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Simple Summary: Liver cancer is one of the most common causes of cancer worldwide, but unfor-
tunately, current technology has a limited ability to detect it early in high-risk patients. This study
investigates a machine learning algorithm based on protein levels in the blood that can be used to
help with diagnosis. The test shows promising results, especially in patients with smaller tumors
and compared to current blood detection tests. This research suggests an important role in the future
for machine learning algorithm-based blood detection tests.

Abstract: Hepatocellular carcinoma (HCC) is one of the fastest growing causes of cancer-related
death. Guidelines recommend obtaining a screening ultrasound with or without alpha-fetoprotein
(AFP) every 6 months in at-risk adults. AFP as a screening biomarker is plagued by low sensitiv-
ity/specificity, prompting interest in discovering alternatives. Mass spectrometry-based techniques
are promising in their ability to identify potential biomarkers. This study aimed to use machine
learning utilizing spectral data and AFP to create a model for early detection. Serum samples were
collected from three separate cohorts, and data were compiled to make Development, Internal Valida-
tion, and Independent Validation sets. AFP levels were measured, and Deep MALDI® analysis was
used to generate mass spectra. Spectral data were input into the VeriStrat® classification algorithm.
Machine learning techniques then classified each sample as “Cancer” or “No Cancer”. Sensitivity and
specificity of the test were >80% to detect HCC. High specificity of the test was independent of cause
and severity of underlying disease. When compared to AFP, there was improved cancer detection for
all tumor sizes, especially small lesions. Overall, a machine learning algorithm incorporating mass
spectral data and AFP values from serum samples offers a novel approach to diagnose HCC. Given
the small sample size of the Independent Validation set, a further independent, prospective study
is warranted.
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1. Introduction

Primary liver cancer results in a significant global burden of disease, with studies
reporting it as the sixth most common cause of cancer and fourth most common cause of
cancer-related death worldwide in 2018. Hepatocellular carcinoma (HCC) makes up 75% to
85% of all primary liver cancers [1]. While reports have suggested a decrease in incidence
of HCC in Asia due to vaccination and treatment programs for viral hepatitis, HCC is the
fastest growing cause of cancer-related deaths in the United States [2]. Chronic liver disease
of any etiology remains the most significant risk factor, with 80% to 90% of new HCC cases
occurring in this population [3]. Surveillance programs have been developed for earlier
detection and mortality reduction. Current AASLD guidelines recommend surveillance
in adults with cirrhosis and high-risk patients without cirrhosis using ultrasound with
or without alpha-fetoprotein (AFP) assessment at six-month intervals [4]. Unfortunately,
screening ultrasound may be of limited use among select populations secondary to body
habitus, obesity, early HCC disease, and operator experience [5]. In such cases, biomarkers
may supplement ultrasound in the detection of early disease. However, the sensitivity
and specificity of AFP is barely satisfactory, necessitating the discovery of circulating
biomarkers with a higher diagnostic value [6]. In fact, neither European nor American
guidelines include quantification of serum AFP for HCC diagnosis, despite estimated
improvement of 6% to 8% in detection rate. Reasons for its suboptimal performance
include lack of sensitivity for detecting hepatocellular carcinoma in early stages and large
numbers of false-positive results [7].

Several candidate biomarkers are being studied for HCC diagnosis, with des-gamma-
carboxy prothrombin (DCP), lens cullinaris agglutin-reactive AFP (AFP-L3), osteopontin,
and midkine, amongst others, the most advanced in development. Nevertheless, significant
challenges exist, largely stemming from HCC molecular heterogeneity [8]. Furthermore,
many of these biomarkers continue to be plagued with low sensitivity, especially when used
without AFP [9]. Certain biomarkers, such as DCP and AFP-L3, are markers of advanced
tumoral stage, thus preventing their use for early cancer detection [10,11]. Recognizing
that HCC tumor biology is highly heterogeneous, composites of biomarkers and clinical
factors associated with risk of HCC have been investigated for early detection of HCC. One
such panel, the GALAD score, uses objective measures of gender, age, AFP, AFP-L3, and
DCP [12]. The sensitivity/specificity of GALAD at a fixed cutoff of −0.63 has ranged from
92%/90%, 71%/96%, and 88%/89% in cohorts from the UK, Japan, and Germany [13] to
79%/79% in a cohort from the USA [14].

