10]. Thus,
the bacterial community plays a fundamental role in environmental processes and geo-
chemical cycles [11]. Although pure culture methods have been applied traditionally
for bacteria identification [12], many microorganisms are viable but non-culturable [13].
In recent years, with the progress of sequencing technology, more and more studies on
the microbial communities of environmental samples have been based on a molecular
level sequencing [14,15]. Illumina MiSeq sequencing technology has gained attention due

Int. J. Environ. Res. Public Health 2021, 18, 6950. https://doi.org/10.3390/ijerph18136950 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph18136950
https://doi.org/10.3390/ijerph18136950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18136950
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18136950?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 6950 2 of 11

to its accuracy [16], universality and effectiveness, and has been widely applied in the
identification of microbial communities of varied environmental samples [17–19].

For urban lakes, sediment samples are usually used to reveal the microbial compo-
nent [20]. In fact, microbes in the lake water can reflect the water quality directly. With
the change of seasons, the water level and the microbial community structure would
change [21,22], while the temperature can also impact on the microbial community in an
ecosystem [23]. However, few studies have reported on the aquatic bacterial compositions
in adjacent urban lakes in different seasons, which seems to make the knowledge on ur-
ban lake eutrophication incomplete. Therefore, it is necessary to examine the microbial
community compositions of adjacent urban lakes in different seasons.

Wuhan, located in the middle reaches of the Yangtze River and the east of Jiang-
han Plain, has experienced rapid urbanization with drastic deterioration of lake environ-
ments [24]. This study reported the bacterial communities of surface water in three adjacent
lakes in Wuhan, which are distributed in the Hongshan district and composed with mainly
leached soil with subtropical evergreen broad-leaved forest vegetation. The seasonal water
qualities and successions of bacterial community structure were systematically analyzed.
This study is expected to gain knowledge on urban lake eutrophication in different seasons.

2. Materials and Methods
2.1. Study Area and Sample Collection

The water samples were collected from three adjacent freshwater lakes (i.e., Tangxun
Lake, Yezhi Lake and Nan Lake) in Wuhan, China. Tangxun Lake is the largest urban lake in
Asia, with an area of 52.2 km2, while Nan Lake and Yezhi Lake are much smaller, with water
areas of 7.6 and 1.6 km2, respectively. The surface water samples (top 30 cm) were collected
on sunny days on 20 June 2018 (summer), 26 September 2018 (autumn), 27 December 2018
(winter) and 8 March 2019 (spring). The water temperatures were about 9, 27, 20 and
3 ◦C for spring, summer, autumn and winter, respectively. Representative locations along
with the scenery of the three stations for surface water sampling are depicted in Figure 1.
The water samples in spring, summer, autumn, and winter are denoted as JCTXL, JXTXL,
JQTXL and JDTXL for Tangxun Lake; JCYZL, JXYZL, JQYZL and JDYZL for Yezhi Lake
and JCNL, JXNL, JQNL and JDNL for Nan Lake. One liter of water was collected via a
water sample collector. The collected water samples were stored temporarily in plastic
bottles in a foam box packed with ice bags. The collected water samples were analyzed
within 4 h.
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2.2. Determination of Water Quality Indices

The chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP)
were determined in accordance with the standard method [25] in triplicate. The equipment
applied in this study included a YXQ-LS-30 SII sterilizer (Boxun Instrument, Shanghai,
China), an A580 spectrophotometer (AOE Instruments A580, Shanghai, China) and a SC-2
COD detector (Huaxia, Beijing, China). A pH meter (OHAUS, ST3100F) was used to
measure pH and temperature.

The trophic state index (TSI) was determined as follows [26,27]:

TSI(TN) = 54.45 + 14.43 ln(TN)

TSI(TP) = 14.42 ln(TP) + 4.15

TSI =
TSI(TN) + TSI(TP)

2

where TN and TP were in mg·L−1 and mg·m−3, respectively.
Bacterial eutrophic index (BEI) can be determined as follows [28]:

BEI =
Cyano−A
Actino−A

where Cyano-A and Actino-A were the relative abundance of Cyanobacteria and Actinobac-
teria, respectively. The respective relative abundances of Cyanobacteria and Actinobacteria
were derived from Miseq sequencing.

