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ABSTRACT

The identification of genome-wide cis-regulatory
modules (CRMs) and characterization of their asso-
ciated epigenetic features are fundamental steps
toward the understanding of gene regulatory net-
works. Although integrative analysis of available
genome-wide information can provide new biologic-
al insights, the lack of novel methodologies has
become a major bottleneck. Here, we present a com-
prehensive analysis tool called combinatorial CRM
decoder (CCD), which utilizes the publicly available
information to identify and characterize genome-
wide CRMs in a species of interest. CCD first defines
a set of the epigenetic features which is significantly
associated with a set of known CRMs as a code
called ‘trace code’, and subsequently uses the trace
code to pinpoint putative CRMs throughout the gen-
ome. Using 61 genome-wide data sets obtained from
17 independent mouse studies, CCD successfully
catalogued �12 600 CRMs (five distinct classes)
including polycomb repressive complex 2 target sites
as well as imprinting control regions. Interestingly,
we discovered that �4% of the identified CRMs
belong to at least two different classes named
‘multi-functional CRM’, suggesting their functional
importance for regulating spatiotemporal gene ex-
pression. From these examples, we show that CCD
can be applied to any potential genome-wide
datasets and therefore will shed light on unveiling
genome-wide CRMs in various species.

INTRODUCTION

A cis-regulatory module (CRM) is a short DNA fragment
which governs spatial and temporal expression of nearby

genes by interacting with transcription factors (TFs) (1,2).
As the basic unit of the gene regulatory network (3,4), the
CRM contains multiple transcription factor binding sites
(TFBSs) to which a set of TFs binds as an input signal (5–8).
Deciphering the relationship between CRMs and asso-
ciated input signals is a fundamental step toward under-
standing the precise mechanisms of these gene regulatory
networks.
Owing to the popularity of the ChIP-seq method, which

generates a snapshot of genome-wide DNA–protein inter-
actions in high resolution, genome-wide occupancy profiles
of various TFs and histone modifications have accumu-
lated in public data repositories such as the gene expres-
sion omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)
and UCSC genome browser (http://genome.ucsc.edu/).
These ChIP-seq datasets may be an ideal source for iden-
tifying CRMs since the multiple TFBSs are thought to
represent locations of particular CRMs (9). In this regard,
recent studies have accurately predicted tissue-specific
CRMs (enhancers) using a few ChIP-seq data sets (10,11),
or endeavored to achieve some improvement in CRM
prediction with machine learning algorithms (12,13).
However, these studies used only a handful of data sets,
and their methodologies are not well established to be ap-
plicable to other available genome-wide data sets in an
unbiased manner.
To illustrate the great potential inherent in the integra-

tive analysis of genome-wide data sets, we have developed
a comprehensive analysis tool for identifying genome-wide
CRMs in a species of interest, called combinatorial CRM
decoder (CCD). The feasibility of CCD is assessed in this
study by using nine types of known CRMs (training sets)
and 61 feature sets (genome-wide occupancy profiles of 39
TFs and 19 histone modifications in various cell types as
well as three computational annotations) that are obtained
from 17 independent mouse studies. We validated the
CCD algorithm in various aspects and demonstrated key
features of CCD.
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MATERIALS AND METHODS

CCD tutorials and additional information can be found in
the website (http://decode.kaist.ac.kr/).

CCD

CCD is a stand-alone program running on Windows,
Linux and Mac OS. The executable versions and its
source code can be downloaded freely at the website
(http://decode.kaist.ac.kr/).

Definition of the context

CCD requires a single Refseq file of a species of interest
for defining genomic context. The genome is divided into
five sections (‘upstream’, ‘promoter’, ‘genebody’, ‘down-
stream’ and ‘intergenic’) based on transcription start sites
of genes. The knowledge of the context is further used to
generate pseudo sets. More detailed information about the
context is well-described in Supplementary Figure S1A.

Input data sets

CCD requires training sets and feature sets as inputs. The
training set (‘trainingset’ directory) is a collection of
known CRMs, function of which has known a priori.
The feature set comprises two types of genome-wide
datasets: experimental-driven sets and annotation sets
which are stored in the ‘chipseq’ and ‘annotation’ directo-
ries, respectively. We did not manipulate the raw data sets
and only used the processed data sets which have already
been confirmed in the original papers. The annotation set
contains genome coordinates of the same type of elements
predicted via computational approaches such as CpG
islands and conservation. CCD only needs position infor-
mation of elements, thereby adopting the BED format as
the standard format (http://decode.kaist.ac.kr/). All
inputs and the Refseq file should be in the same version
of genome assembly.
In the present study, the feature sets were selected if

they met one of the following criteria.

(1) The feature has been reported to be associated with
any of the training sets.

(2) The enriched regions of the feature have been
provided as an additional file.

Total 58 genome-wide ChIP-seq and three annotation
data sets were collected from the literature and used as
feature sets. Full list of the feature sets and references
can be found in Supplementary Table S1.