Recently developed mass spectrometry-based techniques, such as proteomics,
lipidomics, and metabolomics, represent promising tools for the discovery and identi-
fication of proteins, peptides, lipids, and metabolites associated with various diseases [15].
Among various mass spectrometric techniques, matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry is a high-throughput technology capable
of generating a molecular fingerprint. Thus, it has provided a powerful tool for discovery
of biomarkers in different kinds of cancers, including HCC [16–18]. However, traditionally
matrix-assisted laser desorption/ionization (MALDI)-based studies have been hampered
by lack of sensitivity. A new approach, the Deep MALDI® method, which averages over
many more laser shots than conventional methods, allows for a deeper probing of the
serum proteome [19]. Machine learning (ML) techniques have been applied to combine
MALDI mass spectral (MS) data with clinical data to generate molecular diagnostic tests
predictive of outcomes for cancer therapy [20,21].

Herein, we propose using this technology for test development and blinded validation
on three independent sample sets from healthy volunteers, patients with known cirrhosis
without HCC, and patients with HCC. The main goal of the study is to identify a signature
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of early HCC among patients with cirrhosis or high-risk patients with chronic liver disease.
We focus on the assessment of test performance in the patients with the smallest lesions,
where early detection and intervention is most important.

2. Materials and Methods
2.1. Patient Cohorts

Two patient cohorts were used for test development and initial validation: a cohort
of 100 pre-transplant patients (48 HCC and 52 cirrhosis) from University of Texas Health
Sciences Center San Antonio (UTHSCSA) and a cohort of 193 patients (110 HCC and
83 cirrhosis) from Democritus University of Thrace, Greece (Greek). A third cohort of 156
patients (97 HCC and 59 healthy volunteers) from Roswell Park Comprehensive Cancer
Center (Roswell) was used for blinded, independent validation of the test. Serum samples
had been collected from patients in the UTHSCSA cohort at time of liver transplant. Blood
collection protocols were approved by the respective institutional review committees, and
patient consent was obtained. The study conformed to ethical guidelines of the 1975
Declaration of Helsinki.

Of the UTHSCSA cohort containing 100 patients, 48 patients had HCC and 52 patients
had liver disease without HCC. Patients undergoing liver transplant for HCC generally
had much better liver function than those with other liver diseases. The predominant liver
disease etiologies across all 100 patients were alcohol-related cirrhosis and hepatitis C. The
Greek cohort consisted of 110 patients with HCC and 83 patients with liver disease without
HCC. Within this cohort, 68% of patients had hepatitis B. The Roswell cohort consisted of
97 patients with HCC and 59 healthy volunteers without HCC, totaling 156 patients.

As there were differences in liver function and liver disease etiology between the two
cohorts used for test development, the UTHSCSA and Greek cohorts were combined, split,
and stratified by presence/absence of HCC to create a Development set and an Internal
Validation set (Figure 1). All test development work was carried out using data from only
the Development set. Patient characteristics for all three cohorts and the Development set
and the Internal Validation set are provided in Table 1.
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Table 1. Patient characteristics by cohort and set.

Patient Characteristic Cohort Set

UTHSCSA Greek Roswell Development Internal Validation

HCC
(n = 48)

No HCC
(n = 52)

HCC
(n = 110)

No HCC
(n = 83)

HCC
(n = 97)

No HCC
(n = 59)

HCC
(n = 80)

No HCC
(n = 68)

HCC
(n = 78)

No HCC
(n = 67)

Age median 59.5 56 69 54 63 62 67 54.5 66 57
range 50–85 40–67 44–82 28–80 38–89 38–87 44–82 30–74 47–85 28–80

Gender male, n (%) 32 (67) 25 (48) 92 (84) 60 (72) 84 (87) 40 (68) 63 (79) 42 (62) 61 (78) 43 (64)
female, n (%) 16 (33) 27 (52) 18 (16) 23 (28) 13 (13) 19 (32) 17 (21) 26 (38) 17 (22) 24 (36)

MELD median 14 25 10 NA 11 NA 11 25 11 25
range 7–37 13–47 6–26 NA 6–38 NA 6–34 16–42 7–37 13–47