The modified BEI (BEI′) considered the impact of temperature (T), which can be
calculated as follows [29]:

BEI′ = Cyano−A
Actino−A

(
1

−0.1065 + 0.09732 T− 0.002530 T2

)
2.3. Microbial Community Analysis

100 mL water samples were filtered through a 25 mm diameter, 0.2 µm filter (Osmonics,
Livermore, CA, USA), and the filters were kept at −20 ◦C. Total DNA was extracted with
the E.Z.N.A. soil DNA separation kit (OMEGA Biotek Inc., Norcross, GA, USA) following
the manufacturer’s instructions.

The V4 region of bacterial 16S rRNA genes was amplified using a primer set of 520F-
802R [30]. The Illumina Miseq platform was applied for the paired-end sequencing of the
DNA fragments. The sequence analyses were conducted as described [31]. The 16S rRNA
gene sequence can be obtained from the NCBI website (http://www.ncbi.nlm.nih.gov/
sra/, PRJNA631438, accessed on 22 June 2020).

3. Results and Discussion
3.1. Water Properties

Table 1 depicts the water quality of the three lakes in four seasons, indicating that
the water quality indicators of the three freshwater lakes were different. Obviously, all of
the three lakes were suffering serious pollution, especially from nitrogen and phosphorus.
According to the “Environmental Quality Standard for Surface Water” (GB3838-2002), the
Class V lakes should have nitrogen and phosphorus contents of no more than 2.0 and
0.2 mg/L, respectively [32]. The water quality of the three lakes was inferior to the Class V
lakes. Among them, the water quality of Tangxun Lake was worst due to its highest average
values of TN (7.59 mg/L) and TP (0.36 mg/L). The average TSI values for Tangxun Lake,
Nan Lake and Yezhi Lake were calculated to be 86, 77 and 74, respectively, which further
indicated that Tangxun Lake had the highest nitrogen and phosphorus contents. However,
the Nan Lake had a highest average COD value with 31.69 mg/L. The average N/P ratios
for Tangxun Lake, Yezhi Lake and Nan Lake were 20.80, 13.57 and 20.24, respectively,

http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/sra/
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suggesting that Yezhi Lake was rather different from Tangxun Lake and Nan Lake with a
relatively lower N/P ratio.

Table 1. Water quality indicators of the three lakes in each season.

Sample ID Season COD (mg/L) TN (mg/L) TP (mg/L)

Tangxun Lake

JDTXL Winter 24.28 9.16 0.35
JCTXL Spring 26.28 6.22 0.35
JXTXL Summer 34.32 9.42 0.42
JQTXL Autumn 25.11 5.56 0.33

Yezhi Lake

JDYZL Winter 12.14 2.38 0.21
JCYZL Spring 15.62 2.54 0.12
JXYZL Summer 15.16 3.01 0.28
JQYZL Autumn 14.22 2.43 0.22

Nan Lake

JDNL Winter 32.38 4.18 0.18
JCNL Spring 30.39 2.29 0.16
JXNL Summer 33.45 5.16 0.28
JQNL Autumn 30.54 4.75 0.19

The water indicators of the same lake in different seasons were also different. It
indicated that the nitrogen and phosphorus concentrations were relatively higher in lake
waters in summer compared to other seasons. Although there is usually plenty of rain
in summer in Wuhan, which can dilute the lake water and lower the nutrients levels, the
rain can also bring pollutants from air and land to the lake water. In addition, the high
temperatures could also contribute to the release of nutrients from sediments [33], leading
to the increase in nutrient concentrations in the water.