CCD score

Each feature set contains the genome coordinates of
elements. In case of the ChIP-seq data sets used in the
present study, the average length ranged from 10 to
7894 bp, and the number of the elements varied from
446 to 48 670. Most features (90%, 53 out of 58) showed
<0.04-fold genome coverage. These observations suggest
that the occurrences of the features would be very rare.
Therefore, CCD assumes that distribution of the features
follows the negative binomial distribution. Each signifi-
cant feature is scored with the CCD score Sccd, which is

based on cumulative probabilities from the negative
binomial distribution Pnb as well as normalized occurrence
rate Onorm. To calculate the cumulative probabilities Pnb,
the ‘pnbinom’ function in the Perl module (Math-CDF-
0.1, http://search.cpan.org/�callahan/Math-CDF-0.1/)
has been incorporated into CCD. Detailed procedure for
the calculation is described in Supplementary Figure S1B.
The normalized occurrence rate Onorm is estimated as the
difference between the occurrences of the feature and the
pseudo-feature in the training set, and further divided by
the total number of the training set. Finally, the CCD
score Sccd is calculated as follows:

Sccd ¼ � logðPnbÞ �Onorm

Ensembl regulatory build database

Ensembl regulatory build database (Mouse Regulatory
Build version 4) was downloaded from the website
(www.ensembl.org). The database comprises of a total of
140 603 unique clusters which are bound (or enriched) by
at least one of the following 27 epigenetic features—
CTCF, c-MYC, E2F1, ESRRB, KLF4, NANOG,
n-MYC, OCT4, STAT3, SMAD1, SOX2, SUZ12,
TCFCP2L1, ZFX, p300 and DNase1 in ES cells;
H3K4me3, H3K9me3 and H3K36me3 in ES hybrid
cells; H3K4me3, H3K9me3, H3K27me3 and H3K36me3
in NPC (or MEF). To get likely regulatory clusters, we
only used the clusters which contain more than three of
the above epigenetic features. For comparison, we con-
verted their genome coordinates into mm8 genome
assembly by using the liftOver tool (http://genome.ucsc
.edu/). A total of 17 562 regulatory clusters were defined
and used for comparison analysis.

VISTA enhancer database

We downloaded 745 experimentally validated enhancers
(‘positive’ status) from the VISTA enhancer browser
(http://enhancer.lbl.gov). These enhancers were used as a
confirmed set for the performance comparison.

RESULTS

Algorithm for the combinatorial CRM decoder

For an analysis, CCD requires the following two types of
information for inputs, sets of known CRMs in the same
functional category (training sets) and genome-wide data
sets of epigenetic features (feature sets). An epigenetic
feature refers to one of the followings; a transcription
factor, a histone modification or a computational annota-
tion such as CpG islands. To integrate a wide assortment
of the feature sets, CCD digitizes binding profiles of the
features as one of two digits, either 0 (absence) or 1
(presence). The digitized information is the basic data
used in CCD (Figure 1A, blue box). The CRMs
function by interacting with designated TFs and are also
associated with histone modifications (2,14). Therefore,
each epigenetic feature that is significantly shared by the
CRMs in a training set can be interpreted as a ‘trace’. By
defining the set of the traces as ‘trace code’ representing
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the characteristics of the training set, CCD identifies
genome-wide CRMs due to these ‘genome-wide’
properties of the feature sets. In summary, CCD first
defines the trace code of each training set, and subse-
quently uses the trace codes to detect putative CRMs in
the genome (Figure 1A).

The elements of inputs (training sets and feature sets)
may substantially vary in lengths and numbers in general.
To define the traces, an approach filtering out randomly
occurred features is essential. Thus, CCD uses the
Matthews correlation coefficient (MCC) which takes
into account true and false positives and negatives of
peaks (a, b, c and d in Step 2, Figure 1A). MCC is a
balanced measure which can be used regardless of differ-
ent sizes (15). To estimate MCCs of features, CCD gener-
ates pseudo sets by random sampling. The conventional
random sampling method randomly selects regions from
the entire genome. However, this approach may not be

appropriate based on the observations that about half of
the genome corresponds to the intergenic regions and the
training sets show varying degrees of genomic context
(Figure 1B). Therefore, we adopted a novel sampling
method called context-dependent random sampling
(CDRS). The CDRS method empirically constructs
pseudo sets (0.1% genome coverage for the training set
and the same number of instances with the feature set), the
context of which is similar to the training set and feature
set. Then, the pseudo sets are used to generate a confusion
table (Figure 1A, Steps 1 and 2). To test whether this
approach can be reliable in various circumstances, we
generated more than 120 000 random training sets in dif-
ferent numbers (10–15 000; the typical number of elements
for the training set), lengths and contexts. The random
training sets were evaluated with 61 different feature
sets. The result showed that almost all of the features’
MCC values are <0.15 (Figure 1C), and therefore the