NA, n (%) 13 (27) 0 (0) 2 (2) 83 (100) 14 (14) 59 (100) 7 (9) 42 (62) 8 (10) 41 (61)

Child-Pugh A, n (%) 30 (63) 6 (12) 72 (65) 74 (89) 53 (55) NA 35 (44) 38 (56) 37 (47) 36 (54)
B, n (%) 16 (33) 38 (73) 27 (25) 7 (8) 24 (25) NA 16 (20) 3 (4) 11 (14) 4 (6)
C, n (%) 2 (4) 8 (15) 11 (10) 2 (2) 6 (6) NA 5 (6) 1 (1) 6 (8) 1 (1)

NA, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 14 (14) NA 24 (30) 26 (38) 24 (31) 26 (39)

BCLC status A, n (%) 48 (100) NA 3 (3) NA 29 (30) NA 26 (33) NA 25 (32) NA
B, n (%) 0 (0) NA 15 (14) NA 12 (12) NA 9 (11) NA 6 (8) NA
C, n (%) 0 (0) NA 73 (66) NA 41 (42) NA 35 (44) NA 38 (49) NA
D, n (%) 0 (0) NA 19 (17) NA 15 (15) NA 10 (13) NA 9 (12) NA

Liver disease HBV, n (%) 4 (8) 1 (2) 72 * (65) 59 (71) 3 (3) 3 (5) 41 (51) 29 35 * (45) 31
origin HCV, n (%) 28 (58) 21 (40) 10 * (9) 7 (8) 26 (27) 13 (22) 18 (23) 15 20 * (26) 13

Other/NA, n (%) 17 (35) 30 (58) 29 (26) 17 (20) 68 (70) 43 (73) 21 (26) 24 24 (35) 23

Serum AFP median 4.7 1.6 37.0 2.0 4.0 2.6 16.8 1.8 25.0 2.1
(ng/mL) minimum <0.8 <0.8 1.1 0.8 <1.5 <1.5 <1.5 <1.5 <0.8 <0.8

maximum ≥10,000 15.0 ≥10,000 115 ≥10,000 11.5 ≥10,000 20.0 ≥10,000 115

Lesion size <3, n (%) 13 (27) NA 1 (1) NA 5 (5) NA 8 (10) NA 6 (8) NA
(cm) ≥3 and <5, n (%) 21 (44) NA 13 (12) NA 18 (19) NA 16 (20) NA 18 (23) NA

≥5 and <7, n (%) 4 (8) NA 18 (16) NA 14 (14) NA 12 (15) NA 10 (13) NA
≥7 and <10, n (%) 3 (6) NA 12 (11) NA 26 (27) NA 7 (9) NA 8 (10) NA
≥10 and <15, n (%) 2 (4) NA 21 (19) NA 16 (16) NA 12 (15) NA 11 (14) NA

≥15, n (%) 2 (4) NA 7 (6) NA 3 (3) NA 4 (5) NA 5 (6) NA
NA, n (%) 3 (6) NA 38 (34) NA 15 (15) NA 21 (26) NA 20 (26) NA

* One patient had both hepatitis B and hepatitis C; Abbreviations: not available (NA), hepatocellular carcinoma (HCC), Model for End-Stage Liver Disease (MELD), Barcelona-Clinic Liver Cancer (BCLC),
alpha-fetoprotein (AFP), hepatitis B virus (HBV), hepatitis C virus (HCV).
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2.2. Methods
2.2.1. Sample Collection and Storage

Serum samples were stored at −80 ◦C and were shipped frozen in batches to the
Biodesix laboratory (Biodesix, Boulder, CO, USA) for MS generation and AFP measurement.

2.2.2. Mass Spectral Acquisition

In total, 3 µL aliquots of each experimental sample were sufficient for generation
of mass spectra. To simulate sample collection procedures practical for clinical use with
sample shipment at ambient temperature, serum samples were spotted onto cellulose
serum cards (Therapak, Claremont, CA, USA), allowed to dry, and then re-eluted. Spectra
were obtained using a MALDI-TOF mass spectrometer (Ultraflextreme, Bruker, Billerica,
MA, USA). The Deep MALDI® method was used, providing data over a greater dynamic
range than standard MALDI approaches [19]. Eight hundred shot spectra were collected
from 63 pre-defined positions per MALDI spot (63 × 800 × 3 spots per sample), for a total
of 151,200 laser shots per sample. Spectra were collected from the UTHSCSA cohort in
November 2013, the cohort of 16 patients with no liver disease in July 2014, the Greek
cohort in March 2015, and the Roswell cohort in February 2018.

