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Abstract

Motivation: Biobanks are indispensable for large-scale genetic/epidemiological studies, yet it re-

mains difficult for researchers to determine which biobanks contain data matching their research

questions.

Results: To overcome this, we developed a new matching algorithm that identifies pairs of related

data elements between biobanks and research variables with high precision and recall. It integrates

lexical comparison, Unified Medical Language System ontology tagging and semantic query

expansion. The result is BiobankUniverse, a fast matchmaking service for biobanks and re-

searchers. Biobankers upload their data elements and researchers their desired study variables,

BiobankUniverse automatically shortlists matching attributes between them. Users can quickly ex-

plore matching potential and search for biobanks/data elements matching their research. They can

also curate matches and define personalized data-universes.

Availability and implementation: BiobankUniverse is available at http://biobankuniverse.com or

can be downloaded as part of the open source MOLGENIS suite at http://github.com/molgenis/

molgenis.

Contact: m.a.swertz@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The increasing breadth and depth of data in the biological sciences

provides many new opportunities to understand the mechanisms

that underlie complex diseases and essential background for per-

sonalized medicine and health. Much of this data resides in

biobanks, which not only store sample collections (urine, blood

and DNA) but also large data collections (e.g. history of disease,

physical activity, lifestyle and environmental factors) (Scholtens

et al., 2015). With so many valuable resources available, one

would expect much more scientific output for each biobank at an

ever-increasing pace.
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However, while working on various biobanking projects over

the past five years, we noticed limited biobank reuse. What we

observed instead was researchers spending a substantial amount

of their time locating, negotiating access to and interoperating

biobank data before they could actually study the pooled data.

There are useful standards emerging for describing biobank col-

lections such as MIABIS (minimum information about biobank

information) (Merino-Martinez et al., 2016), directories that list

all available biobanks (Holub et al., 2016), catalogues of biobank

data schemas (Maelstrom Research, 2015) and robust integration

protocols (Fortier et al., 2010). However, researchers still rou-

tinely ask us how to find suitable biobank data collections for

their research questions. They also spend many months manually

curating and comparing biobank data elements to define inte-

grated datasets because existing tools do not enable automatic

matching.

In our recent experience the process of data harmonization and

integration, driven by a research question, typically consists of the

following steps (Fortier et al., 2010): (i) find the datasets relevant to

the research question; (ii) determine the harmonization potential be-

tween the target schema representing the research question and data

elements in the relevant dataset; (iii) identify the attribute matches

between the target schema and the source data for integration.

Through a series of user workshops we listed several use cases in

Box 1, based on which we have identified three major user needs in

biobank data discovery:

1. Researchers want to find biobank data collections that can be

potentially useful in terms of relevant data items in order to

shortlist biobanks that might be suitable to serve a particular re-

search project.

2. Researchers want to assess the integration potential of data col-

lections and their data items (matching research variables) as the

basis for data requests and to make decisions about whether it is

worthwhile spending time on data integration for pooled

analysis.

3. Biobanks (and networks of biobanks) want to identify attribute

matches between similar biobank data collections to provide

integrated datasets as basis for large studies.

In addition, all these use cases needed to be served using only meta-

data descriptions of the data, as individual level data is typically sub-

ject to data access committees because of privacy constraints.

Joining forces with the BBMRI and ELIXIR infrastructures and

the CORBEL, ADOPT and RD-connect projects, we have developed

BiobankUniverse. BiobankUniverse is an online service that bridges

the biobank data discovery gap by (i) enabling users to share data

element descriptions of biobank data collections and (ii) providing a

new matching score that identifies pairs of related data elements be-

tween biobanks and research variables.

2 Materials and methods

In previously published work, we developed BiobankConnect (Pang

et al., 2015), a semantic search tool for matching data items between

biobank data collections using ontology-based query expansion on

top of the information retrieval system Lucene (The Apache

Software Foundation, 2006). However, while achieving high preci-

sion and recall, BiobankConnect still requires substantial user input.

Specifically, each of the desired 0target0 attributes needs to be manu-

ally annotated with ontology terms before the system can try and

find relevant 0source0 attributes from biobanks that match this tar-

get. This is only feasible if the user wants to compare many 0source0

biobanks against one relatively small 0target0 set of data items.

