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Background: The presence of brain amyloid-beta positivity is associated with cognitive

impairment and dementia, but whether there are specific aspects of cognition that

are most linked to amyloid-beta is unclear. Analysis of neuropsychological test data

presents challenges since a single test often requires drawing upon multiple cognitive

functions to perform well. It can thus be imprecise to link performance on a given test

to a specific cognitive function. Our objective was to provide insight into how cognitive

functions are associated with brain amyloid-beta positivity among samples consisting of

cognitively normal and mild cognitively impaired (MCI) subjects, by using partially ordered

set models (POSETs).

Methods: We used POSET classification models of neuropsychological test data to

classify samples to detailed cognitive profiles using ADNI2 and AIBL data. We considered

3 gradations of episodic memory, cognitive flexibility, verbal fluency, attention and

perceptual motor speed, and performed group comparisons of cognitive functioning

stratified by amyloid positivity (yes/no) and age (<70, 70–80, 81–90 years). We also

employed random forest methods stratified by age to assess the effectiveness of

cognitive testing in predicting amyloid positivity, in addition to demographic variables,

and APOE4 allele count.

Results: In ADNI2, differences in episodic memory and attention by amyloid were found

for <70, and 70–80 years groups. In AIBL, episodic memory differences were found

in the 70–80 years age group. In both studies, no cognitive differences were found in

the 81–90 years group. The random forest analysis indicates that variable importance

in classification depends on age. Cognitive testing that targets an intermediate level of

episodic memory and delayed recall, in addition to APOE4 allele count, are the most

important variables in both studies.

Conclusions: In the ADNI2 and AIBL samples, the associations between specific

cognitive abilities and brain amyloid-beta positivity depended on age, but in general
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episodic memory was most consistently predictive of brain amyloid-beta positivity.

Random forest methods and OOB error rates establish the feasibility of predicting

the presence of brain beta-amyloid using cognitive testing, APOE4 genotyping and

demographic variables.

Keywords: Alzheimer’s disease, cognitive impairment, amyloid, partially ordered sets, ADNI/AIBL

INTRODUCTION

Novel therapies for early Alzheimer’s Disease (AD) are in
development which, if approved for clinical use, may increase
the demand for confirmation of abnormally high levels of AD
biomarkers such as brain beta-amyloid. Determination of brain
beta-amyloid status using PET imaging of amyloid in the brain
or CSF sampling is either expensive or invasive and therefore
strategies that can increase confidence in decisions to order,
or to not order such assessments will be very useful especially
if they utilize information that can be obtained routinely.
Amyloid identification is also of interest for AD clinical trial
enrichment. Neuropsychological (NP) tests are often used to
help providers diagnose AD, and therefore may also have an
important role in predicting amyloid positivity. However, NP
tests batteries used in AD are by design polyfactorial, in that
multiple cognitive functions are measured to determine whether
the nature and magnitude of any cognitive impairment observed
is suggestive of dementia, and if so AD. As a result, it is difficult
to link performance on a test to specific functions. Previous
studies have investigated the cognitive profile associated with
the presence of amyloid in AD dementia, MCI and cognitively
unimpaired individuals using standard linear model approaches
(1–7). Harrington et al. observed that among MCI cases, those
who are amyloid positive vs. negative had greater deficit in
verbal and visual memory (Hedge’s G difference: 0.66 and 0.35,
respectively) and attention/processing speed (Hedge’s G = 0.31),
but higher functioning in language (Hedge’s G = −0.70) (1).
However, results among cognitively unimpaired subjects have not
been consistent across studies. For example, some studies did not
observe statistically significant differences (1, 2), whereas other
studies using larger sample sizes found associations between
episodic memory and amyloid (3, 4, 7, 8). A meta-analysis
of cognitively normal subjects with and without amyloid (9)
found differences with small effect sizes for visuospatial function,
processing speed, episodic memory, semantic memory, and
executive function. Together, these findings indicate that the
cognitive differences between amyloid positive and negatives in
cognitively normal subjects can appear nuanced and difficult
to detect.

Additionally, age of onset can also impact the cognitive
profiles associated with AD (10). Patients with onset of AD
at younger ages demonstrate praxis, language impairment and
visuospatial problems, while older onset patients demonstrate
a greater deficit in visual memory and temporal orientation
(11, 12). In cognitively normal older adults, a decline of episodic
memory has been well-studied and reviewed in Light (13),
Tromp et al. (14). Additional deficits also may be apparent in

attention, inhibition, cognitive flexibility (15) and processing
speed (16).

One issue with these results is that tests are often grouped into
subscales, and associated with certain functions. This approach
requires replication within each scale, which is difficult given
the time generally required to administer cognitive tests. The
polyfactorial nature of tests leads to a reduction in internal
consistency, which also hampers statistical power. Critically, it
also complicates interpretation of scale scores.

The objective of this study is to characterize age-stratified
cognitive profiles using NP test specificity among cognitively
normal and MCI subjects, with the goal of identifying
which cognitive abilities are most strongly related to
amyloid biomarker measurements. In turn, this will aid in
identifying promising targets for cognitive assessment in
clinically practical amyloid detection tools. Focus is given
to samples consisting of cognitively normal and MCI,
since such subjects are likely to be targets for future AD
treatments. We hypothesize that tailored and abbreviated
sets of cognitive tests that are in line with these targets can
help improve prediction of amyloid positivity. Given age
and APOE genotype are important predictors of amyloid
(2, 17–19), we explore stratification of cognitive testing by
these variables.

To accomplish this, we applied partially ordered sets
(POSET)-based statistical classification methods to NP test
results from cognitively normal and MCI subjects. These data
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database and the Australian Imaging,
Biomarkers and Lifestyle Flagship Study of Aging (AIBL)
database. We were able to select NP tests across the respective
batteries that share the cognitive functions being assessed. This
allowed for comparability of classification results even as the data
sets were based on different test batteries, since the results are in
relation to performance with the cognitive functions.

POSET statistical methods are classification models that
“sift” through responses to polyfactorial NP measures and
systematically identifies specific cognitive functions that
are relatively impaired. Importantly, a theoretical statistical
framework for this approach has been established (20, 21).
POSETs have the ability to manage the aggregate response
patterns and methodically identify specific functions that are the
source of poor performance. For example, a Category Fluency
test involves the person being asked to say all the words they
can think of within a given semantic category, e.g., “vegetables.”
The functions required for the test include verbal fluency,
attention, and cognitive flexibility. If the individual performed
badly on the test but performed well on another test, e.g., Boston
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Naming, which involves attention and verbal fluency, poor
performance on Category Fluency could then be attributed
to poor functioning in the domain of cognitive flexibility.
Of course, variability in response behavior and the test score
values themselves must be taken into account when assessing
the strength of this evidence. This is formalized in a statistical
Bayesian framework. Importantly, this systematic approach can
be extended to more complex scenarios, when there are multiple
functions involved within and across measures, as we will see
here. Thus, POSETs have the ability to manage the aggregate
response results and methodically classify cognitive profiles.
POSET methods explicitly link functions and measures and
provide a means for data-analytic validation of these links.