2.2.3. Mass Spectral Processing

All spectra were aligned (Table S1) and spectra failing quality control metrics were
discarded. At random, 140 spectra for each sample were selected and averaged to create
one average spectrum (from 112,000 laser shots) per sample. Average spectra then under-
went processing to make them comparable between samples (Figure S1). This involved
background subtraction, normalization (Table S2, Table S5), batch correction using spectral
data from reference samples, and alignment (Table S3). Full details of sample preparation
and spectral processing methods are provided in Supplementary Text S1.

Three hundred mass spectral features were defined (Table S4). Each MS feature is
defined as a mass/charge region and the value of a MS feature is the integrated intensity of
the processed, average spectrum within this mass/charge region. MS feature values were
calculated for each processed averaged spectrum for each sample.

2.2.4. AFP Measurement

Serum AFP levels were measured for each sample using the DAFP00 ELISA kit (R&D
Systems, Minneapolis, MN, USA) following manufacturer instructions as described in
Supplementary Text S1 by ELISA Tech (Aurora, CO, USA).

2.2.5. Application of an Existing MS-Based Serum Proteomic Test

The classification algorithm from a pre-existing serum proteomic test (the VeriStrat®

test, Biodesix, CO, USA) was applied to the generated mass spectra [16]. This test produces
a binary classification of Good or Poor and has been demonstrated to have prognostic and
predictive utility in advanced non-small cell lung cancer [22]. It has been observed that
Poor classifications are rarely observed in patients without cancer [23].

2.2.6. Development of the HCC Detection Test

1. Machine Learning Approach

Test development was carried out using machine learning with a dropout regularized
combination (the Diagnostic Cortex® system, Biodesix., Boulder, CO, USA) approach [24].
This method was designed to allow reliable estimates of test performance from relatively
small development sets in the setting where there are more measured attributes than
samples. Briefly, the Development set was divided into a training set and test set. The
300 MS features and AFP were used as attributes to classify the samples into “Cancer” or
“No Cancer” groups. Many simple, k-nearest neighbor, atomic classifiers were constructed
with the training set using subsets of the attributes. Atomic classifiers not showing any
ability to correctly classify the training set samples were discarded during a filtering step.
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The remaining atomic classifiers were combined using dropout regularized logistic regres-
sion to yield one master classifier. This was repeated for many splits of the Development
set into training and test sets, and an ensemble average was created to generate a final
score for each sample. As each sample was held in the test set for multiple training/test
split stratifications, reliable classification estimates could be obtained for all samples in
the Development set by ensemble averaging only test set data (out-of-bag estimation).
Application of a threshold to the resulting score yielded a binary classification of “Cancer”
or “No Cancer” for each sample. The family of tests produced from varying the threshold
value was assessed using receiver operating characteristic (ROC) methods. A final test
was produced by choice of a particular threshold best suiting clinical need in terms of its
associated sensitivity and specificity.

2. Test Development

As it has been observed that patients with serum samples classified as Poor by the
VeriStrat® classification algorithm or with very high AFP are very likely to have cancer,
patients meeting these criteria (n = 40) were assigned a “Cancer” classification. Data for the
remaining samples (n = 108) in the Development set were then used within the machine
learning platform for training of a classifier able to identify patients with or without HCC,
based on their serum AFP and values of the 100 mass spectral features showing the greatest
potential for classification (Table S6). Figure 2 shows a heatmap of the 100 MS features
used within the classification algorithm for the 108 samples used in classifier development,
grouped according to “Cancer” vs. “No Cancer”. A list of the feature definitions of the 100
MS features and assessment of the univariate associations of the features with presence
or absence of HCC is contained in the Supplementary Text S1. It is noteworthy that no
single feature provided outstanding classification alone. We observed that some pairs of
features, which individually had relatively poor classification power, provided much better
classification as an interaction (i.e., product of the two), indicating the multivariate nature
of the test.