To enable pairwise discovery considering all data items of many

biobanks without requiring extensive curation we have developed a

new algorithm that automatically shortlists matching data items be-

tween any two or more collections of data elements (such as data

schemas in biobanks). To standardize the terminology throughout

this paper, we will use 0attribute0 to refer to a variable, data column,

data element or data item. We implemented the algorithm as

open source in Java and reused data management tools and user

interfaces from the MOLGENIS software platform (Swertz et al.,

2010).

Fig. 1. Overview of the BiobankUniverse system. Users upload/add biobanks

attributes to the universe. TagGenerator is automatically triggered to create

ontology representations of the uploaded biobank‘s attributes. These are

then used in AttributeMatcher to generate attribute matches with any of the

other biobanks. A cosine similarity score is computed for each attribute

match pair to prioritize the candidate list, and a strict matching criterion is

applied to remove false positives. A biobank similarity is also calculated by

computing the cosine angles between the ontology representations of bio-

banks in the semantic space for each pair

Box 1: Overview of catalogue projects for data discovery

BBMRI-ERIC biobank directory: Main use case is to give an

overview of the landscape of biobanks and biobank collec-

tions in the BBMRI-ERIC member states.

BBMRI-NL biobank catalogue: Main use case is to advertise

all biobank collections available in Netherlands and lead

interested researchers to contact these biobanks.

RD-Connect sample catalogue: Main use case is to give a

comprehensive overview of the available samples for rare

diseases.

LifeLines catalogue: Main use case is to allow the researcher

to find and request access to data items of interest.

Maelstrom Research: Main use case is to provide harmoniza-

tion potential (data attributes) between standard target data

schemas and biobank studies.
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Figure 1 provides an outline of the system, which consists of six

key steps: (i) automatic ontology tagging of attributes using lexical

matching, (ii) matching pairs of attributes using ontology-based

query expansion, (iii) matching pairs of attributes using lexical

matching, (iv) prioritizing matches from both lists by calculating a

normalized similarity score, (v) filtering irrelevant matches based on

key-concepts to improve precision and (vi) calculating semantic

similarity scores between biobank pairs. Each step is described in de-

tail below.

2.1 Automatic ontology tagging of attributes using

lexical matching
Because of their heterogeneous backgrounds, biobanks often de-

scribe their attributes using very different terminologies, which hin-

ders the automatic matching of related or equivalent attributes. To

enable matching based on these heterogeneous metadata, we 0tag0

each attribute with one or more groups of ontology terms based on

the labelþdescription. For example, 0History of Hypertension0 is

tagged with two groups of ontology terms: (History &&

Hypertension) and (Medical history [synonym: History] &&

Hypertension). Each group of ontology terms is called a tag group.

With BiobankConnect, users had to do this tagging manually,

which was not feasible when matching dozens of biobanks with thou-

sands of attributes. In BiobankUniverse, each attribute is tagged auto-

matically in four steps: (1) Having indexed the Unified Medical

Language System (UMLS) ontology (UMLS is a meta-thesaurus that

incorporates all major biomedical ontologies such as SNOMED CT,

NCI thesaurus and ICD-10), we use the Vector Space Model (VSM)

to find potentially relevant ontology terms for each attribute based on

its label; (2) We apply a strict matching criterion to remove non-

informative ontology terms. Only ontology terms (or synonyms)

whose labels (or any their synonyms) can be completely matched to

words from the attribute label are considered as tags; (3) We use a

cosine-similarity-based string-matching algorithm to compute a simi-

larity score between the attribute and the ontology terms, which we

use to order the tags from most relevant to least relevant; (4) We re-

move non-informative tags. In this step, we use ontology terms with

the highest similarity as the initial tag group then prune the rest of the

list to see if inclusion of the next ontology terms as the tag group re-

sults in an overall improvement of the similarity score. If yes, we keep

the new ontology term in the tag group. If no, we remove the term

and repeat the same procedure for the next item in the list. The result

is a set of ontology term tag groups for each attribute. An example of

tagging attribute is shown in Supplementary example S1. In Pang

et al. (2015), we discussed how to select ontologies for this procedure

based on the extent that an ontology covers the data. Based on these

experiences, we decided to use UMLS.

2.2 Matching pairs of attributes using ontology based

query expansion
The tags established in step 1 are now used to search for semantic-

ally matching pairs of attributes between biobanks using semantic

query expansion in a manner similar to what we previously

described for BiobankConnect (Pang et al., 2015). We have now

changed the algorithm to query on terms from both parent and child

classes (instead of child only) to ensure that the matches generated

by this query expansion are symmetrical. This ensures that queries

of more specific biobank attributes will still find matching attri-

butes from another biobank that are tagged with more general

ontology terms. An example of matching attributes is provided in

Supplementary example S2.