POSETs, implemented using custom written scripts in LUA
programming language, have been successfully used in previous
NP data studies to investigate cognitive profiles associated with
progression fromMCI to AD (22, 23). Baseline cognitive profiles
of ADNI subjects were used to determine cognitive functions
related to the risk of conversion from MCI to AD within 2 years.
Deficits in specific levels of episodic memory level [recall of items
after distraction as in the Auditory Verbal Learning Test List
B (22)], perceptual motor speed, and cognitive flexibility were
found to be potentially useful cognitive predictors of conversion.
The presence of an APOE4 allele also had a strong association.
Longitudinal change in specific functions was considered as
well. POSETs have also been used in classifying schizophrenic
cognitive profiles and functional recovery in schizophrenia (24,
25), and cognitive impairment patterns in low birthweight/early
birth children at early grade school (26).

Overall, the objective of our POSET-based analyses was to
provide insight into how cognition is associated with amyloid
positivity, and to identify cognitive function targets for practical
clinical decision tools to help predict amyloid presence. Focus
was given to samples with primarily cognitively normal subjects,
along with some MCI subjects. These samples are thus from
potential screening populations. For the latter group, finding
cognitive differences by amyloid status has been challenging in
prior analyses (9). We then used random forest methods to assess
the importance of individual cognitive tests in prediction.

METHODS

ADNI and AIBL Studies
ADNI is a NIH funded study with the aim to advance
understanding of AD through the use of repeated measurements
over several years. The measurements include MRI, PET, clinical
assessments, and NP tests. The data used in this study for
the POSETs analysis were from the ADNI2 phase, and the
information in the following sections describes the ADNI2 data
only. For further information about the ADNI phases, see www.
adni-info.org.

Similarly, AIBL was designed to investigate the factors that
contribute to the development of AD. It focused largely on the
recruitment of a cognitively normal and MCI population and is
following them longitudinally. Data were collected by the AIBL
study group, and the AIBL study methodology has been reported

previously (27, 28). Further information about the AIBL study
can be found on their website, see www.aibl.csiro.au.

The inclusion criteria for ADNI required participants to
be aged 55–90 years old, have a minimum of 6 years of
education, be fluent in either English or Spanish and have
no other neurological conditions. AIBL inclusion criteria
required participants to be aged ≥60 years of age and have
no other neurological condition or a diagnosis of cancer,
diabetes, or excessive regular consumption of alcohol. Both
studies follow similar criteria for the diagnosis of dementia,
based on the criteria of the National Institute of Neurological
and Communicative Disorders and Stroke–Alzheimer’s Disease
and Related Disorders Association, and MCI based on the
criteria proposed by Petersen et al. (29) [AIBL (27, 30),
ADNI (31, 32)].

The ADNI group focused much more on recruiting MCI
and early AD than in AIBL. To enhance comparability, we
only consider normal, normal with no MCI diagnosis but with
subjective memory concerns (SMC), and early MCI subjects
in ADNI2, and only normal and MCI subjects in AIBL. Late
MCI in ADNI2 have clear cognitive deficits, so would widen
the variability in performance, and could impair comparability
of the samples. Within the series of ADNI studies, we selected
ADNI2 due to the consistent amyloid imaging, and careful
characterization of early MCI subjects. The AIBL NP tests,
although different, were designed to be comparable to the
ADNI NP tests. We limit NP tests to those used in the
same domains in a prior ADNI analysis (22), to allow for
direct comparison.

Analysis Samples
Participant data were selected from the ADNI2 databases if they
had a status of cognitively normal controls, subjective memory
concern but no MCI diagnosis (SMC) [see (32) for diagnostic
criteria—henceforth considered with the normal controls] or
early MCI; known amyloid status determined from PET imaging
or CSF; APOE4 status recorded; and their NP battery test
scores were available. AIBL subject data were selected for
cognitively normal controls andMCI (which were not subdivided
further, as in ADNI2). The demographics for each cognitive
category are summarized in Tables 1A,B. The final ADNI2
sample had a total of 445 subjects consisting of 244 healthy
adults (cognitively normal and subjective memory concern) and
201 MCI subjects. The group was 52% male, mean age was
71 6 years (SD = 6.5). APOE4 allele count was APOE4 = 0:
64.1%, APOE4 = 1: 31.3%, and APOE4 = 2: 4.3%. Amyloid
status across the group was 40.0% positive. The final AIBL
sample with amyloid imaging consisted of 210 subjects−175
healthy adults and 35 MCI subjects. The group was 50.4%
male, mean age was 74.4 years (SD = 6.9), APOE4 allele count
was APOE4 = 0: 67%, APOE4 = 1: 29.0%, and APOE4 =

2: 4.0%. Amyloid status across the group was 41.0% positive.
Although the ADNI2 dataset contained more MCI subjects,
the groups are comparable on age, gender, amyloid positivity,
APOE4 allele count and cognitive status. The ADNI2 group
did include a few subjects in the 55–60 years old range, and
the AIBL subjects had a lower proportion of subjects with
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TABLE 1 | ADNI2 and AIBL population demographics.

ADNI2 (N = 445) Cognitively normal MCI

(A)

Age range <70 years 70–80 years 81–90 years <70 years 70–80 years 81–90 years

Mean age (SD; years) 66.2 (2.5) 74.4 (3.1) 83.7 (2.0) 64.6 (3.7) 73.8 (2.9) 83.5 (2.1)

N 89 129 26 90 90 21

APOE4 (%)

0 60.7 72.8 73.1 50.0 62.2 66.6

1 33.7 26.4 15.4 41.1 34.4 23.8

2 3.4 0.8 11.5 8.9 3.4 4.8

Unknown/not recorded 2.2 0.0 0.0 0.0 0.0 4.8

Amyloid positive (%) 23.6 34.9 46.2 41.1 50.0 61.9

Male (%) 40.4 49.6 65.4 52.2 62.2 47.6

Education ≥ 13 years (%) 86.5 93.0 84.6 93.3 81.1 61.9

AIBL (N = 210) Cognitively normal MCI

(B)

Age range <70 years 70–80 years 81–90 years <70 years 70–80 years 81–90 years

Mean age (SD; years) 66.4 (2.5) 74.8 (3.1) 84.7 (2.4) 65.0 (2.5) 75.1 (3.2) 83.4 (2.5)

N 52 97 26 6 18 11

APOE4 (%)

0 67.3 72.2 73.1 66.6 38.9 54.5

1 32.7 23.7 26.9 16.7 44.4 36.4

2 0.0 4.1 0.0 16.7 16.7 9.1

Amyloid positive (%) 15.4 38.1 53.8 50.0 72.2 63.6

Male (%) 40.4 54.6 42.3 66.7 50.0 63.6

Education ≥ 13 years (%) 57.7 52.6 61.5 66.7 38.9 63.6

(MCI, mild cognitive impairment, SD, standard deviation).