Imbalances between the liver function of patients with HCC and without HCC were
observed in our cohorts, as evidenced by MELD and Child–Pugh scores. This was particu-
larly apparent in the UTHSCSA cohort. Samples were collected at the time of transplant or
resection. Hence, patients without HCC eligible for a liver transplant had very advanced
liver disease with associated poor liver function, while patients undergoing transplant or
resection for early stage HCC had better liver function, typical of the population at risk
for HCC (Table 1). Liver function is easily assessable from measurements of the serum
proteome, and serum mass spectra for patients with poor liver function display many
differences from those for patients with better liver function. Hence, our data were par-
tially confounded. The dropout regularized combination approach of test development is
well-suited to mitigate such confounding effects [24]. In addition to requiring that atomic
classifiers had a minimal level of performance classifying the training set, we required
that they also were able to classify spectra from serum of healthy patients to the “No
Cancer” group. More details on machine learning classifier development are provided in
Supplementary Text S1.

All test parameters, including the threshold for the binary result of “Cancer” or
“No Cancer” were set using only samples from the Development set and locked prior to
all validation.
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2.2.7. Application of the HCC Detection Test to Validation Samples

The HCC detection test was applied to any sample not used in its development
following the schema of Figure 3.

First, mass spectra were acquired from the serum sample, and serum AFP was as-
sessed following the protocols outlined above and in Supplementary Text S1. The VeriStrat
classification algorithm was then applied to the generated mass spectra and samples yield-
ing a Poor classification were assigned a “Cancer” classification. Samples with serum AFP
determined as equal to or exceeding 100 ng/mL were also assigned a “Cancer” classifi-
cation. Samples not yielding a VeriStrat Poor classification and with AFP < 100 ng/mL
were then classified as “Cancer” or “No Cancer” by the machine learning classifier, based
on their MS feature values and serum AFP measurement. Quality control metrics were
applied to the MS data, so that only samples generating mass spectra of sufficient quality
and not exhibiting evidence of sample contamination or degradation received a valid
test classification.

2.2.8. Independent Validation

Independent validation was performed using the fully locked test. Mass spectra were
generated from samples in the Roswell validation set more than 2 years after collection of
spectra used in test development and were classified blinded to all clinical data.
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2.2.9. Statistical Methods

Analyses were performed using SAS 9.3 (SAS, Cary, NC, USA) and PRISM (Graph-
Pad, La Jolla, CA, USA). The area under the curve obtained from the test of Figure 3 was
compared with that obtained from AFP alone using the method of DeLong. Test perfor-
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mance was assessed using sensitivity, specificity, and accuracy of detection of HCC within
patient subgroups.

3. Results

Analysis of the spectra from the Development set accurately classified 66 of 80 (83%
sensitivity) HCC specimens and 57 of 68 (84% specificity) non-HCC specimens. Of the Inter-
nal Validation set, 63 of 78 (81% sensitivity) HCC specimens and 53 of 67 (79% specificity)
non-HCC specimens were accurately classified. Finally, of the Independent Validation
set, 85 of 97 (88% sensitivity) HCC specimens and 59 of 59 (100% specificity) non-HCC
specimens were accurately classified.

To compare the classification power of the family of tests obtained by varying the
threshold applied to the HCC test classifier with that of serum AFP level, ROC plots were
constructed. The ROC plots for the Development, Internal Validation, and Independent
Validation sets for AFP alone and the tests using mass spectrometry data and AFP are
shown in Figure 4. P values for comparison of the area under the curves (AUCs) between
the test and the AFP classification are shown on the right.

The similarity of AUCs between the Development and Internal Validation sets in-
dicates excellent generalization of classification performance. Increased performance in
the Independent Validation set is likely due to the differences in population. The test
showed significantly better performance than univariate AFP level in both Internal and
Independent Validation sets. In the Independent Validation set, at sensitivity of 88%, the
test specificity exceeded that of univariate AFP by 20%. At perfect specificity, the test
sensitivity exceeded that of univariate AFP by 13%.

Diagnostic performance of the commonly used cut-off for AFP of 20 ng/mL typically
produces sensitivities in the range of 41–65% and specificities of 80–90%, depending on
patient population [25,26]. In our study, detection of HCC by the 20 ng/mL cut-off (marked
on the ROC curves in Figure 4) resulted in sensitivities of 49%, 54%, and 71% in the
Development, Internal Validation, and Independent Validation sets, respectively, which is
markedly inferior to the results of the test. Specificity of using AFP cut-off as a biomarker
was high: 99%, 99%, and 100% in the respective cohorts.