In BiobankUniverse, we have also optimized query execution. In

BiobankConnect, we created separate queries for each attribute to

match a small number of attributes (<100). This is computationally

too expensive for large numbers of biobanks with large numbers of

attributes because we have encountered many attribute-matching

cases, where more than 100 000 of expanded queries needed to be

collected from the UMLS ontology and this process dramatically

slowed down the matching process. Thus, in BiobankUniverse, we

implemented a more efficient matcher that uses the hierarchical

ontology term relations to discover the matching correspondences

between those attributes. For example, the concept ‘Vegetables’ is a

parent class of the concept ‘Beans’ so inferentially the attributes

tagged with ‘Vegetables’ can be concluded as the matches for the at-

tributes tagged with ‘Beans’.

To efficiently compare these hierarchical relationships, we col-

lect all the term paths available for the tagged ontology terms into a

list of atom unique identifiers of the current concept and its ances-

tors. For each attribute, we then check whether this term path or

any of its parent term paths overlaps and, if so, we retrieve the cor-

responding attributes as the candidate match.

For example, the attribute ‘Consumption of Vegetables’ has path

‘A3684559.A3206010.A3314529.A2881738.A3217489.A2887927’

and the attribute ‘Consumption of Beans’ has overlapping path

‘A3684559.A3206010.A3314529.A2881738.A3217489.A2887927.

A3189886.A2878987’, so we can conclude that ‘Consumption of

Beans’ is a more specific match for ‘Consumption of Vegetables’

based on their paths. To prevent false positive matches based on very

general concepts, we decided to limit the upward traversals to stop at

level 5 from the root of UMLS after evaluating different cut-offs as

discussed in Section 5.4.

2.3 Matching pairs of attributes using lexical matching
We also implemented a lexical matcher that uses standard search

functionality from ElasticSearch. Given an attribute label/description

from one biobank, the lexical matcher retrieves attributes from an-

other biobank that share at least one word (excluding punctuation

marks and stop words). The purpose of this matcher is to retrieve

matches where the attribute labels are very similar and to retrieve at-

tributes that have no tags to use for semantic matches. The motivation

for this second method is that some of the attributes use terminology

not yet defined in any ontology such as the attribute ‘SOKRAS sticker

series’ in Finrisk2002 and Finrisk2007. Enabling lexical matching will

help capture the matches containing those specific attributes.

2.4 Calculating a normalized similarity score to prioritize

matches from both lists
Steps 2 and 3 produce two lists of candidate matches for each attri-

bute based on the lexical matcher and the semantic matcher, respect-

ively. To merge both lists, we calculate a similarity score for each

matching pair using the cosine similarity algorithm also used in

Lucene (The Apache Software Foundation, 2006). In this score, each
0query0 attribute from one biobank and its candidate matches from

another biobank are treated as vectors in a space built of all words

derived from all attribute names and descriptions. For each vector,

the length of the dimension (word) is calculated by multiplying the

word inverse document frequency with the word occurrence in the

specific attribute. The vector and similarity score are computed as:

Vector
����! ¼ ðWord 1tf � Word 1idf ; . . . ; Word ntf � Word nidf Þ
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It was particularly complicated to generate meaningful scores in

cases where a pair of attributes are semantically close but have very

different labels. This results in very low cosine similarity scores for

matches that an expert user would recognize as a good match, e.g.

‘Consumption of Vegetables’ versus ‘Consumption of Beans’. We

therefore also calculate a cosine similarity score based on the ontol-

ogy terms instead of the attribute labels.

For each pair of attributes, we first retrieve all ontology tags that

are either the same or related via parent-child or child-parent. We

then replace the relevant substrings of the attribute labels with infor-

mation from their ontology tags. For example, ‘History of high

blood pressure’ and ‘History of hypertension’ are converted to

‘History of hypertension’.