Figure 1. Overview of the CCD algorithm. CCD requires training sets and feature sets for analysis. (A) For the feature sets, CCD uses processed
genome-wide data sets (BED format) obtained from the literature (see ‘Materials and Methods’ section). Clusters are defined as regions where
features are located within a user-defined interval. Occurrence of each feature in a cluster is encoded as bits (‘0’ for absence and ‘1’ for presence) (blue
box). With this scheme, CCD generates pseudo sets to calculate the Matthews correlation coefficient (MCC) of each feature and further defines
significant features (traces) (Step 1–3) (see ‘Materials and Methods’ section). Once the trace code has been established (Step 4), putative CRMs can
be identified by searching the entire genome for the clusters where the calculated scores are above the cutoff score (Step 5). (B) The context of the
training sets used in the present study differs in varying degrees. Therefore, CCD generates pseudo sets according to the context of the given set.
(C) A total of 120 000 control sets were randomly generated and used as training sets. Each spot denotes the maximum MCC value. Due to uneven
distribution of peaks, MCC values of some random sets (�0.2%) occasionally are >0.15 but their CCD scores are <1 which hardly affect final
outcome. These non-significant features are not shown.
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features greater than or equal to 0.15 will be regarded as
significant features (traces).
Once the traces are defined, a measure which estimates

the relative level of the traces’ significance is required.
Thus, the CCD score has been created. The CCD score
is calculated using the cumulative probabilities from
the negative binomial distribution, and the normalized oc-
currence rate which is empirically estimated for each trace
(Figure 1A and Supplementary Figure S1B; see ‘Materials
and Methods’ section). These traces and associated CCD
scores are called ‘trace code’ and further used to identify
genome-wide putative CRMs (Figure 1A, Step 4).
With the trace code, CCD scans the entire genome to

identify clusters showing similar patterns of the traces as
the training set. As a supervised approach, CCD first sums
all CCD scores of the traces in each CRM and arranges
the CRMs by the calculated scores. Then, a cutoff
score is set by using the user-defined ‘prTHR’ parameter
(Figure 1A, Step 5). Finally, CCD searches the entire
genome for clusters where the sum of CCD scores of the
traces is above the cutoff score and consequently defines
them as putative CRMs (Figure 1A, Step 5; Supplementary
Figure S1C). With this strategy, users can take advantage
of the ‘prTHR’ parameter to adjust the expected level of
validation and putative CRMs prior to run. For example,
when prTHR is set to 20, the result always includes 80%
(100–20) of CRMs in a training set (which automatically
validates the model) as well as putative CRMs which con-
tain traces similar to those found in the given training set.
In this way, users can obtain putative CRMs with a
certain confidence compared with the training sets.
In sum, CCD requires sets of known CRMs (training

sets) and genome-wide data sets (feature sets) for analysis.
CCD first defines trace codes of the training sets and sub-
sequently searches the entire genome for the clusters
showing similar trace codes which is controlled by the
user-defined ‘prTHR’. Theses clusters are designated as
putative CRMs. To gain biological insights of the identi-
fied CRMs, the CCD outputs are specifically designed for
the available related tools such as R, GREAT and UCSC
genome browser (Figure 2).

Trace codes represent the properties of cis-regulatory
modules

The prominent advantage of CCD is that any kind of epi-
genetic features can be evaluated as to whether or not
they are significantly associated with particular types of
CRMs. To demonstrate the key features of CCD, various
types of known CRMs were obtained from five independ-
ent studies and used as training sets (Table 1). For fea-
ture sets, the following genome-wide data sets were
selected to assess the reliability of the CCD algorithm in
various aspects. First, 25 epigenetic features were collected
from the same studies of the training sets to validate the
trace code system (10,11,16–18). Second, 10 epigenetic
features (at least two independent sets of Ezh2, Jarid2,
Suz12 and H3K27me3 in ES cells) were chosen to confirm
the unbiased performance of CCD (16–20). Third, five
genome-wide binding profiles of enhancer-associated
protein p300, each from ES cells, embryo tissues

(forebrain, midbrain and limb) and adult liver, were
included to assess whether target CRMs of the p300 are
altered in different cell types (10,17,21). Furthermore, an
additional 21 epigenetic features including transcription
factors, histone modifications and computational annota-
tions were also evaluated (16–27). Total nine training sets
and 61 feature sets were analyzed in the current study
(Supplementary Table S1).

Even with a wide assortment of the feature sets, CCD
successfully identified 23 (Nanog MTL), 26 (ncMyc
MTL), 17 (Other MTL), 12 (ES enhancer), 13 (CN
enhancer), 10 (Embryo enhancer), 4 (ICR), 23 (Jarid2
target) and 26 (Jarid1a target) traces in the training sets
(Supplementary Table S2 and Spreadsheet 1 in
Supplementary Data). To validate the defined trace codes,
the traces were compared with the known features
described in the original studies of the training sets. As
expected, CCD successfully detected all previously known
features (100%, 29/29) as parts of the trace codes
illustrating that the reliability of the trace code system is
satisfactory (Figure 3A and Supplementary Table S2).

The quality and number of peaks in feature sets may
vary depending on which programs (algorithms) are used.
The addition of weak peaks may influence the outcome of
the CCD algorithm. To evaluate the effect of additional
weak peaks, we generated three or four different sets of
Jarid1a (negative control), Jarid2, Ezh2 and Suz12 from
the same original raw data (GSE18776) by using MACS
with different P-value thresholds (1E-03, 1E-05, 1E-07 and
1E-09), and analyzed them with the Jarid2 target (TR8)
set. Since CCD filters out non-significant features efficient-
ly by using the MCC value, all of the Jarid1a sets were not
included in the trace code (Figure 3B). In case of the
Jarid2, Ezh2 and Suz12 sets which are the traces for the
Jarid2 target set, the sets consisting of <40 000 peaks were