<13 years of education. Cognitive classifications were conducted
for healthy (cognitively normal and SMC) and MCI subjects.
Given that MCI subjects are more impaired and have higher
likelihood of being amyloid positive, and since the mix of
cognitively normal to MCI differs, we decided to conduct parallel
analyses as opposed to pooling POSET classification results for
combined analyses.

Determination of Amyloid Status
In the ADNI study, the presence of amyloid was determined by
the ADNI Biomarker and PET Cores from either CSF or PET
data. PET data was acquired using the tracers Florbetapir (AV45)
or fluorodeoxyglucose (FDG). Full details of the ADNI CSF and
PET analysis protocols and their derivation of amyloid status
can be found on the ADNI website and elsewhere (33, 34). For
AIBL, the PET scans were analyzed by the AIBL Neuroimaging
Research Stream. PET tracers used were Florbetapir (AV45),
Flutemetamol, or the Pittsburgh compound B (PIB). Analysis
details and the amyloid status determination details can be found
in Rowe et al. (35) and on the AIBL website. In our analyses,
we rely on PET analyses results to determine the presence
of amyloid.

Neuropsychological Data and
Determination of Cognitive Functions
The ADNI2 and AIBL studies include a wide battery of NP
tests. A selection of tests was chosen based on the types of
cognitive functions they tested, as listed in Table 2. A variety

of NP tests are needed to classify subjects to profiles of relative
strengths and weaknesses across a range of functions for the
POSETmodel. The final ADNI2 list includes Alzheimer’s Disease

Assessment Scale (ADAS)-Delayed Recall Subscale, ADAS-
Word Recognition Subscale, Rey Auditory Verbal Learning Test

(AVLT)-List 6, AVLT-List B, Boston Naming Test, Category
Fluency, ADAS Number Cancellation, Trail Making Test A, and
Trail Making Test B. The NP tests chosen from the AIBL study
includes Boston Naming Test, California Verbal Learning Test—
Delayed (CVLTD), CVLT—Recognition (CVLTR), CVLT—List
B (CVLT List B), CVLT—Lists 1–5, category fluency, category
switching, Stroop Word, Stroop Colors, CogState Detection,
CogState Identification, CogState One back, and CogState One
Card Learning. For both studies, given the range of ages, we
derive age-normed test scores for analysis in the POSET models
and random forests. This was conducted straightforwardly by
obtaining z-scores that depend on age group within respective
samples. Due to the wide age range, we consider stratifying
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TABLE 2 | Selected neuropsychological tests from the ADNI2 and AIBL battery

and their associated cognitive functions.

NP test Cognitive function

ATT EM1 EM2 EM3 VF CF PS

ADNI2

ADAS delayed recall subscale X X X X

ADAS word recognition subscale X X

AVLT list 6 X X X X

AVLT list B X X X

Boston naming test X X

Category fluency (animals and vegetables) X X X

ADAS number cancellation X

Trail making test A X X

Trail making test B X X X

AIBL

CVLT–delayed recall X X X X

CVLT–word recognition X X

CVLT–lists 1-5 X X X

CVLT–list B X X X

Boston naming test X X

Category fluency (animals and boy’s names) X X X

Category switching X X X

Stroop–words X

Stroop–colors X X

CogState–detection X X

CogState–identification X X

CogState–one back X X

CogState–one card Learning X X X X

ATT, attention; EM1, EM2, EM3, episodic memory level 1, 2, or 3; VF, verbal fluency; CF,

cognitive flexibility; PS, perceptual motor speed.

analyses by 3 age groups: <70 years old (y), 70–80 years, and
81–90 years. Depending on the age of the subject, means and
standard deviations from tests within the corresponding age
group were used to derive z-scores. These age ranges were chosen
based on expert clinical opinion (author AJL) and sample size
balance across both studies. Standardized norming in the CVLT
II Manual also is conducted in these age groups [see (36)].

For our POSET analysis, experienced neuropsychologists
developed a mapping of each NP test in ADNI2 (author JJ) and
AIBL (authors JJ and PM) and the different cognitive functions
being measured (Table 2). These mappings are validated data
analytically (20), as we describe below. The cognitive functions
included three levels of episodic memory, verbal fluency (VF),
attention (ATT), cognitive flexibility (CF), and perceptual motor
speed (PS). Three levels of episodic memory were distinguished
to better represent the differences between immediate recall and
delayed recall that are concealed in the aggregate scores of the NP
tests (Table 3). Level 3 (EM3) is the highest level where subjects
are able to recall given information at least 30min later following
a series of distractors. Level 2 (EM2) is the ability to recall
information after a short duration (10min), with distractors. For
Level 1 (EM1), subjects are able to recall information immediately
after receiving it but cannot recall it after a delay. These are

TABLE 3 | Description of episodic memory levels.

Level Description

3 Recall longer term items with distractors, 30 min

2 Recall intermediate term items, such as AVLT list B, 10 min

1 Recall immediate term items, word recognition

hierarchically related; high-level performance on level 3 implies
high-level performance at levels 1 and 2. Moreover, lower-level
performance at level 1 implies lower-level performance at levels
2 and 3 as well. This ordered relationship between levels reduces
the number of possible profiles, so, for instance, a subject cannot
be high level at EM3 and low level at EM1.

POSET Model Generation
Each NP test is associated with specific cognitive functions
required to perform well on it. POSET models consist of
classification states comprised of detailed profiles of cognitive
functioning that reflect discrete performance levels across the
range of associated functions (20, 21, 24, 25, 37). One state is
considered higher than another state if its associated performance
levels are at least as high for all cognitive functions as those of the
lower one, and strictly greater for at least one of the functions. If
neither state is higher than the other, in that each state is at a high
level for a function that the other is not, then the two states are
said to be incomparable. Allowing for incomparability enhances
the flexibility to model response data. What is considered as high
and low level is relative to within each study sample.