If ontology terms are related via a parent-child or a child-parent

relationship, we replace the child ontology terms with the parent

terms in the attribute labels. However, these parent/child ontology

terms are obviously not equivalent with the attribute label, just of a

sub/superclass. We therefore correct their similarity score based on

the semantic-relatedness between these parent and child ontology

terms (Wu and Palmer, 1994). This correction is only performed on

the subscore that is contributed by the relevant substring replaced

by the information from ontology tags as follows:

Relatedness ¼ Levelparent � 2

Levelchild þ Levelparent

Scoresub ¼ Scoretotal�
Lengthreplacement

Lengthtotal

Scorecorrected ¼ Scoretotal � Scoresub þ Scoresub � Relatedness2

For example, when calculating the similarity score between attribute

‘Consumption of Vegetables’ and attribute ‘Consumption of Beans’,

‘Beans’ (level 8) is replaced with more general term ‘Vegetables’

(level 6). Without correction, the cosine similarity score would be

100% because both attribute labels are the same, which is clearly

too high a score because the attributes are of semantically different

levels. To correct for this, we first of all calculate the relatedness be-

tween ‘Vegetables’ and ‘Beans’,

Relatedness ¼ 6� 2

6þ 8
¼ 0:857

We then calculate the subscore that is contributed by ‘Vegetables’,

Scoresub ¼ 100%� 10

23
¼ 43%

Finally we compute the corrected score,

Scorecorrected ¼ 100%� 43%þ 43%� 0:8572 ¼ 88:6%

After we have calculated all the similarity scores for all the candidate

attribute matches, we sort the list based on similarity scores and

keep (at most) the first 50 matching pairs (50 is the limit of user-

acceptable matches based on BiobankConnect user feedback) (Pang

et al., 2015).

2.5 Filter out irrelevant matches based on key concepts

to improve precision
The BiobankUniverse search methods are optimized to yield max-

imum recall. However, not all ontology terms are equally relevant

for the research domain, and some may yield false positive matches.

To reduce false positives, we enable users to filter results to matches

that are based on ‘key concept’ ontology terms such as

‘Hypertension’ while discarding more general ontology terms such

as ‘History’. For this we use the 0semantic type0 of UMLS ontology

terms that indirectly indicate the importance of these concepts. For

example, ontology terms associated with the semantic type ‘Disease

or Syndrome’ (e.g. Myocardial infarction) are key concepts while

the semantic type ‘Quantitative Concept’ (e.g. Numbers) indicates

the common concepts. We used this as basis for the definition of the

key concepts and went through the list of all 127 semantic types in

UMLS and manually allocated them to the group of key concepts

and the group of common concepts that are used in the system to de-

termine the quality of the matched source attributes. Group mem-

bers of the semantic types can be found in Supplementary Table S3.

Using these key concepts, we apply a lexical matching filter in

which all the words from the key concept must be perfectly matched

(considering lexical matching methods that allow for stemming

etc.). For example, ‘Have you ever had high blood pressure?’ is a

good match for ‘history of hypertension’ because both of the attri-

butes are matched on the key concept hypertension whereas ‘history

of myocardial infarction’ is far less relevant for ‘history of hyperten-

sion’ because the matched word history is not a key concept.

As an additional filter, attributes need to be matched based on

words that are not stop words and consist of at least three alphabetic

characters. If these two criteria are not met, the matches are treated

as false positives and removed from the candidate list.

2.6 Calculate overall semantic similarity between

biobanks
Finally, we created a metric to quantify the similarity between two

biobank collections. At first we simply calculated the average of the

attribute similarity for all of the candidate matches. However, this

metric showed bias towards collections that were lexically similar

and penalized semantic similarity. For example, the scores of the

matches generated between FINRISK2002 and FINRISK2007 are

systematically higher than the ones between HOP and Lifelines be-

cause FINRISK2002 and FINRISK2007 use very similar attribute

labels and descriptions (see description of these biobanks in Section

4). We therefore implemented a metric that uses the semantic tags of

the attributes.

Our new metric compares vectors of unique ontology terms

derived from the tags of all attributes of both biobanks. Exactly

matching terms are given a value of 010. Indirectly matching terms

(i.e. a parent/child terms) are given a lesser score based on the se-

mantic relatedness (Shima, 2011; Wu and Palmer, 1994). Finally, a

cosine similarity is calculated on the vectors for the each biobank

pair as described above in Step 4. For example, Biobank A has attri-

butes tagged with the ontology term ‘Vegetables’ and biobank B has

attributes tagged with the ontology terms ‘Beans’ and ‘Tomatoes’.

When combined, there are three dimensions in their space and the

vector representations are:

Biobank A
�������!

¼ Vegetables : 1; Beans : 0:8;Tomatoes : 0:8ð Þ
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Biobank B
�������!