Figure 2. Outline of CCD framework. CCD requires two inputs,
training sets and feature sets. With the inputs, CCD first defines
trace codes for the training sets. Then, it scans the entire genome to
identify putative CRMs by using the trace codes. CCD outputs can be
analyzed with the following available tools; R (heatmap, http://www.r-
project.org/), GREAT (functional annotation, http://great.stanford
.edu/) and UCSC genome browser (visualization, http://genome.ucsc
.edu/). Additional information can be found in the webpage (http://
decode.kaist.ac.kr/).
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still regarded as traces. Although the number of predicted
CRMs was increased as the additional weak peaks were
included, the quality of the predicted CRMs can be
controlled by using the ‘prTHR’. For example, totals of
4512 and 7890 putative CRMs were predicted by using the
‘1E-09’ and ‘1E-07’ sets with default settings, respectively.
By adjusting the ‘prTHR’, 98.8% (4457) of the putative
CRMs in the former result was identified with the latter
set. These results showed that the CCD algorithm is

tolerable to the variations of peak numbers within a
typical range (<40 000), and the addition of weak peaks
results in an increase in the number of putative CRMs. In
general, we recommend users to use <40 000 peaks for a
single ChIP-seq data set. More number of peaks can be
used only if users have confidence that weak peaks are also
genuine binding regions of protein.
The trace code, a combination of significant features,

can reflect the relationship between a particular type of

Figure 3. CCD identified all previously reported features (Supplementary Table S2) as parts of the trace codes for the training sets. (A) The
significant features were weighted with CCD scores. (B) Several sets of Jarid1a, Jarid2, Ezh2 and Suz12, which contain different numbers of
peaks, were obtained from the same original raw set (GSE18776) by using MACS. The MCC values of the sets were plotted. Unfilled marks
and filled marks denote original sets and newly generated sets, respectively. Black marks indicate non-significant feature sets.

Table 1. List of the training sets

ID Name Description Property Count Avg. bp Ref.

TR1 Nanog MTL MTL in mouse
embryonic stem cells

(Nanog-Oct4-Sox2) clusters 1554 218 17
TR2 ncMyc MTL Myc-specific (n-Myc or c-Myc) clusters 1178 223
TR3 Other MTL Other clusters 255 229
TR4 ES enhancer Enhancers ES enhancer 25 357
TR5 CN enhancer Neuronal activity-regulated enhancer 12 631 1000 11
TR6 Embryo enhancer Mixture of embryonic forebrain,

midbrain and limb tissues specific enhancers
75 1163 10

TR7 ICR ICRs Putative or verified imprinting control regions 20 6619 16
TR8 Jarid2 target Jarid2 binding sites Jarid2 binding sites near promoters 1393 3601 18
TR9 Jarid1a target Jarid1a binding sites Jarid1a binding sites near promoters 2443 934

ES, embryonic stem cell; CN, cortical neuron; Other, E2f1, Esrrb, Klf4, Smad1, Stat3, Tcfcp2l1, Zfx.
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CRMs and features. For instance, recent studies have
demonstrated that Jarid2 is a novel subunit of the poly-
comb repressive complex 2 (PRC2) (18,20,28,29). By using
the Jarid2 target set (comprising 1393 binding sites of
JARID2 protein) and 61 feature sets as inputs, CCD in-
variably pinpoints the associated epigenetic features of
PRC2—the components of PRC2 (Jarid2, Suz12 and
Ezh2), a component of polycomb repressive complex 1
(Ring1B), histone modifications (H3K27me3, H3K4me2
and H3K4me3), CpG islands and Eset as the trace
code, whereas none of the other features are included
(Figure 3A and Supplementary Table S2). Since most of
the traces except Eset are known to be components or
associated features of PRC2 (28–32), the result demon-
strates the unbiased algorithm of CCD and further
strengthens the connection between Jarid2 and PRC2.
Thus, we designated the Jarid2 target set as PRC2 target
set. In case of the enhancer sets (TR4, TR5 and TR6),
enhancer-associated histone modifications (H3K4me1 or
H3K4me2) are defined as parts of the trace codes consist-
ent with the previous reports (11,14). Intriguingly, each
type of enhancer is only related to p300 in the same cell
type of the enhancer set, suggesting that target enhancers
of p300 may vary with different cell types (Supplementary
Table S2).
In addition, the trace code is capable of explaining some

biological questions as well. For instance, TBX3 and the
orphan nuclear receptor NR5A2 (also known as LRH-1)
have been reported to share binding targets with OCT4
(also known as POU5F1), SOX2, NANOG, SMAD1 and
ESRRB (26,27,33). Our integrative analysis via CCD
simply reveals that the Nanog MTL set (TR1) is signifi-
cantly occupied by all the above factors as well as
TCFCP2L1, KLF4, E2F1, STAT3, p300, CTCF and
active histone modifications (H3K4me1, H3K4me2 and
H3K4me3) in ES cells (Supplementary Table S2).
Therefore, the result implies that the known property of
NR5A2 and TBX3, which enhance reprogramming effi-
ciency, can be explained by the extensive binding of the
NR5A2 and TBX3 to the Nanog MTLs (35.7 and 10.9%
of the CRMs) (Spreadsheet 1 in Supplementary Data).
The great advantage of the trace code system is that it