Accuracy of test classification for patients with and without cancer in each of the
cohorts overall and in clinical subgroups defined by liver function, origin of the disease,
and lesion size is shown in Table 2.

Table 2. Accuracy of the test overall and by clinical subgroups depending on liver function and origin of the disease.

Cohort

Development
(n = 148)

Internal Validation
(n = 145)

Independent Validation
(n = 156)

HCC
(n = 80)

No HCC
(n = 68)

HCC
(n = 78)

No HCC
(n = 67)

HCC
(n = 97)

No HCC
(n = 59)

Overall, n (%) 66/80 (83) 57/68 (84) 63/78 (81) 53/67 (79) 85/97 (88) 59/59 (100)

Child–Pugh

A, n (%) 28/35 (80) 35/38 (92) 30/37 (81) 34/36 (94) unknown N/A
B, n (%) 16/16 (100) 3/3 (100) 11/11 (100) 2/4 (50) unknown N/A
C, n (%) 5/5 (100) 1/1 (100) 6/6 (100) 1/1 (100) unknown N/A

NA, n (%) 17/24 (71) 18/26 (69) 16/24 (67) 16/26 (62) unknown N/A

Liver Disease
Origin *

HBV, n (%) 36/41 (88) 28/29 (97) 31/35 (89) 29/31 (94) 3/3 (100) N/A
HCV, n (%) 14/18 (78) 10/15 (67) 18/20 (90) 8/13 (62) 26/26 (100) N/A

Other/NA, n (%) 20/26 (77) 21/26 (81) 18/27 (67) 18/26 (69) 56/68 (82) N/A

* One patient had both hepatitis B and hepatitis C; Abbreviations: not available (N/A).

The test demonstrated high specificity, independent of cause and severity of underly-
ing liver disease in the Internal Validation set. The test also showed excellent specificity in
the Independent Validation set, indicating that the utility is not restricted to patients with
impaired liver function or advanced liver disease. The results for HCC patients depending
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on cancer stage and lesion size confirm high sensitivity of the test for early stages and small
tumors (Table 3).
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Table 3. Sensitivity of the test in HCC subgroups depending on tumor size and BCLC status.

Category
Cohort

Development
(n = 80)

Internal Validation
(n = 78)

Independent Validation
(n = 97)

BCLC status

A, n (%) 19/26 (73) 16/25 (64) unknown
B, n (%) 4/9 (44) 3/6 (50) unknown
C, n (%) 33/35 (94) 35/38 (92) unknown
D, n (%) 10/10 (100) 9/9 (100) unknown

Lesion size (cm)

<3, n (%) 6/8 (75) 4/6 (67) 5/5 (100)
≥3 and <5, n (%) 12/16 (75) 11/18 (61) 17/18 (94)
≥5 and <7, n (%) 10/12 (83) 9/10 (90) 11/14 (79)
≥7 and <10, n (%) 5/7 (71) 5/8 (63) 21/26 (81)
≥10 and <15, n (%) 10/12 (83) 10/11 (91) 16/16 (100)

≥15, n (%) 4/4 (100) 5/5 (100) 3/3 (100)
NA, n (%) 19/21 (90) 19/20 (95) 12/15 (80)

Figure 5 illustrates the sensitivity of the test in the combined Development/Internal
Validation sets and in the Independent Validation set depending on tumor size in compari-
son with the detection by applying the 20 ng/mL AFP concentration cut-off.
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Figure 5. Sensitivity of HCC detection by the test and by AFP using cut-off 20 ng/mL (AFP20) in cancer patients. Plots
A and C show in red (Test) and blue (AFP20) lines % of correct identifications of HCC for patients with tumors up to the
threshold tumor size in the combined Development/Internal Validation set (A) and in the Independent Validation set (C).
Dotted grey line (corresponding to the right Y-axis) shows the number of patients with tumors up to the threshold size. Bar
charts B and D show sensitivity within the selected tumor size ranges in the Development/Internal Validation set (B) and in
the Independent Validation set (D).
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Cumulative plots (Figure 5A,C) and bar charts of sensitivity for groups within selected
tumor size ranges (Figure 5B,D) show that the test has improved cancer detection compared
to AFP for all tumor sizes and independently of the chosen tumor size threshold. The
advantage of the test is especially pronounced in diagnosis of small lesions. It detected
69% of HCC cases in BCLC A overall, 71% lesions <3 cm in combined Development and
Internal Validation sets, and 100% of tumors <3 cm in the Independent Validation set. The
test also correctly diagnosed 75% and 76% of grade I and II tumors, as well as 75% and 86%
of HCC in stage I and II patients in the Independent Validation set (see Table S7).