¼ Vegetables : 0:8; Beans : 1;Tomatoes : 1ð Þ

The cosine similarity between them is 0.978. Based on this measure,

we can generate a matrix containing all pairwise similarities be-

tween all biobank collections available. We then visualize the matrix

in a network using the Vis 3D JavaScript library to provide users

with a visual representation of which biobank collections are closest

to each other (see Section 4).

3 Implementation

We have made the biobank matchmaker algorithm available in a

user-friendly web application (http://www.biobankuniverse.org). It

can be also downloaded as part of MOLGENIS (http://www.molge

nis.org). It uses a domain model (see the file data_model.pdf in

Supplementary material) that extends the MIABIS standard model

for 0Biobank0 and 0SampleCollection0 description (Norlin et al.,

2012). The system works as follows.

3.1 Biobankers upload collection metadata and match

their attributes
Biobankers can upload data collection descriptions, i.e. the list of data

items of an existing biobank or study for which data items can be shared

via CSV. An example file can be found in Supplementary material pre-

vend_biobank.csv. At upload, each attribute is automatically tagged

with ontology terms. The tag groups and their quality measures (cosine

similarity and matched words) are stored in the database for fast re-

trieval. The software then generates a list of candidate matches for each

of the previously loaded biobanks. For example, the attribute ‘Have you

ever had high blood pressure’ is matched with the tag group

(Hypertension), a record of explanation is as follows, query

string¼ ‘high blood pressure’; matched words¼ ‘high blood pressure’;

ontology terms¼ ‘Hypertension’; cosine similarity¼50%. All of the in-

formation on the matched source attributes, cosine similarities and

matched words are stored in the AttributeMappingCandidate table. The

tag groups cannot be edited at the moment but will be in the future.

3.2 Finding matching biobanks
Researchers and other prospective biobank users can use the system

to find biobanks with relevant data and can explore the matching re-

lationships between those attributes using a data discovery user

interface (shown in Fig. 2).

When the page is first loaded, a biobank ‘universe’ is shown in

the center of the page beneath the search box. The circles represent

biobank members of the universe. The size of the circle indicates the

number of attributes the biobanks contains. The connecting lines be-

tween circles represent the number of matching attributes between

biobank members. Users can define their own queries in the search

box at the top of the page. In order to retrieve attributes with

high precision, the search box is equipped with an auto-complete

function that provides suggestions from the UMLS ontology.

Depending on the filter, the biobank universe will be reduced in size

and the circles and number of matches will change dynamically.

Users can also display the universe showing only human curated

matches or using the semantic similarities between biobanks, as

described above.

3.3 Exploring and curating attribute matches
Users can drill down to view and compare the attribute matches for

a subset of biobanks. To start a comparison session, users first

choose one of the biobanks as the ‘target’. For each of its attributes,

matches available in the other biobanks are then shown (see Fig. 3).

Users can manually curate these matches using an editing interface

in which they can select or reject matches. To more efficiently curate

the large number of matches, we have introduced a batch acceptance

feature that enables users to accept/reject all matches at once based

on a quality criterion.

Fig. 2. User interface for discovering biobanks. Users can choose various net-

work options to visualize the ‘universe’: the biobank similarity, the number of

matches generated by the system or the number of matches curated by the

user. The nodes represent biobanks in the universe and their sizes are propor-

tional to the number of attributes in the corresponding biobanks. The con-

necting lines represent the similarities (defined as the number of matches or

the biobank similarities) between biobanks, the more similar they are and the

closer they are next to each other in the universe. The online version is dy-

namic so you can see the numbers more clearly

Fig. 3. Curating candidate matches by data owners. Users can curate all gen-

erated matches available in the universe. Users first choose a leading ‘target’,

based on which a match table is generated. (Any biobanks can be a target be-

cause of the pairwise match). Users then need to go through each of the cells

in the table to make decisions about the generated matches
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3.4 Searching for research variables
One of the main challenges in biobank research is finding datasets

suitable for a particular analysis or for testing a particular hypoth-

esis. To speed up this discovery process, users can also upload a

complete list of desired research attributes and then start a data dis-

covery job. This list is then shown as an additional circle within the

universe. This search interface then works in the same way as the

matching curation interface, enabling curation of the matches be-

tween desired research variables and biobank data items. The results

can be downloaded for use as the basis for a data request.