The respective POSET models are algorithmically generated
based on the cognitive specifications of the tests, as in Table 2

(38). Equivalence classes of profiles are identified, where
profiles are in a same equivalence class if they cannot be
statistically distinguished by the test battery. Hence, the models
are identifiable, and well-defined. The model is comprised of
classification states that correspond to these equivalence classes.
For profiles in a same equivalence class, the functions for which
they differ in the profiles are considered as undetermined. For
example, in Table 2, note that cognitive flexibility is always
assessed in conjunction with other cognitive functions (in
addition to attention). There are thus limitations in definitively
distinguishing a subject’s cognitive flexibility functioning levels.
Specifically, when the other functions with which it is being
tested are at low levels, performance on the respective tests
is expected to be poor regardless of the functioning level of
cognitive flexibility. Hence, its level cannot be determined in
such cases. This phenomenon is termed as confounding in
classification. In the model based on Table 2 on the ADNI2
specifications, the affected states were 7, 14, 21, and 28. Note that
for these states, associated profiles indicate low levels for verbal
fluency and perceptual motor speed. These are the two functions
that are tested with cognitive flexibility, respectively, in Category
Fluency and Trails Making Test B (20, 39). Hence, performance
with cognitive flexibility is confounded in those situations, and
its functioning level is undeterminable. In ADNI2 and AIBL, all
tests were specified as involving Attention, so that bottom state
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profiles of 29 and 33, respectively, reflect that Attention is at a
low level, and that due to confounding, the other function levels
are undetermined. We assume that all functions are at low levels
in these states. The AIBL state profiles do not have confounding
beyond the bottom state. This is due to the larger variety of
cognitive tests in the AIBL cognitive battery.

Partially ordered relationships between states allow for more
flexibility and richness than linearly ordered models, and can
represent the complex response patterns from NP tests. They
also take advantage of replication in testing of function, as
POSETs have essential statistical convergence properties such
as accurately identifying a subject’s cognitive profile with
sufficient measurement. A main criterion for model fit involves
assessing consistency in response behavior with respect to tests
that are hierarchically related by the associated cognitive skill
requirements. Additional information on POSET models is
available elsewhere (20, 21, 40).

The number of POSET states represents the number of
possible cognitive profiles that can be determined from the
selected NP tests, shown in Tables 4A,B for ADNI2 and AIBL,
respectively. The associated cognitive functions were determined
from expert opinion (JJ). The corresponding POSET models are
shown graphically as Hasse diagrams in Figure 1, along with the
profiles associated to each state. Listed are the functions at a high
level. Profiles with undetermined CF functioning levels include
CF∗ in their respective list. Ordering of states is represented by
level within a graph, with higher order states at higher levels
in the graph. Direct connections between states indicate direct
ordering, so that the upper connected state is at least as high
a level for all functions as compared to the lower connected
state, while also being at a higher level with at least one extra
function. There were 29 POSET states in ADNI2 and 33 POSET
states in AIBL in this analysis: the lowest state (number 29 and
33, respectively) possesses the lowest level of functioning across
all cognitive functions, and the highest state (number 1 and 1)
represents the highest level of functioning. Every state in between
has at least one cognitive function that is at a low level. Thus, each
state denotes a distinct cognitive profile. In Figures 1A,B, a line
connecting two states indicates a direct ordering between a lower
and higher state.

Each POSET state was assigned a uniform prior probability
value of 1/29 for ADNI2 and 1/33 for AIBL to indicate the
non-informative prior belief about a participant’s profile. Two
response distributions were then estimated for each cognitive
test, representing the statistical behavior of two groups: subjects
in profiles with high level functioning for all the functions
associated with a task, and those who are low level functioning
in at least one of the associated functions. Based on a subject’s set
of responses, Bayes rule was used to update his or her posterior
probabilities of state membership. See, for instance (20, 21), for
details on how posterior probabilities are computed in Bayesian
updating. A posterior probability value near one for a given state
indicates that there is strong empirical evidence for the subject
belonging to that state. In contrast, a value near 0 indicates that
the subject likely does not belong to the state. Classification was
conducted for cognitively normal and MCI subjects.

TABLE 4 | ADNI2 POSET states and their relation to cognitive functions.

POSET

state

Cognitive function

ATT EM1 EM2 EM3 VF CF PS

(A)

1 X X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X

5 X X X X X X

6 X X X X X

7 X X X X *

8 X X X X X X

9 X X X X X

10 X X X X X

11 X X X X

12 X X X X X

13 X X X X

14 X X X *

15 X X X X X

16 X X X X

17 X X X X

18 X X X

19 X X X X

20 X X X

21 X X *

22 X X X X

23 X X X

24 X X X

25 X X

26 X X X

27 X X

28 X *

29

(B) AIBL POSET STATES AND THEIR RELATION TO

COGNITIVE FUNCTIONS

1 X X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X

5 X X X X X X

6 X X X X X

7 X X X X X

8 X X X X

9 X X X X X X

10 X X X X X

11 X X X X X

12 X X X X

13 X X X X X

14 X X X X

15 X X X X

16 X X X

17 X X X X X

(Continued)
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TABLE 4 | Continued

POSET

state

Cognitive function

ATT EM1 EM2 EM3 VF CF PS

18 X X X X

19 X X X X

20 X X X

21 X X X X

22 X X X

23 X X X

24 X X

25 X X X X

26 X X X

27 X X X

28 X X

29 X X X

30 X X

31 X X

32 X

33

X denotes a high level of functioning has been assigned for a particular cognitive function

in a particular POSET state.Within cognitive flexibility, *denotes an ambiguity exists and it

is not possible to determine the contribution of this function. All else has been assigned

a lower level function. ATT, attention; EM1, EM2, EM3, episodic memory level 1, 2, or 3;

VF, verbal fluency; CF, cognitive flexibility; PS, perceptual motor speed.

Response distribution estimation of the respective tests reflect
tendencies for score values among subjects in the respective
populations. Non-parametric approaches were adopted, as the
shapes of the response distributions appeared complex (41). We
categorized response values into four groups, demarcated by
sample quartiles, so that multinomial response distributions are
estimated in a Bayesian, Markov Chain Monte Carlo approach
(24, 25). For the timed data from Trails A and B, Bayesian
non-parametric density estimation using normal mixture models
and Dirichlet process priors was employed (41). These estimated
distributions are used in Bayes rule for computing posterior
probabilities of state membership based on the relative likelihood
of the observed responses and prior probabilities. Subjects will
have relatively higher probabilities to perform well (e.g., upper
quartile) on tests for which they have high level of functioning
for all of the associated functions. Otherwise, it is expected that
they perform less well with relatively higher probability.