3.2. Operational Taxonomic Units, Bacterial Abundance and Diversity

Figure 2a indicates that the sequencing depth was sufficient to assess the bacterial
community. Among the 12 samples, about half of the OTUs were not shared as shown
in Figure 2b, indicating that the bacterial communities in the three freshwater lakes were
different. On the contrary, the three lakes shared 1333 OTUs, possibly because they
were adjacent.
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Table 2 lists the alpha diversity indices at the same sequencing depth, including diver-
sity indices (Shannon and Simpson) and richness indices (ACE and Chao1). It indicated
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that the richness of bacterial community of Tanxun Lake in winter was the highest. On the
contrary, the diversity of bacterial community of Nan Lake in autumn was the highest.

Table 2. The seasonal α-diversity indices of the bacterial community of the three lakes.

Sample ID Chao1 ACE Simpson Shannon

Tangxun Lake

JDTXL 1622.14 1722.66 0.970521 7.85
JCTXL 935.81 915.27 0.982499 7.65
JXTXL 1309.40 1375.19 0.984909 7.97
JQTXL 1203.57 1152.77 0.934474 6.80

Yezhi Lake

JDYZL 940.40 985.55 0.968654 7.04
JCYZL 944.04 977.53 0.967030 7.02
JXYZL 1469.94 1530.30 0.990195 8.44
JQYZL 1184.99 1239.24 0.978945 7.52

Nan Lake

JDNL 990.65 1037.55 0.954592 6.89
JCNL 1232.44 1238.85 0.989097 8.12
JXNL 1470.83 1492.79 0.985983 8.30
JQNL 1363.01 1374.30 0.993332 8.78

3.3. Seasonal Microbial Community Structure

The three lakes have their specific microbial community compositions in different
seasons as depicted clearly in Figure 3a,b. Taking the average levels of the four seasons,
the main phyla were Proteobacteria (39.7%), Actinobacteria (18.2%), Bacteroidetes (13.6%)
and Cyanobacteria (11.8%) for Tangxun Lake. For Yezhi Lake, the main components were
Cyanobacteria (36.8%), Actinobacteria (31.1%), Proteobacteria (13.8%) and Verrucomicrobia
(9.3%). For Nan Lake, the main components were Actinobacteria (37.3%), Proteobacteria
(25.2%), Cyanobacteria (16.8%) and Verrucomicrobia (10.1%). The main phyla of the lake
water samples were quite similar to previous reports on freshwater [21,34].

Int. J. Environ. Res. Public Health 2021, 18, x  6 of 11 
 

6 

 

 

Figure 3. Bacterial community of each lake at phylum level (a) and class level (b); overall bacterial community of each 

season at phylum level (c) and class level (d). The water samples in spring, summer, autumn, and winter, respectively, 

are denoted as JCTXL, JXTXL, JQTXL and JDTXL for Tangxun Lake; JCYZL, JXYZL, JQYZL and JDYZL for Yezhi Lake 

and JCNL, JXNL, JQNL and JDNL for Nan Lake. 

Some bacteria had a distinct altering rule for their abundance with regard to differ-

ent seasons. For example, the phylum of Proteobacteria, usually had the lowest abun-

dance in summer and the highest abundance in winter (Figure 3c), which was similar to 

a previous report on Lake Taihu [21]. At a finer scale, the abundance of Alphaproteobacte-

ria varied positively with low temperatures as displayed in Figure 2b, implying the ex-

cellent adaptation of Alphaproteobacteria to low temperature. Indeed, the Alphaproteobac-

teria were previously found to be dominant in cold environments [35,36]. On the contra-

ry, Bacteroidetes tended to have the lowest abundance in winter (3 °C), while the Planc-

tomycetes tended to have the highest abundance in summer (27 °C). In fact, the anammox 

Planctomycetes could grow well at around 30 °C [37,38], while the lab-scale anammox 

process could be operated at 25 °C [39]. 