4 Results

The main goal of BiobankUniverse is automatic generation of high

quality lists of matching attributes between biobanks. To evaluate

precision and recall, we re-ran our evaluation procedure from

BiobankConnect (Pang et al., 2015), which compares automatically

found matches against human curated (relevant or 0correct0) matches

as follows:

Recall ¼ Found relevant matches

All relevant matches

Precision ¼ Relevant found matches

All found matches

We applied this to a new version of the validation data we used in

Molgenis/Connect (Pang et al., 2016): a human-curated matching

set from the BioSHaRE Healthy Obese Project (HOP) consisting of

92 target attributes in three different biobanks (Wolffenbuttel,

2013). In addition, we also used a curation set between two large

biobank collections from the FINRISK project.

4.1 BioSHaRE healthy object project performance
We evaluated BiobankUniverse‘s performance using the complete

set of HOP, which consists of 92 target attributes, and three sets of

biobank attributes (from the LifeLines, Mitchelstown and Prevend

biobanks). There are 66 884 possible matches, out of which 633

were classified as relevant. We observed new average precisions and

recalls over ranks ranging from 1st, to 50th (see Table 1) that are

better than those of BiobankConnect (see Table 1) while providing

major user time- and cost-savings because substantial manual tag-

ging is no longer required. In addition, the new matching algorithm

is more efficient than that of BiobankConnect. It took 2 min on aver-

age for BiobankUniverse to generate candidate matches between

HOP and any of the biobanks, while 1 and half hour approximately

for BiobankConnect to generate the candidate matches for the same

pair.

4.2 FINRISK large collection matching performance
We also evaluated the performance of BiobankUniverse using the

National FINRISK Study, survey years 2002 and 2007, which involved

matching two large biobank collections against each other with poten-

tially 581 742 possible matches (798*729), of which 550 of were clas-

sified as 0correct0 by human curators. Although the two surveys were

conducted by the same research group, they were created in different

time periods and the questions asked changed over time, thus requiring

this integration effort. The motivation for matching these two collec-

tions is that they are often used together in analyses.

For example, the attribute ‘Siblings diagnosed with asthma’ col-

lected in FINRISK 2002 changed to ‘sisters diagnosed with asthma’ and

‘brothers diagnosed with asthma’ in FINRISK 2007. Researchers who

want to use data from both of the collections usually need to match the

two sets of attributes with each other manually. In order to manually

match all attributes in these two collections, the FINRISK researchers

performed the following process: they organized and tabulated all attri-

butes into topics one study at a time, and then compared the attributes

against the items in the other collection, first inside each topic and then

across the full collection if no match was found inside a topic. The qual-

ity of the matches was scored using SKOS mapping system (Miles and

Pérez-Agüera, 2007). The full tabulation and comparison of the two

collections was labor-intensive, taking approximately 2 working days.

It is important to note that this work was done by a person highly fa-

miliar with these collections—the work would have taken longer for

someone not familiar with them. We applied BiobankUniverse to

FINRISK 2002 and FINRISK 2007 tabulated attributes and generated

a set of matches between them. These matches were compared to

the manually created list of matches (see Supplementary material

FINRISK2002-FINRISK2007-relevant-matches.xlsx). We computed

Table 1. Recall and precision performance for the HOP project

(0–100)

Lifelines Mitchelstown Prevend Total Biobank

connect

Rank R P R P R P R P R P

1 23 64 23 87 39 41 25 66 24 58

2 39 55 33 66 61 38 38 55 37 45

3 45 45 42 58 70 34 46 47 45 39

4 52 41 48 52 71 32 52 44 50 35

5 56 38 56 50 73 30 58 42 54 32

6 59 35 58 46 74 30 60 39 57 30

7 64 34 62 44 74 29 64 37 60 29

8 66 32 66 43 74 28 67 36 63 27

9 68 30 69 42 77 29 69 35 65 26

10 70 29 72 41 77 29 71 34 67 25

20 85 25 81 36 77 28 82 30 76 19

50 88 20 85 34 77 28 85 26 77 16

Note: P, precision; R, recall.