Finally, for each subject, probabilities of being at a high
level were derived for each cognitive function. These values
were derived by summing posterior probability values of
state membership with associated profiles that indicate high
functioning with the specific function. Additional information is
available in Tatsuoka (41).

Statistical Comparison
Mann-Whitney U tests were used to compare by amyloid
status the respective POSET-derived probabilities of high-level
functioning across the range of cognitive functions. Comparisons
were conducted within successively finer stratifications by age

and number of APOE4 alleles. Age was stratified into three
categories, <70 years, 70 up to 80 years and 81 up to 90 years.
Bonferroni corrections were applied to the calculated p-values for
the number of cognitive functions. Thus, the null hypothesis was
rejected if the statistical significance surpassed a threshold of p <

0.05/7= 0.007.

Random Forests for Prediction of Amyloid
Positivity With Cognitive Tests
We also developed example random forests based on respective
cognitive tests in Table 2, in addition to age, gender, education
(≥13 years or not), and APOE4 allele count. For ADNI2, we also
include the MMSE total score (42). The objective is to assess the
relative importance and utility for cognitive testing to predict
amyloid status. This is done through analysis of classification
error rates and variable importancemeasured with random forest
methods. A key feature of random forests is the generation
of an ensemble of classification trees based on bootstrapped
samples of the data. Further, at each branch split in a tree, only
a subset of randomly selected variables is considered. This helps
reduce over-fitting. By classifying out-of-bag (OOB) data (about
one-third of original sample) from each bootstrapped sample
with the corresponding tree, an accurate estimate of tree-based
classification error can be obtained without cross validation.
Of great value is the measurement of variable importance in
prediction by the mean decrease in accuracy (MDA) across an
ensemble of trees by taking out each of the predictor variables
individually from the tree fitting process, and assessing the
resultant decrease in accuracy per tree. Below, ntree represents
the number of trees that are fit per data set, and mtry is the
number of variables randomly selected for each branch split (42).
The R software package “randomForest” was used.

RESULTS

Cognitive Differences by Amyloid and Age
POSET model fit in both models was good, as reflected by
relatively large posterior probability values on one state, and
response distribution estimates that reflect the specified order
structure (20). Statistical tests stratified by age group revealed
differences in cognitive profiles by amyloid status in both studies.
In ADNI2, for the <70 years age group, the amyloid positives
(A+) performed significantly worse than the amyloid negative
(A−) group at EM1, EM2, EM3, and ATT. No significant
differences were found in the AIBL <70 years group at the p
< 0.007 threshold. For the 70 years up to 80 years age group
in ADNI2, significantly worse performance for the A+ vs. A−
group was observed for EM1, EM2 and ATT. This group in AIBL
demonstrated significant differences in EM2. For study subjects
aged 81–90 years, in both ADNI2 and AIBL, there were not
significant differences between amyloid groups for any of the
cognitive functions. The associated p-values for all the cognitive
functions are shown in Table 5.

APOE4 Allele Count, Age, and Amyloid
We next looked at how APOE4 and age predict amyloid status
(see Table 6). In many instances, considering age and APOE4
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FIGURE 1 | (A) ADNI2 POSET model for cognitive functioning. Attributes of each level are listed in more detail in Table 4A. (B) AIBL POSET model for cognitive

functioning. Attributes of each level are listed in more detail in Table 4B. The cognitive functions listed represent high proficiency in those functions. ATT, attention;

EM1, EM2, EM3, episodic memory level 1, 2, or 3; VF, verbal fluency; CF, cognitive flexibility; PS, perceptual motor speed.

allele count alone appears sufficient for prediction of amyloid
status. For example, for APOE4 = 0 and age <70 years or 70–80
years in the ADNI2 sample, predicting amyloid status as negative
would have led to accuracy levels of 81.8 and 71.8%, respectively.

Also, for APOE4= 1 and age 81–90 years, or APOE4= 2 and age
70–80 years or 81–90 years, then respective prediction accuracies
were 84.6, 75.0, and 100% for amyloid positive. For other age-
APOE4 allele count groupings, accuracy is <70%. The AIBL
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TABLE 5 | Mann Whitney test p-values for cognitive difference by amyloid status, stratified by age.

Age group ATT EM1 EM2 EM3 VF CF PS n+, n−

ADNI2

<70 years 0.001 0.001 0.004 0.003 0.073 0.121 0.376 57, 118

70–80 years 0.007 0.006 0.002 0.023 0.058 0.727 0.216 82, 123

81–90 years 0.894 0.771 0.489 0.796 0.594 0.816 0.197 33, 23

AIBL

<70 years 0.083 0.211 0.097 0.038 0.381 0.348 0.274 13, 53

70–80 years 0.164 0.027 0.006 0.011 0.834 0.244 0.544 53, 67

81–90 years 0.037 0.016 0.032 0.028 0.843 0.368 0.615 30, 18

n+, number of amyloid positive participants, n–, number of amyloid negative participants. ATT, attention; EM1, EM2, EM3, episodic memory level 1, 2, or 3; VF, verbal fluency; CF,

cognitive flexibility; PS, perceptual motor speed.

TABLE 6 | APOE4 allele count by amyloid status and age group.

Amyloid <70 years 70–80 years 81–90 years

ADNI2

APOE4 = 0 Negative% (n) 81.8 (81) 71.8 (102) 53.8 (21)

Positive 18.2 (18) 28.2 (40) 46.2 (18)

APOE4 = 1 Negative% (n) 50.8 (33) 33.9 (20) 15.4 (2)

Positive 49.2 (32) 66.1 (39) 84.6 (11)

APOE4 = 2 Negative% (n) 36.4 (4) 25.0 (1) 0.0 (0)

Positive 63.6 (7) 75.0 (3) 100.0 (4)

AIBL

APOE4 = 0 Negative% (n) 89.5 (34) 77.6 (52) 60.0 (15)

Positive 10.5 (4) 22.4 (15) 40.0 (10)

APOE4 = 1 Negative% (n) 64.7 (11) 25.0 (6) 15.4 (2)

Positive 35.3 (6) 75.0 (18) 84.6 (11)

APOE4 = 2 Negative% (n) 0.0 (0) 0.0 (0) 0.0 (0)

Positive 100.0 (1) 100.0 (5) 100.0 (3)

sample revealed a similar picture of prediction accuracy with 89.5
and 77.6% negative in the<70 years and 70 up to 80 years groups
for APOE4 = 0. For APOE4 = 1 and age 70 or older, accuracy
remains high with 75.0% positive in the 70 up to 80 years group
and 84.6% positive in the 81–90 years group. For APOE4 = 2,
accuracy was 100% positive for all ranges, although sample sizes
across the age groups are small.