Figure 4 depicts the OTUs of bacteria that differ significantly at the phylum and ge-

nus levels. The phyla with most obviously different abundances were found to be Actino-

bacteria, Cyanobacteria and Proteobacteria among all the water samples. Specifically, the 

greatest abundance of Actinobacteria, Cyanobacteria and Proteobacteria of water samples 

were found in Nan Lake in spring, Yezhi Lake in autumn and Tangxun Lake in spring, 

respectively. At the genus level, bacteria with the most obvious different abundance were 

found to be Acinetobacter, Arcobacter and Bacillariophyta among all the water samples. 

Figure 3. Bacterial community of each lake at phylum level (a) and class level (b); overall bacterial community of each
season at phylum level (c) and class level (d). The water samples in spring, summer, autumn, and winter, respectively, are
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Int. J. Environ. Res. Public Health 2021, 18, 6950 6 of 11

Some bacteria had a distinct altering rule for their abundance with regard to different
seasons. For example, the phylum of Proteobacteria, usually had the lowest abundance
in summer and the highest abundance in winter (Figure 3c), which was similar to a
previous report on Lake Taihu [21]. At a finer scale, the abundance of Alphaproteobacteria
varied positively with low temperatures as displayed in Figure 2b, implying the excellent
adaptation of Alphaproteobacteria to low temperature. Indeed, the Alphaproteobacteria were
previously found to be dominant in cold environments [35,36]. On the contrary, Bacteroidetes
tended to have the lowest abundance in winter (3 ◦C), while the Planctomycetes tended to
have the highest abundance in summer (27 ◦C). In fact, the anammox Planctomycetes could
grow well at around 30 ◦C [37,38], while the lab-scale anammox process could be operated
at 25 ◦C [39].

Figure 4 depicts the OTUs of bacteria that differ significantly at the phylum and
genus levels. The phyla with most obviously different abundances were found to be
Actinobacteria, Cyanobacteria and Proteobacteria among all the water samples. Specifically,
the greatest abundance of Actinobacteria, Cyanobacteria and Proteobacteria of water samples
were found in Nan Lake in spring, Yezhi Lake in autumn and Tangxun Lake in spring,
respectively. At the genus level, bacteria with the most obvious different abundance were
found to be Acinetobacter, Arcobacter and Bacillariophyta among all the water samples.
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Figure 4. Obvious different abundance in bacterial taxa at phylum level (a) and genus level (b). The water samples in
spring, summer, autumn, and winter, respectively, are denoted as JCTXL, JXTXL, JQTXL and JDTXL for Tangxun Lake;
JCYZL, JXYZL, JQYZL and JDYZL for Yezhi Lake and JCNL, JXNL, JQNL and JDNL for Nan Lake.

3.4. Eutrophication Assessment from the Microbial Aspect

The average BEI and BEI’ indexes shown in Table 3 indicated that Yezhi Lake had
the highest bacterial eutrophic index, which was different from the results from the TSI
indexes, where Tangxun Lake had a highest TSI on average. This can be attributed to the
fact that the N/P ratio of Yezhi Lake was obviously lower than that of Tangxun Lake and
Nan Lake, suggesting that the Yezhi Lake had relatively higher phosphorus content. In
fact, phosphorus was deemed the most vital element for the eutrophication of shallow
lakes [40]. This gives a plausible explanation for the different results of the BEI and TSI
assessment methods.



Int. J. Environ. Res. Public Health 2021, 18, 6950 7 of 11

Table 3. Eutrophic index of the three lakes in different seasons.

Index Season Tangxun Lake Yezhi Lake Nan Lake

N/P

Spring 17.77 21.17 14.31
Summer 22.43 10.75 18.43
Autumn 16.85 11.05 25.00
Winter 26.17 11.33 23.22
AVG 20.80 13.57 20.24

TSI

Spring 84.72 70.54 71.87
Summer 89.03 77.88 81.77
Autumn 83.49 74.59 78.37
Winter 87.52 74.11 77.06
AVG 86.19 74.28 77.27

BEI

Spring 0.14 1.24 0.15
Summer 1.10 0.50 0.99
Autumn 0.56 5.49 0.63
Winter 0.36 0.41 0.09
AVG 0.54 1.91 0.46