Table 2. Recall and precision performance for the FINRISK project

(including 550 manual matches)

Rank Recall Precision Retrieved

1 0.813 0.592 755

2 0.878 0.325 1486

3 0.891 0.223 2197

4 0.898 0.171 2889

5 0.904 0.139 3563

6 0.911 0.119 4214

7 0.913 0.104 4834

8 0.915 0.092 5438

9 0.918 0.084 6032

10 0.922 0.077 6614

20 0.929 0.044 11605

50 0.938 0.027 19088
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precision and recall using the procedure described above, and found a

recall of 0.81 precision of 0.59 at rank 1st and recalls of 0.92, 0.93 and

0.94 at rank 10th, rank 20th and rank 50th respectively, the complete

set can be found in Table 2. According to the FINRISK researchers, ap-

proximately identifying a correct match within the top 10 candidate

matches takes 10–20 s (ignore candidates outside the top 10). The com-

plete curation process for 800 pairs of matches would take about

2–4.5 h and identify 92% of the true matches.

5 Discussion

Below we discuss improvements over BiobankConnect, how to re-

duce false positives, potential improvements of the matching pro-

cedure beyond lexical and semantic matching and other future

work.

5.1 Improvements over BiobankConnect
BiobankUniverse is the successor to BiobankConnect, which was de-

veloped to find matches between a small target schema describing

variables for a research project and large biobank schemas that

(hopefully) provide these variables. BiobankConnect, however,

required an unacceptable level of user interaction to achieve match-

ing results with high precision. In BiobankUniverse, we therefore

worked to reduce manual effort as much as possible. First, we

enhanced automatic tagging to capture as many tag groups as pos-

sible. Second, we used UMLS semantic types to automatically re-

move false positives. Third, we introduced an objective measure to

calculate the cosine similarity score and to discover matched words

in order to provide users with a fairly good idea how the matches

were generated. All together, these improvements enabled us to

match large biobank collections against each other, and it is very

encouraging to see that BiobankUniverse performs similarly to the

more human-labor-intensive BiobankConnect.

5.2 Use of strict matching criteria to reduce false

positives
Users questioned the added value of filtering using key-concepts. In

response, we compared recall, precision and the number of matches

retrieved with and without this filter using the HOP project data

(see Table 3 for results). Applying the key-concept filters resulted in

many fewer candidate matches while systematically increasing recall

and precision. This is exactly as desired because the main purpose of

these criteria is to improve precision by removing false positives so

that users need to review fewer invalid candidate matches before

finding all relevant matches. As shown in the examples in Table 3,

users had to check 431 (1751–1320), 999 (2723–1724) and 1794

(3848–2054) fewer matches when applying the strict matching crite-

ria at rank 10th, 20th and 50th. Suppose that rejecting a false posi-

tive would take a minimum of 10 s (in reality it could be more),

users would have to spend at least 1, 3 and 5 h more to curate candi-

date matches at rank 10th, 20th and 50th respectively.

5.3 Improving ontology coverage of the domain
We could account for some of the poorer attribute matches because

they were based on attribute labels from HOP that don’t exist in the

UMLS ontology, for which the system consequently couldn’t use se-

mantic matching. For example, the target attribute ‘Current

Consumption Frequency of Bakery Products’ is manually matched

to eight source attributes (e.g. Pancakes, Fruit Pies) in

Mitchelstown, but the system failed to retrieve any of the relevant

attributes. We know, retrospectively, that if the concept ‘Bakery

Products’ had been annotated with the ontology term ‘Starchy food’

then all of the relevant matches would have been found by the sys-

tem because all eight matches have been annotated with the ontol-

ogy terms that are the subclasses of ‘Starchy food’ (e.g. Pancake is a

descendant of Starchy Food).

5.4 Limiting the query expansion in the parent direction
During the development of BiobankUniverse, we realized that ex-

panding queries towards the parent direction might result in unex-

pected matches as these include very broad concepts such as Disease

or Food. We therefore experimented with various heuristics to re-

move these matches. The most promising results were achieved by

limiting the distance from the root of the ontology at which the

query expansion would stop. We therefore calculated recall and pre-

cision using the HOP data for 1-6 levels from the root (results shown

in Supplementary Table S4). What we found was that precision

increased with level up to level 5 from the root. This is because con-

cepts are less general at higher levels and thus fewer false positives

are produced. However, precision started to decline beyond the level

6. We also found that recall was relatively steady from the root up

to level 5, then started to drop at the level 6. Apparently level 6 con-

tains some informative ontology terms that help in the semantic

matching. More importantly, the level 5 cut-off produces the best

f-measure compared to other levels, we therefore chose level 5 as the

final cut-off.