Exploratory Analysis of Cognitive
Differences by Amyloid, Age, and Cognitive
Status
We next stratify by cognitive status (normal or MCI) as well as
age group and amyloid status. This extra stratification results in
smaller sample sizes and number of amyloid positive subjects
per subgroup, hence we view these analyses as exploratory, and
do not adjust for multiple comparisons. Mann-Whitney tests
were adopted, to assess for differences across cognitive functions
by amyloid status. Any differences found below indicate lower
functioning for the amyloid positive group. Type I error level was
set to 0.05.

For ADNI2 cognitively normal subjects, stratified by age
group, the following cognitive functions had statistically
significant differences between amyloid positive and negatives.
For <70 years olds (n = 86, number of amyloid positives n+

= 21): VF (p = 0.044) and ATT (0.031), with EM3 trending
toward significance (p = 0.102); for 70–80 years olds (n = 119,
n+ = 40): ATT trended toward significance (p = 0.064); for 81–
90 years olds (n= 32, n+= 17): ATT trended toward significance
(p= 0.105).

For ADNI2MCI subjects, the following statistically significant
differences in cognitive function were found: For <70 years
olds (n = 90, n+ = 37): EM3 (p = 0.037), with EM2 trending
toward significance (p = 0.068); for 70–80 years olds (n = 86,
n+ = 42): episodic memory levels 1, 2, and 3 (respectively, p
= 0.004; p = 0.012; p = 0.020); VF (p = 0.031), ATT (p =

0.009), CF (p = 0.038), with PS trending toward significance
(p = 0.109); for 81–90 years olds (n = 24; n+ = 16): no
significant differences.

For AIBL cognitively normal subjects, stratified by age group,
there were no statistically significant differences across cognitive
functions between amyloid positive and negatives. For <70 years
olds, n = 51, n+ = 8; for 70–80 years olds, n = 83, n+ = 28;
for 81–90 years olds, n = 27, n+ = 15. For AIBL MCI subjects,
no differences were found for <70 years olds (n = 5, n+ =

3); for 70–80 years olds (n = 13, n+ = 10), trending toward
significance was found for EM2 (p = 0.077); for 81–90 years
olds (n = 14, n+ = 9), significant difference was found for EM1
(p = 0.042), and trends were seen for EM2 and EM3, and for
ATT (p= 0.060 each).

Random Forests for Predicting Amyloid
Positivity and Assessing Variable
Importance in Prediction
As we saw in the previous section, APOE4 allele count on
its own is often quite predictive, depending on age, but
not in all scenarios. Hence, this analysis will inform how
cognitive tests can augment and improve prediction. Through
assessment of variable importance, we can also ascertain
prediction performance when APOE4 allele count is removed as
a predictor through its mean decrease in accuracy (MDA) value.
Given our interest in brief clinical assessment for screening, we
consider individual cognitive tests, as opposed to classification
at the cognitive function level, which would generally require
replication in testing (see Table 7).

Four variables were randomly selected per branch split (mtry
= 4, ntree = 1,000). The random forest OOB error rates
using all data in ADNI2 and AIBL are 30.88 and 27.14%.
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TABLE 7 | Random forest results for ADNI2 and AIBL using all complete data records.

All data

Importance of variables

(n = 437, yes/no = 173/264)

MDA

(A) ALL DATA INCLUDED FOR ADNI2 AND AIBL

ADNI2 APOE4 36.0

ADAS NC 16.9

Age 15.8

ADAS DR 11.2

AVLT list B 6.6

Gender 6.3

Trails B 4.3

Boston 4.2

AVLT list 6 1.8

ADAS WR 1.6

ED > 13 years 1.2

MMSE 0.1

Trails A -2.0

Category Fl -2.2

(n = 234, yes/no = 96/138)

AIBL APOE4 33.5

Age 15.4

CVLT DR 14.7

CVLT list 1–5 13.7

CogState 1card 11.8

CogState 1back 10.8

CogState ID 5.3

Category switch 3.1

CVLT Recog 2.5

Category Fl 1.7

Stroop–Colors 1.5

Stroop–Words 1.4

Boston 1.3

CogState Det -1.2

Ed > 13 y -2.4

Gender -2.6

<70 years 70–80 years 81–90 years

Importance of variables

(n = 176, yes/no = 58/118)

MDA Importance of variables

(n = 205, yes/no = 82/123)

MDA Importance of variables

(n = 56, yes/no = 33/23)

MDA

(B) All DATA FOR ADNI2 AND AIBL, SUBGROUPED BY AGE

ADNI2 APOE4 20.9 APOE4 20.7 APOE4 17.2

ADAS DR 13.3 ADAS DR 8.3 AVLT List 6 4.3

Trails B 9.3 AVLT List B 7.9 Gender 3.4

ADAS WR 9.0 Trails B 6.4 ADAS NC 2.8

Gender 3.9 Boston 4.9 AVLT List B 2.7

Boston 3.7 ADAS NC 3.8 MMSE 1.7

AVLT list 6 3.5 Category Fl 3.5 Trails A 0.3

ADAS NC 0.5 Ed > 13 y 2.0 Ed > 13 y -0.4

AVLT list B 0.4 Trails A 1.4 Trails B -2.5

Ed > 13 y -0.2 Gender 1.3 Boston -2.8

MMSE -0.3 ADAS WR -0.2 Category Fl -4.2

(Continued)
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TABLE 7 | Continued

<70 years 70–80 years 81–90 years

Importance of variables

(n = 176, yes/no = 58/118)

MDA Importance of variables

(n = 205, yes/no = 82/123)

MDA Importance of variables

(n = 56, yes/no = 33/23)

MDA

Trails A -3.2 MMSE −0.8 ADAS WR -4.3

Category Fl -5.2 AVLT list 6 -0.8 ADAS DR -5.4

(n = 66, yes/no = 13/53) (n = 108, yes/no = 44/64) (n = 60, yes/no = 39/21)