can discover unnoticed connections between CRMs and
epigenetic features. For instance, imprinting control re-
gions (ICRs) controlling monoallelic expression of genes
in the imprinted domains can be regarded as CRMs (34–36).
There is growing evidence that repressive (H3K9me3 and
H4K20me3) histone modifications are enriched at the
ICRs in an allele-specific manner (37,38). However, this
is based on observations from a small fraction of the
ICRs. To validate the above facts and identify unnoticed
epigenetic features possibly associated with the ICRs, a set
(TR7) of twenty ICRs was analyzed with 61 features by
using CCD. Surprisingly, the analysis reveals that the fol-
lowing epigenetic features are extensively enriched at most
ICRs in ES cells—H4K20me3 (18/20), H3K9me3 (17/20)
and Eset (18/20) (Spreadsheet 1 in Supplementary Data).
In addition, manual investigation of the ICRs confirmed
that the Sgce-Peg10 and Rasgrf1 domains also contain
high enrichment of the H3K9me3 and H4K20me3 in the
ES cells (Supplementary Figures S2O and P), suggesting

that the processed ChIP-seq data missed these marks due
to the algorithm of peak identification (16). Notably, the
histone H3 Lys 9 methyltransferase ESET, which was
reported to bind to 15 ICRs in ES cells (25), turned out
to be enriched at 18 ICRs with the above histone modifi-
cations (Supplementary Figures S2 and S3). Based
on these observations, we propose that H3K9me3,
H4K20me3 and Eset are the key epigenetic features
associated with the ICRs in the early-stage embryo (ES
cells).

Overall, these results strongly suggest that the trace
code can represent the unique characteristics of certain
types of CRMs.

Identification and characterization of genome-wide
cis-regulatory modules

To specify the training sets with the defined trace codes,
heatmap analysis was performed by using R with the CCD
output. We also analyzed three randomly subsampled sets
from the original training sets. The result indicates that
some training sets may belong to the same functional
classes according to the similar patterns of the trace
codes (Figure 4). All of the subsampled sets show almost
similar trace codes with the originals implying that the
variation of number of instances is marginal. Based on
the dendrogram in the heatmap, the following training
sets are regarded as distinct classes; Nanog MTL (multi
transcription factor-binding loci) (class I), embryo enhan-
cer (class II), ICR (class III), ncMyc MTL (class IV) and
PRC2 target (class V) sets.

With the defined trace codes, CCD is able to identify
genome-wide putative CRMs. To catalogue genome-wide
CRMs with high confidence, we empirically determined a
cutoff score (prTHR) for each class to contain similar
occurrence of significant features as compare to that on
the given known CRMs (R2> 0.75) (Figure 5A). For
instance, we set a cutoff score (prTHR=10, 777.29
CCD score) for the PRC2 target set (class V) since the
number of identified CRMs using a high cutoff score
(prTHR=AVG; average of sum of CCD scores in the
training set, 970.52 CCD score) were less than that of
the training set (Supplementary Figure S4A). Manual in-
vestigation of the Hoxd cluster reveals that the defined
cutoff score is enough to identify the previously known
PRC2 target sites (Supplementary Figure S4B) (39), and
hence we applied this strategy to the rest four classes.

Using the defined cutoff scores, CCD successfully pin-
pointed genome-wide CRMs in the mouse genome
including 2797 (class I), 2455 (class II), 176 (class III),
5557 (class IV) and 2160 (class V) CRMs (Spreadsheet 2
in Supplementary Data). Due to the CCD algorithm, a
subset of CRMs in the given training set is always
guaranteed to be identified along with putative CRMs.
For example, 40% of the known ICRs (8 out of 20,
prTHR=60) near the Impact, Peg3, Airn, Peg13, Nnat,
Snurf, H19 and Meg3 imprinted genes were obtained
along with 168 newly predicted CRMs in the ICR result.
The newly predicted CRMs are not located around
the computationally predicted imprinted genes (www
.geneimprint.com). Nevertheless, it will be interesting to
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examine the genes around these CRMs since they are
enriched (or bound) by unique features (H3K9me3,
H4K20me3 and Eset) similar to the known ICRs. In
addition, the identified CRMs contain similar occurrence
of significant features compared to the training sets. For
instance, 74.9, 45.5 and 59.1% of the predicted Nanog
MTL CRMs (class I) are occupied by NANOG, OCT4
and SOX2 of which the proportions are similar with the
training set (NANOG—83.9%, OCT4—58.7% and
SOX2—72.3%). The genome-wide distributions of the
identified CRMs depend on the classes (Figure 5B). In
case of the class IV (ncMyc MTL) CRMs, the genomic
locations are biased toward the promoter regions, whereas
the class I (Nanog MTL) CRMs seem to be distributed
randomly with respect to genomic context.