4. Discussion

MALDI-TOF has been a promising tool for the identification of serum biomarkers in
many cancers [27]. This technology has been applied to identify proteins, peptides, and
metabolites related to gastrointestinal, lung, prostate, renal, breast, ovarian and hemato-
logical cancers [27–29]. Furthermore, it has been combined with ML to create algorithms
for both diagnosis and patient stratification for cancer therapy [20,21,30]. The utility of
ML algorithms for detection of HCC or staging of chronic liver disease has also been
explored [31–33], although independent validation of the results is generally not yet avail-
able. Many such studies have relied on spectra generated from liver specimens, which are
difficult to acquire [32–34]. Thus, HCC detection tests utilizing serum markers, as in this
current study, have great potential for accessible use in the clinical setting.

Our current work set out to identify a robust signature of early HCC among high-
risk patients with chronic liver disease or cirrhosis and assess its performance in blinded
validation using serum samples from healthy volunteers, patients with known cirrhosis,
and patients with HCC. Our model incorporates both AFP measurements and MS-based
proteomics in a ML algorithm. Overall, the HCC detection test had greater sensitivity and
specificity compared to AFP alone and showed significantly better performance than AFP
alone in both Internal and Independent Validation sets. Even with differences in patient
demographics, test performance was consistent across Development, Internal Validation,
and Independent Validation sets. This is despite the collection of the retrospective sample
sets under independent protocols, at different institutions and geographic regions, and
with the samples run over a period of several years. These observations point toward the
generalizability of the ML-based test and the stability and reproducibility of the MS data
obtained. The test was able to detect HCC with a sensitivity of 81% or greater at specificity
of 79% or above in all three cohorts. In the Independent Validation set, at a sensitivity of
88%, the test specificity exceeded that of univariate AFP by 20%. It is noteworthy that test
specificity was high even though the cancer-free subjects in each cohort represented clearly
different populations in all three cohorts (liver transplant candidates in the UTHSCSA
cohort, high prevalence of hepatitis B in the Greek cohort, and subjects with healthy livers
in the Roswell cohort). Moreover, test sensitivity was high across liver disease etiology,
including hepatitis B and hepatitis C.

According to a systematic review, AFP with a cut-off value of 20 ng/mL (AFP20) had
a sensitivity and specificity of 49% to 71% and 49% to 86%, respectively [6]. However,
this analysis included mainly Asian studies with tumor size < 5 cm. In comparison,
AFP20 sensitivity in this current study was 49% to 71%, in line with two recently analyzed
US cohorts [14], while we found higher specificity in our cohorts of 99% to 100%. At
a cutoff of −0.63, GALAD score has demonstrated sensitivity/specificity of 92%/90%
in a UK cohort [13] and 79%/79% in a US cohort [14], the EDRN multicenter cohort of
545 subjects. Differences in cohorts make comparison of test performance across studies
extremely difficult. Unfortunately, AFP-L3 and DCP levels were not available for our
patients, precluding a direct comparison of the performance of our test with GALAD scores.
Future studies designed to assess these biomarkers in addition to our HCC detection test
would be necessary to reliably establish relative performance and whether MS data can
provide information that could supplement these scores.
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Early diagnosis of HCC, when resection or intervention may still be possible, is crucial,
given that the overall prognosis is dismal, with a 5-year survival rate of less than 10%. By
the time of diagnosis, only 20% to 30% of patients are eligible for curative therapy, e.g.,
with transplantation, surgical resection, or local ablative processes [35]. In our study, the
HCC detection test was able to recognize early stages of HCC. Notably, it detected 69% of
HCC cases in BCLC A overall, 71% lesions <3 cm in combined Development and Internal
Validation sets, and 100% of tumors <3 cm in the Independent Validation set. While AFP20
had similar performance for the smallest tumors in our Independent Validation set, its
performance was markedly worse in the Development/Internal Validation, and our test
detection rates were much higher than those reported for traditional univariate biomarkers,
such as AFP, AFP-L3, and DCP, when used for early detection [6].