AIBL CogState 1Card 11.8 APOE4 33.9 APOE4 8.8

Stroop–Words 8.6 CVLT lists 1–5 16.4 CVLT DR 5.6

Category Fl 5.3 CVLT DR 8.4 CVLT lists 1–5 5.2

CVLT DR 5.0 CogState ID 5.9 Stroop–Words 4.7

CogState 1Back 4.7 CogState 1Back 5.4 Stroop–Colors 2.4

Stroop—Colors 2.6 Category Switch 5.2 CogState 1Back 1.9

CVLT recog 1.6 Boston 3.9 CogState 1Card 0.9

APOE4 0.8 Category Fl 2.3 CVLT Recog 0.7

CogState Det 0.4 CogState 1Card 2.2 CogState ID 0.6

CVLT lists 1–5 0.2 Gender 2.1 Category Fl 0.2

Ed > 13 years -0.1 Stroop–Colors 0.6 Category switch 0.1

Gender -0.6 CVLT Recog -0.9 Gender -0.1

Category switch -0.7 CogState Det -0.9 CogState Det -2.5

CogState ID -1.0 Ed > 13 y -1.2 Ed > 13 y -2.6

Boston -1.3 Stroop–Words -1.8 Boston -3.5

Yes/no, amyloid positive/negative; ADAS DR, ADAS Delayed Recall; ADAS WR, ADAS Word Recognition; ADAS NC, ADAS Number Cancellation; Trails A; Trails Making test A; Trails B,

Trails Making test B; Boston, Boston Naming Test; MMSE; Mini Mental State Exam total score; Category Fl, Category Fluency Test; Ed > 13 years; Education > 13 years, CVLT DR,

CVLT Delayed Recall; CVLT Recog, CVLT Recognition; CogState ID, CogState Identification; CogState 1Card, CogState One Card Learning; CogState 1Back, CogState One Back and

CogState Det, CogState Detection. MDA, Mean Decrease in Accuracy.

The OOB error rates in the age subgroups <70, 70–80, 81–
90 years were 30.46, 32.35, and 30.36% in ADNI2, and 17.24,
24.76, and 4.43% in AIBL. For AIBL, the OOB error rate
worsens for the older age groups. The relative ranking of variable
importance and associated mean decrease in accuracy values
are interesting. Note that in ADNI2, we see that APOE4 is the
most important variable in prediction. In the random forest
with all data, not including APOE4 allele count as a variable
results in a 36% mean decrease in accuracy. This indicates
that cognitive testing alone may not be as effective in overall
prediction withoutAPOE4 allele status. Note that ADASNumber
Cancellation, a measure of attention, has the second highest
importance, followed by age and ADAS Delayed Recall. The
cognitive tests are in alignment with our POSET-based findings
that differences in ATT and EM3 are statistically significant when
age is <80 years.

For AIBL, APOE4 allele count is by far the most important
variable overall for the random forest fit with all the subjects
together. Still, note that a number of episodic memory tasks also
have relatively high importance (e.g., <10% mean decrease in
accuracy), as well as the age variable. This includes CVLTDelayed
Recall and List 1–5 tasks, and CogState One Card and One Back
tasks. APOE4 allele count is important for the 70–80 and 81–
90 years age groups as well, but interestingly, it is not relatively
important in the<70 years age group. In that age group, CogState
One Card is the most important variable, and the only one with
<10% MDA. In this subgroup, note that the number of positive

amyloid subjects is relatively small, which may be a factor in the
low OOB error rate. For the 70–80 years random forest, note
that CVLT Lists 1–5 has MDA of 16.4%. This test is associated
with EM2.

DISCUSSION

We applied POSET models to NP test scores from ADNI2
and AIBL to examine performance in a range of cognitive
functions and characterize cross-sectional cognitive function
deficit patterns that were associated with the presence of amyloid.
These results showed that specific cognitive abilities differed
by amyloid status and depended on age. In general, episodic
memory, particularly intermediate recall with distraction (EM2),
as well as delayed and immediate recall abilities (EM3 and
EM1) and attention (ATT) most consistently emerged as being
associated with amyloid positivity. These differences depend on
age group. In ADNI2, for subjects <70 years old, cognitive
differences by amyloid group are clear for EM1–EM3 and ATT
even at the strict Bonferroni-corrected threshold of p < 0.007.
These differences persist for the 70–80 years group, although
EM3 differences are significant only at the p < 0.05 threshold.
In AIBL, there are less clear differences, with only EM2 being
significant at the stricter threshold for the 70–80 years group.
However, at the p < 0.05 threshold, differences arise for EM3
at all age groups, and EM1 for the 70–80 years and 81–90 years
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groups. At that significance level, ATT is significantly different
for the 81–90 years group.

Hence, the cognitive functions with differences between
amyloid groups are similar across studies. The differences do
appear to arise earlier in the ADNI2 cohort. The differences
are also more decisive, in terms of smaller p-values, in ADNI2.
This could be due to larger sample size, and the higher level
of inclusion of MCI, so that differences with cognitively normal
subjects is more pronounced. Interestingly, for ADNI2, there are
no differences at either significance threshold in the 81–90 years
group. This could be in part due to increases in other causes
of cognitive impairment with aging leading to a reduction in
cognitive variability among the oldest participants.

In section APOE4 Allele Count, Age, and Amyloid, it is
interesting to see how well-amyloid positivity is predicted from
APOE4 allele count, in conjunction with age group, in both
studies. For instance, when APOE4= 0 and age is<70 years then
amyloid status is likely negative. In contrast, when APOE4 = 1
and age is >70 years then amyloid status is likely positive. When
APOE4 = 2, amyloid status appears to be decisively positive.
For other APOE4/age combinations, amyloid status is less clear.
These results are in line with a prior study that found that an
estimated 91% of people with two APOE4 alleles develop AD,
at the average age of onset of 68 years, compared with just 47%
for a single APOE4 allele, with average onset of 76 years (43).
Carriers of the APOE4 gene also demonstrated a higher degree
of cognitive decline (44).

The random forest results indicate that reasonable
performance in prediction of amyloid positivity is possible
with cognitive tests, APOE4 and demographic variables.
Importantly, random forest variable importance results by
age group give a sense of how importance changes with age.
In ADNI2, APOE4 is still most important, and delayed recall
measures are second most important. However, in the age group
81–90 years, the MDA for AVTOT6, the second most important
variable, is only 4.3%, which indicates that cognitive testing
may not be helpful for prediction in this age subgroup. For the
81–90 years age group random forest for AIBL, OOB error rate
is 40.43%, indicating that even with APOE4 genotype, cognitive
tests, and demographic variables, prediction of amyloid may be
difficult in the age group. In both studies, it appears that for the
81–90 years age group, cognitive tests do not have high variable
importance for predicting amyloid positivity.