BEI’

Spring 0.25 2.20 0.26
Summer 1.62 0.74 1.46
Autumn 0.68 6.64 0.76
Winter 2.22 2.50 0.57
AVG 1.19 3.02 0.76

Abundance of Luteolibacter (%) Winter 0.19 3.43 12.03

It has been reported that Luteolibacter in the surface water of fresh lakes in winter
is a potential bacterial indicator of good-quality lakes [41]. In this study, the abundance
of Luteolibacter of Tangxun Lake, Yezhi Lake and Nan Lake in winter was 0.19, 3.43 and
12.03%, respectively. This suggested that Nan Lake had the best water quality among
the three eutrophic lakes. In fact, it can be seen from Figure 5 that the bacteria in Nan
Lake had higher function than the other two lakes in terms of substrate metabolism, such
as carbohydrate metabolism, amino acid metabolism, lipid metabolism, etc. This also
indicated that Nan Lake had the strongest self-purification ability among the three lakes.

3.5. Relationship between N/P Ratio and Seasonal Eutrophication

Moreover, we tentatively put forward that lakes with a relatively higher N/P ratio
(e.g., N/P = 20) tend to have a higher average BEI in summer at a water temperature
of 27 ◦C, while lakes with a relatively lower N/P ratio (e.g., N/P = 14) tend to have a
higher average BEI in spring and autumn at a water temperature of 9–20 ◦C. To avoid
eutrophication, we should lower the N/P ratio of lakes during spring and autumn, while
increasing the N/P of lakes during summer. This is in agreement with a previous study
on controlling the cyanobacterial blooms in Taihu Lake [5,42], e.g., the sole N addition
had a significant positive effect on phytoplankton growth in summer [5]. However, more
evidence should be presented on this viewpoint from global lakes.

3.6. Relationships between Bacterial Community and Water Quality

RDA analysis was applied to look into the relationship between bacterial community
and water quality. As shown in Figure 6, BEI and temperature were the most significant
parameters for shaping the bacterial communities of lake water, reflected by the length
of the arrow-lines. Indeed, BEI can be a feasible bacterial index for eutrophic assessment
of freshwater lakes [28], which is significantly impacted by temperature [29]. This can
be ascribed to the abundance of aquatic bacteria (e.g., cyanobacteria) that can reflect the
water quality of lakes, which is impacted by the temperature. Other research results also
indicated that temperature was a key factor affecting the bacterial abundance in water [43].
Moreover, it appears that the BEI had a positive correlation with temperature, and that
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TN had a positive correlation with TP. Although both phosphorus and nitrogen have been
deemed as the most important parameters for eutrophication, TP seemed to have a slightly
greater impact on shaping the bacterial community in lake water than TN in this study.
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4. Conclusions

This study reported the seasonal bacterial compositions of surface water of three
adjacent lakes in Wuhan, i.e., Tangxun Lake, Yezhi Lake and Nan Lake. It was found
that Nan Lake had the best water quality among the three lakes as reflected by the BEI,
bacterial indicator of Luteolibacter and functional prediction. Bacterial alternation rules
were disclosed. Alphaproteobacteria had the lowest abundance in summer and the highest
abundance in winter. Bacteroidetes tended to have the lowest abundance in winter, while
Planctomycetes tended to have the highest abundance in summer. Moreover, the N/P ratio
appeared to have a relationship with seasonal eutrophication of freshwater lakes. A high
N/P ratio favored eutrophication in summer while a low N/P ratio favored eutrophication
in spring and autumn evidenced by the BEI values.

Author Contributions: Conceptualization, B.J.; methodology, B.J. and J.W.; validation, C.L. and J.W.;
investigation, J.L.; data curation, J.L. and C.L.; writing—original draft preparation, B.J. and C.L.;
writing—review and editing, B.J. and J.W. All authors have read and agreed to the published version
of the manuscript.
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