Moreover, our test was performed both in cirrhotic and non-cirrhotic patients, demon-
strating excellent specificity both for Internal and Independent Validation sets regardless
of the underlying liver impairment status. While diagnosis of HCC for cirrhotic patients
can be established by imaging criteria using LI-RADS classification [36], diagnosis is more
difficult in non-cirrhotic patients given that the LI-RADS score cannot be applied and tissue
biopsy is mandatory to establish the diagnosis. Therefore, in the future, after prospective
validation, our test may help in establishing HCC diagnosis for non-cirrhotic patients
without the need for an invasive tissue biopsy procedure.

While the results of our study are promising, there are several weaknesses. First,
the study was retrospective, which introduces possibilities for confounding, and some
demographic data from all cohorts were incomplete. Liver function was dramatically
different between the patients with HCC in the UTHSCSA and Greek cohorts, which led to
these cohorts being combined and then split in two to generate a suitable Development set.
The Independent Validation set included only 156 patients, and the subjects without HCC
were not representative of patients at high risk of developing HCC. A larger scale validation
in patients at high risk of developing HCC would be helpful to ensure generalizability
of the results in the most relevant population. Second, in our study, AFP performed
surprisingly well in detection of hepatocellular carcinoma, with AFP20 demonstrating
very high specificity. Even though AFP had AUCs ranging from 0.82 to 0.92 (Figure 4), we
still observed significant differences in AUCs between AFP alone and the HCC detection
test. While the high specificity of AFP in the Independent Validation set may be due to it
consisting of healthy volunteers, the reason for the good performance of AFP in the other
cohorts is not readily apparent. Ongoing validation with larger sample sizes and a range
of control populations is needed. Lastly, as in most other studies, the number of patients
with early stage cancer in our cohorts was small, making it hard to accurately assess test
sensitivity in this population, where improved detection could be most beneficial.

Ultimately, the goal of this study was to use high-throughput MS-based techniques
to discover a serum signature for early HCC detection. The high-throughput nature of
MALDI mass spectrometry and the use of cards to allow ambient temperature shipment of
dried serum make the test practical in a clinical setting. Indeed, the VeriStrat MALDI-based
MS test, as used in clinical practice for assessment of patients with NSCLC, uses overnight
ambient shipping of dried blood-based samples to a centralized laboratory. However,
given that the signature is composed of unidentified features, clinicians would need to
become comfortable with relying on a result determined by the relative expression levels
of certain proteins without recognizing any obvious mechanistic basis. Nevertheless, this
limitation also applies to several biomarker profiles, including the GALAD score, as well as
other MS-based approaches. Future studies may further explore combining other protein
biomarkers and patient characteristics with AFP and Deep MALDI mass spectral data using
ML methods. New approaches to explainability of machine learning algorithms, protein
identification of the most important MS features used for classification, and translational
studies comparing patients correctly or incorrectly classified by the test may be useful to
increase physician trust in the test.
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Future studies may further explore combining other protein biomarkers and patient
characteristics, such as age, gender, and liver disease etiology, with AFP and Deep MALDI
mass spectral data using modern machine learning methods. Incorporating MS data
into existing, validated serological models (i.e., GALAD scores) may further contribute
to accurate diagnosis. A prospective trial in high-risk populations, including increased
numbers of patients with early stage disease, is necessary for further validation, comparison
with the GALAD score and other novel HCC detection tests, as well as determination of
clinical utility.

5. Conclusions

In summary, the results for our HCC detection test are positive, with impressive
sensitivity and specificity, especially on the Independent Validation set with blinded
validation. The test was able to identify small tumors in early stages, comparing favorably
to currently used biomarker panels. Lastly, the test was conducted on human serum, greatly
improving accessibility compared to HCC detection tests requiring liver biopsy samples.
Nevertheless, work remains to be carried out prior to adoption of the test in clinical practice.
A prospective trial in high-risk populations is necessary for further validation, comparison
with other validated scores, and assessment of generalizability and clinical utility.
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