To validate the putative CRMs in terms of biological
relevance, functional annotation analysis was conducted
by using GREAT (see ‘Materials and methods’ section)
(http://great.stanford.edu/), which unpacks genomic re-
gions based on the annotation of the nearby genes. The
top 300 newly identified CRMs for each class were ana-
lyzed with the default parameters (FDR=0.05). The
analysis reveals that the annotated functions of the puta-
tive CRMs are well correlated with previously known
facts, thereby confirming the CCD framework
(Supplementary Table S3). For instance, the Nanog
MTL (class I) candidates are involved in stem cell main-
tenance (binomial P=3.5E-05) and differentiation (bino-
mial P=8.1E-05) in the GO Biological Process category.
In case of the embryo enhancer (class II) candidates, the

CRMs are located near the genes affecting ‘abnormal mor-
phology’ (eight terms, binomial P< 4.1E-04) in the Mouse
Phenotype category and ‘compartment specification’
(binomial P=7.4E-07) in the GO Biological Process
category. The most striking example was obtained from
the analysis of the PRC2 target (class V) candidates. The
majority of significantly associated genes near the CRMs
are related to ‘negative regulation’ (or ‘positive regula-
tion’) (21 terms, binomial P< 7.2E-05) in the GO
Biological Process and ‘abnormal morphology’ (27
terms, binomial P< 1.7E-04) in the Mouse Phenotype
categories, consistent with the known properties of
PRC2 (40,41).

Comparison of CCD with the Ensembl regulatory
build method

There are limited numbers of experimentally validated
CRMs. The VISTA enhancer browser is a central resource
for the experimentally validated CRMs showing enhancer
activity in a single embryonic timepoint (http://enhancer.
lbl.gov) (42). To evaluate the performance of CCD
compared to the Ensembl regulatory build method, we
used 745 experimentally validated enhancers from the
VISTA enhancer browser as a confirmed data set (see
‘Materials and Methods’ section). The Ensembl regulatory
database is comprised of best-guessed regulatory elements
predicted by an overlapping approach using a variety of
genome-wide epigenomic data sets. Despite a large number
of predicted CRMs in the Ensembl regulatory database
(17 562) as compared to CCD (12 636), the database

Figure 4. Unique trace codes are present in all training sets. Total 61 features extracted from the literature were used as feature sets (Supplementary
Table S1). Both of the original (star marked row) and three randomly subsampled training sets show the similar trace codes. For each training set,
the CCD scores of traces were rescaled into 10 levels and these rescaled scores were used to draw the heatmap. According to the patterns of the trace
codes, the training sets were categorized into five classes (I–V, bottom).
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only includes 2.1% of experimentally confirmed enhan-
cers (16 out of 745), whereas the identified CRMs by
CCD contain 27.0% of the enhancers (201 out of 745).
The accurate identification of the CRMs is based on not
only the CCD algorithm but also a wealth of epigenetic
information used in the present study. The average
number of associated features with the identified CRMs
is significantly higher than the Ensembl regulatory
database (Figure 6A). Therefore, more genome-wide
CRMs can be discovered and classified by integrating
more training sets and feature sets which will be available
in near future with CCD.
In contrast to the Ensembl regulatory method, CCD

has several unique properties. First, CCD can categorize

identified CRMs according to their trace codes. For
instance, a large domain (�240 kb) contains three genes
(Plk1s1, Xrn2 and Nkx2-4) and an experimentally
validated enhancer in the 12th intron of the Plk1s1 gene
(Figure 6B). The Ensembl regulatory build method pre-
dicted three CRMs in this region, whereas CCD identi-
fied six CRMs. Notably, CCD exactly identified the
validated enhancer (VISTA enhancer) which the
Ensembl regulatory build method failed to detect, and
precisely classified it as embryo enhancer. Second, CCD
can also measure the relative contribution of the features
to the CRMs using the CCD score. For example, p300
(CCD score=72) is the top feature that contributes
most significantly to the embryo enhancer CRM

Figure 5. Identification of genome-wide CRMs. (A) CCD identified a total of 12 636 CRMs which belong to the five classes (I–V) in the mouse
genome. The patterns of occurrences of features in the identified CRMs were compared with those of the known CRMs. The following prTHRs were
used: 20 (class I), 30 (class II), 60 (class III), 30 (class IV) and 10 (class V). (B) Genome-wide distributions of the identified CRMs were examined in
five sections (Supplementary Figure S1A).
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overlapped with the VISTA enhancer (Figure 6B). Third,
CCD enables users to adjust the level of expected result
by using the prTHR parameter. The default parameter
(prTHR=AVG) is very stringent, and thus only 40.4%
of the Ensembl regulatory elements were overlapped
(Figure 6C). These numbers can be increased by
lowering the prTHR parameter. With prTHR=20,
CCD identified 64.3% of the Ensembl regulatory
elements. Overall, these results demonstrate that CCD is
a flexible application and performs better than Ensembl
at identifying the experimentally validated CRMs in
VISTA.