5.5 The limitation of the lexical and semantic based

matching algorithms
The use of ontologies in matching algorithms has been effective in

matching attributes, especially in resolving the differences between

datasets in case of synonyms, hypernyms and hyponyms (Pang et al.,

2015). However, we still often encounter difficult cases where the

attribute is described in a non-standard way and ambiguously. For

example, the LifeLines attribute FOOD7A1 ‘How many cups did

you on average use on such a day?’ should be matched to the target

attribute ‘Current Consumption Quantity Of Coffee’. In this case

the source attribute doesn’t have any mention of ‘Coffee’ in the de-

scription and it‘s not clear that the question is referred to coffee, tea

or something else. Thus only humans having inside knowledge are

able to find such attribute matches.

Table 3. The overall performance comparison while enabling and

disabling the matching criteria from the HOP experiment (including

633 manual matches)

Matching criteria enabled Matching criteria disabled

Rank R P RE R P RE

1 0.25 0.66 240 0.24 0.56 268

2 0.38 0.55 443 0.36 0.44 516

3 0.46 0.47 613 0.43 0.37 735

4 0.52 0.44 753 0.50 0.34 931

5 0.58 0.42 877 0.54 0.31 1089

6 0.60 0.39 987 0.58 0.30 1235

7 0.64 0.37 1085 0.61 0.28 1373

8 0.67 0.36 1173 0.63 0.26 1506

9 0.69 0.35 1250 0.65 0.25 1630

10 0.71 0.34 1320 0.68 0.25 1751

20 0.82 0.30 1724 0.76 0.18 2723

50 0.85 0.26 2054 0.80 0.13 3848

Note: P, precision; R, recall; RE, number of retrieved matches.
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We have piloted technical solutions for such ambiguities. For in-

stance, we can use the language model GloVe, which is an unsuper-

vised learning algorithm for obtaining the vector representations for

words (Pennington et al., 2014). The trained GloVe model outputs

the probability for the word pair that indicates the likelihood of its

co-occurrence. In the previous example of matching the key word

‘tea’ to ‘coffee’, we could use the GloVe model to find a list of the

most frequently co-occurred words for ‘coffee’. Because ‘cup’ and

‘coffee’ tend to appear quite often, we should see the word ‘cup’

ended up in the list and hence be able to succeed in matching

‘Current Consumption Quantity Of Coffee’ to ‘How many cups did

you on average use on such a day?’. We envision use of such technol-

ogies to further improve the matching algorithm.

5.6 Future perspectives for BiobankUniverse
Currently BiobankUniverse is used as a mapping tool where users

can generate, curate and download the attribute matches. Our ul-

timate goal is to have a community powered service where every-

body can submit their data dictionary to the existing 0universe0. The

use case doesn’t need to be restricted to the biobank domain only.

We envision that other universes can be created using the same tool-

set. Currently we ask collaborators to send us data collections for

uploading but plan to provide comprehensive documentation and

video trainings for data contributors to enable self-service. We also

want to start collaborations with registries such as EU directory

(containing 500þ collections) to incorporate more data collection

metadata (Holub et al., 2016). Additionally we encourage not only

data owners but also researchers to identify matches between data-

sets to improve the quality of the universe. BiobankUniverse will be

particularly useful for discovering relevant datasets by searching cer-

tain combinations of selection criteria (certain ontology concepts)

and determine harmonization potentials by quickly uploading their

own data schema to find data sources in the universe. We realize we

need to develop more advanced user interface components to ac-

commodate these advanced use cases. For example, we plan to add

more details about attribute matches in the universe for users to

interact with. Finally we must invest in performance. In the current

system it takes approximately 20 minutes for a laptop with a 4 core

CPU and 8 GB RAM to generate matches between one pair of bio-

banks each containing 1000 attributes. In a biobank universe with

10 members, we would need to calculate 45 pairs. If all these bio-

banks also contain 1000 attributes, it would take 15 hours to con-

struct the universe. As the universe grows, the computation time will

grow near exponentially {time¼N*(N � 1)/2}. To address this

problem, we plan to implement a more scalable pipeline to generate

matches that can farm the matching across a parallel computer

cluster.

6 Conclusion

We have created the BiobankUniverse system for quickly matching

data attributes between biobanks by fully automating the matching

procedure and by providing new user interfaces for data discovery

and matchmaking. While saving much time and eliminating

handwork, the performance of the system is also improved com-

pared to the previous system BiobankConnect. In conclusion, we

not only increased the speed of the system but also in the mean time

we managed to maintain and improve the quality of the candidate

matches.
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