Overall, the POSET and random forest analyses have strong
correspondence. By age group, the cognitive functions identified
as differing by amyloid status are also associated with the
cognitive tests found to have relatively high variable importance.
The POSET analysis provides scientific support for the selection
of cognitive tests for prediction, and correspond to known
cognitive sequalae in AD progression. A practical ramification
of the POSET analyses is the focus at the cognitive function
level, as opposed to the individual test level, as done in random
forests. Although different cognitive test batteries were adopted,
the cognitive test importance values are unified across studies
by sharing common specifications for functions that significantly
differ by amyloid status. This holds promise for flexibility in
future screening in terms of utility of a range of cognitive

tests that can be effective in prediction. Considerations of cost
and burden of NP tests are important before implementing
classification tree algorithms for practical clinical use. Time is
often a limiting factor in clinics and conducting cognitive tests
can be time consuming. For example, the ADAS–Delayed Recall
Subscale takes roughly 30min to complete for assessment of
the EM3 function. Note that CogState memory tests, which are
computerized, were also found to be important. It may thus be
possible to streamline administration of tests to minimize impact
on clinical flow and test burden.

We also conducted exploratory subgroup analyses by age and
cognitive status in section Exploratory Analysis of Cognitive
Differences by Amyloid, Age, and Cognitive Status. In many
cases, sample sizes and the number of amyloid positives within
the subgroup were often small. Still, there are interesting findings
for cognitively normal subjects in the ADNI2 study for <70
years olds, with verbal fluency and attention being significantly
different. For the MCI subjects in both studies, it appears
episodic memory levels and other functions may be impacted,
depending on age group. In prior studies, the differences in
cognitive function in cognitively normal and MCI cohorts by
amyloid presence have varied: some studies have reported no
differences in the cognitive performance between healthy A+
and healthy A− groups (1, 2), while other studies have reported
differences in episodic memory (7, 8, 45). It is difficult to
compare the type (level) of episodic memory deficit between
these studies and ours as they generally do not break the cognitive
functioning down into the levels used here. Episodic memory
has generally been reported as encompassing EM1, EM2, and
EM3. Using data from AIBL, Lim et al. (2) observed that the
cognitively normal A+ group had a subtle lower performance
across all NP tests examined, compared to their cognitively
normal A− group. In Tatsuoka et al. (22), it was found that
POSET values of cognitive functioning were fairly effective for
predicting conversion from MCI to AD within 24 months.
EM2 was found to be the most promising of all the cognitive
functions, in conjunction with APOE4 status. EM3 was less
effective than EM2, perhaps owing to aging confounding, as
some non-converters had poor EM3 functioning as well. These
findings are not inconsistent with what we have found in the
current analysis.

The AIBL MCI cohort at age 70–80 years old has a higher
rate of amyloid positivity (72.2%) compared to the same group
in ADNI (50.0%). Although this AIBL group also has a lower
percentage with education duration <13 years (38.9 v 81.1%),
the random forest analysis results show only a weak association
with education for inferring the presence of amyloid. The
higher rate of amyloid positivity may be explained by the
higher incidence of APOE4 alleles in this group−44.4 and
16.7% for 1 and 2 alleles, respectively. The contemporary group
in ADNI has the following rates−34.4 and 3.3%, respectively.
This discrepancy may also be due to our restriction to early
MCI in the ADNI2 group, to reduce the proportion of MCI
in the sample, and to select less affected subjects. The MCI
subjects in AIBL were not characterized as early or late,
and hence are likely more heterogeneous in terms of their
MCI stage.
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Limitations of this analysis include the sample size reductions
that resulted from the age group stratification. The posterior
probability values being analyzed were highly non-normally
distributed, so non-parametric methods along with subgroup
stratification (age, APOE4 count, cognitive status) was adopted
rather than linear models with covariate adjustment. Also,
the ADNI2 and AIBL populations are somewhat clinically
and demographically narrow, which makes it difficult to
draw generalizable conclusions that can be applied to other
populations. The ADNI2 sample has a high proportion of
participants withMCI, many years of education, and is composed
of a mostly Caucasian sample. The AIBL sample has less MCI
but also has relatively lower levels of education, and also is
mostly Caucasian. Note that education has been found to have
a relatively weak association with memory decline, and so it
appears to be an important marker in both studies (46). Also in
AIBL, non-amnestic MCI were included in the dataset; this is not
normally associated with progression to AD and may represent
different underlying pathology.

We acknowledge that both amyloid and tau could play
important roles in AD pathology. The notion that amyloid
pathology defines AD has remained largely intact through
each successive update to the diagnostic criteria. The amyloid
hypothesis predicts that the neurofibrillary tangles and other
disease-associated pathologies, including synapse degeneration,
hippocampal atrophy and neuroinflammation, are downstream
of amyloid pathology and less disease specific. Therefore, if an
individual presents with positive amyloid, the current view is
that it is consistent with the AD diagnosis criteria, and tau
and/or neurodegeneration markers positivity is not necessary.
This is a “consensus” view broadly shared by both the NIA-AA
diagnostic guidelines (2011–2018) and the International Work
Group (IWG) criteria (2007–2014). In our study, we followed the
diagnosis criteria, and did not apply the tau positivity status in
defining our study population.We acknowledge that the evidence
of tau accumulation may help to address the heterogeneity of
the study population in terms of AD pathologies. It should be
noted that recent guidelines published by the NIA-AA include
amyloid, tau and neurodegeneration in a recommended research
framework of diagnosing AD (47). However, for these analyses,
we chose to keep to the recommended clinical criteria.

Finally, we note that the random forest analysis was for
illustrative purposes only and not for clinical use.

CONCLUSION

These findings give insight into how specific aspects of cognitive
functioning were associated with amyloid positivity, depending
on age, in different samples comprised of cognitively normal,
and MCI subjects. These samples represent potential screening
populations. Through POSET models of ADNI2 and AIBL NP
test data, cognitive functions were identified as targets for testing
to help predict brain amyloid-beta positivity. Note that this
approach is a more general approach than selection of specific
tests, as it suggests the possibility that different cognitive tests
can be useful in prediction, as long as they tap into the same

cognitive function targets. Indeed, this is what was observed
across the ADNI2 and AIBL studies, which adopted different
test batteries. The analyses presented here showed that cognitive
testing of intermediate and delayed recall (EM2 and EM3)may be
particularly useful, as well as attention (ATT). They also indicate
that for older subjects (81–90 years), prediction can be more
difficult, even with cognitive tests. This finding is reflected in
both ADNI2 and AIBL data sets. These results inform a potential
role of cognitive testing in the development of clinical screening
tools that inform prediction of amyloid positivity without the
use of invasive and expensive approaches such as amyloid PET.
The random forest analyses across the two studies suggest that
abbreviated cognitive testing that focuses on these respective
targets can still lead to moderately high prediction accuracy.
Future work will focus on developing efficient and practical
classifiers that can be used in clinical settings.
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