Integrative analysis of the cis-regulatory modules in
genome-wide level

Visualization is a powerful alternative approach to
examine data in detail. Therefore, CCD provides an
output (‘UCSC_’) to visualize all identified CRMs and
features by means of the UCSC genome browser (http://
genome.ucsc.edu/). With the advantage of the ChIP-seq
technology, mapping of the CRMs produces a high-
resolution map of genome-wide CRMs which can be a

valuable source for researchers (Supplementary Figure S5).
For instance, manual investigations of the regions near the
transcription start site (TSS) of Trit1, Coro1c and Klf7
genes reveal that a single CRM in each locus is occupied
by p300s in embryo forebrain, midbrain and limb tissues
(Supplementary Figure S6). Based on the trace code, these
CRMs are highly likely to be enhancers which may affect
expression of the genes in the embryo forebrain, midbrain
and limb tissues.
The H19-Igf2 and Meg3-Dlk1 imprinted domains are

known to share several intriguing features (43);
(i) similar distances between the genes in each domain,
(ii) non-coding RNAs (products of H19 and Meg3),
(iii) monoallelic expression pattern of the genes. By
examining two domains on the high-resolution map, we
found that both promoter regions of the protein-coding
genes, Igf2 and Dlk1, are bound by PRC2 in ES cells
(Supplementary Figure S3). This result supports a
previous report that Igf2 expression depends on PRC2
(44) and also provides explicit evidence that these two
domains are likely controlled by similar mechanisms,
since both domains contain the same set of the CRMs

Figure 6. Comparison to the Ensembl regulatory build database. (A) The boxplot represents the average feature number of the CRMs which were
identified by different methods (or parameters). The following prTHRs were used—20: 80% of the CRMs in a training set will be identified
with putative CRMs, AVG (default): the cutoff score is set to average of sum of CCD scores in a training set and VAR: the same prTHRs used
in Figure 5; *P< 0.001, two tailed t-test. (B) A locus (chr2:146 539 923–146 781 533, mm8) containing three genes (Plk1s1, Xrn2 and Nkx2-4) and
different types of CRMs. A CRM (blue box) showing enhancer activity experimentally is located in the 12th intron of the Plk1s1 gene. Ensembl
detected three CRMs (ENSMUSR00000182442, ENSMUSR00000182448 and ENSMUSR00000131065). CCD identified six CRMs and categorized
them into four classes (cyan—class I, magenta—class II, green—class III and red—class V). The top four features which contain high CCD scores in
each identified CRM are indicated by name (CCD score). Detailed information of the features’ CCD score is provided as Spreadsheet 1 in
Supplementary Data. (C) The identified CRMs by CCD and Ensembl were compared using Venn diagrams.
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(ICR and PRC2 target) (Supplementary Figure S3).
Interestingly, additional examination of the imprinted
domains around the other 18 ICRs reveals that the pro-
moter regions of Rasgrf1, Grb10 and Gnas are also bound
by PRC2 in ES cells (Supplementary Figures S2P–R).
Further investigations are required to confirm whether
PRC2 is involved in the general mechanism of genomic
imprinting. Complete results for all 20 ICRs can be found
in the Supplementary Figures S2 and S3.
Investigations of the regions encoding four transcrip-

tion factors (OCT4, KLF4, NANOG and SOX2) ex-
pressed highly in ES cells show that CCD successfully
pinpoints several CRMs regardless of genomic context
(Supplementary Figure S7). For example, four Nanog
MTL CRMs are located at �1-, 2-, 3- and 15-kb
upstream regions from the TSS of the Oct4 gene. Three
Nanog MTL CRMs are positioned at �52-, 56- and 67-kb
downstream from the TSS of the Klf4 gene and three
Nanog MTL CRMs are resided in �0.1-, 4- and 42-kb
away from the Nanog gene. Intriguingly, two CRMs
(CRM3_102 and CRM3_105) positioned around the
Sox2 gene harbors two or three different trace codes
(Embryo enhancer, Nanog MTL or ncMyc MTL)
(Supplementary Figure S7D). This result hints that some
CRMs may contain different trace codes together, and we
call these ‘multi-functional CRMs’.
To further elucidate the multi-functional CRMs, the

five distinct classes (I–V) are intersected. Surprisingly,
only 481 out of 12 636 identified CRMs overlap with at
least two different trace codes demonstrating that a small
number of the multi-functional CRMs do indeed exist
(Spreadsheet 3 in Supplementary Data and Supplementary
Figure S8). Due to the rarity, we postulate that the
multi-functional CRMs may be located near genes that
are critical for gene regulation. In consistent with the
assumption, the functions of genes near the multi-
functional CRMs are significantly related to establishment
or maintenance of chromatin architecture (binomial
P=2.4E-06) such as Jmjd1a, Jmjd3, Mbd3, Arid1a,
Smarcc1, Smarcd1, Smarcd2 and Chd3 (Supplementary
Table S4). Among the genes, Jarid2 should be specifically
expressed during development according to its critical role
involved in global gene silencing (40,41). Interestingly, five
CRMs (four Nanog MTLs and one ncMyc MTL) and
one multi-functional CRM (Nanog MTL/Embryo
enhancer) are located within regions spanning from �53
to +22kb around the gene’s TSS, indicating that the
gene appears to be regulated by a complex cis-regulatory
network (Figure 7). The multi-functional CRM is highly
conserved and bound by TCFCP2L1, NANOG, OCT4,
SMAD1, SOX2 in early-stage embryo (ES cells) and
CBP, p300 in later-stage embryo (cortical neurons, fore-
brain and midbrain). Based on the trace codes, this
CRM appears to regulate the spatial and temporal ex-
pression of Jarid2 by interacting with the above com-
binations of TFs in two different development
stages, although additional investigations are required.
The complete map of the identified genome-wide
CRMs can be viewed on the website (http://decode.kaist
.ac.kr/).

DISCUSSION

The progressive increase of the genome-wide data sets,
especially from the ChIP-seq method, gives rise to a
need for novel applications which fully exploit the data
sets for particular purposes. Although integrative
analysis of the genome-wide data sets holds great potential
(45–48), there are no generalized methodologies to inte-
grate a variety of genome-wide data sets in an unbiased
manner. To resolve the above issue and apply it for iden-
tifying genome-wide CRMs, combinatorial CRM decoder
(CCD) has been developed. As a generalized platform,
CCD has several remarkable advantages. First, any kind
of ‘genome-wide’ data sets can be used as the feature sets,
since it independently models background distribution of
each feature based on the negative binomial distribution
coupled with the CDRS method (Figure 1). Second,
previously unnoticed relationships between epigenetic
features and CRMs can be identified by analyzing
various data sets altogether. Owing to the rapid growth
of genome-wide ChIP-seq data sets, this property will in-
creasingly accelerate the identification of new associations
between the epigenetic features and CRMs without prior
knowledge. For example, based on the extensive binding
of the NR5A2 and TBX3 to the Nanog MTLs (35.7 and
10.9% of the CRMs), we postulate that TCFCP2L1 may
improve the reprogramming efficiency further due to its
significant association with the Nanog MTLs (56.4% of
the CRMs) compared to the pseudo set (0.3% of the
pseudo-CRMs) (Spreadsheet 2 in Supplementary Data).
Third, the performance can be superior to the other
CRM prediction tools due to the basic data sources, ex-
perimentally derived (ChIP-seq) datasets rather than com-
putational predictions. Fourth, the biological relevance of
identified CRMs can easily be assessed with the available
tools including R, GREAT and UCSC genome browser
(Figure 2). Furthermore, it can also be used to decode the
genomes of other species by utilizing appropriate input
data sets. The CCD program and tutorials can be found
on our website (http://decode.kaist.ac.kr/).

In the present study, our extensive evaluations
demonstrated that the algorithm of CCD is robust and
reliable. By using the MCC value, CCD will automatically
discriminate features for the training set. If there is a single
significant feature among input features, then the
identified CRMs will be the binding regions of the single
feature, which might be biased due to the lack of infor-
mation. In this regard, we believe that a variety of fea-
tures results in better outcomes as shown in this study
(Figure 6A). Subsequent analysis of a large number of
various data sets further verified the reliability of the al-
gorithm by identifying all previously known features
(100%, 29/29) as parts of the trace codes (Figure 3A
and Supplementary Table S2). These remarkable perform-
ances are based on the ‘trace code system’. With 9 training
sets (Table 1), we showed that the trace code is sufficient
to represent the characteristics of CRMs (Figure 3 and
Supplementary Table S2). Accordingly, it enabled us to
identify genome-wide CRMs including the PRC2 target
sites (Spreadsheet 3 in Supplementary) in an unbiased
manner.
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The virtue of integrative analysis using CCD leads to
unexpected findings including the ICR signature and
multi-functional CRMs. The imprinting control regions
have been known to be associated with the active
(H3K4me3) and repressive (H3K9me3 and H4K20me3)
histone modifications in allele-specific manner (37,38).
Our results are well correlated with the previous reports

and further suggest that ESET is a potential key factor
involved in the mechanism of genomic imprinting
(Supplementary Figures S2 and S3). However, Eset,
H3K9me3 and H4K20me3 are also the signature of the
endogenous retroviruses (ERVs) (49). Given this similar-
ity, it should be interesting to test whether the mechanism
of silencing the ERVs and maintaining (or establishing)

Figure 7. Identification of multi-functional CRMs. Visualization of the identified CRMs unveils a cis-regulatory network around the transcription
start site of the Jarid2 gene. CRM13_168, CRM13_169, CRM13_170 and CRM13_171 contain a single trace code (class I or IV), whereas
CRM13_172 (multi-functional CRM, blue vertical box) includes two distinct trace codes, class I and II. The CRM13_172 is bound by various
TFs in different developmental stages; early-stage embryo (ES cells) and later-stage embryo (cortical neurons, forebrain and midbrain). Bars rep-
resent genomic positions of features or CRMs. Colors correspond to the following classes and their associated trace codes (Figure 4)—green (class
IV), cyan (class I), magenta (class II) and grey (shared by two classes).
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the ICRs are mediated by the same regulatory complexes.
Another intriguing finding is the multi-functional CRMs
(Figure 7 and Supplementary Figure S8). Although the
analysis of data sets from various sources may lead to
the identification of false positive CRMs, we showed
that our approach is very effective and eventually dis-
covers the multi-functional CRMs. Therefore, we argue
that the data sets from different cell types still provide
characteristic patterns of CRMs in the given time-point
and can be used at least for identifying CRMs. Based on
the distinct trace codes, the multi-functional CRMs
belong to at least two different classes (Spreadsheet 3 in
Supplementary Data). We propose that they are likely the
key CRMs which determine the temporal and spatial
expression of nearby genes by interacting with more
than two combinations of TFs (input signals). Further
investigations are needed to elucidate whether the multi-
functional CRMs represent the general property of CRMs
or a special type of CRMs, since the CRMs tend to harbor
multiple TFBSs.
With the great capability of the integrative analysis,

CCD will shed light on unveiling the gene regulatory
networks by assisting the growth of genome-wide associ-
ation studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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