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Abstract

Superparamagnetic iron oxide nanoparticles (SPION) are increasingly used to label human bone marrow stromal cells
(BMSCs, also called ‘‘mesenchymal stem cells’’) to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB)
staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve
the question of the effect of labeling on maintaining the ‘‘stemness’’ of cells within the BMSC population in vivo. Assays
performed include colony forming efficiency, CD146 expression, gene expression profiling, and the ‘‘gold standard’’ of
evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not
alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that
were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as
well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION
labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.
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Introduction

Two FDA-approved agents, ferumoxides (Fe), a suspension of

superparamagnetic iron oxide nanoparticles (SPION), and prot-

amine sulfate (Pro), a drug used to reverse heparin anticoagulation,

have been combined (FePro) and used to magnetically label cells,

including stem and progenitor cells [1,2]. Labeling stem cells with

SPION allows for the non-invasive monitoring by MRI in both

animal and human trials [3–7]. SPION-labeled cells can also be

detected using Prussian blue (PB) stain to correlate histology to

MRI. Such non-invasive and sensitive imaging techniques in the

future will be valuable for optimizing cell therapy, especially stem

or progenitor cells, by tracking labeled cells after infusion.

Multiple reports have documented safety of this labeling

technique, such as no short- or long-term toxic effects, no

production of reactive oxygen species, no modification in the

viability and proliferation and cellular function or phenotype of

SPION-labeled compared to unlabeled BMSCs [8,9]. However, in

order for labeled stem cell trial therapies to be effective, this

technique must not alter the ‘‘stemness’’ (their ability to regenerate

a tissue and to self-renew). We have shown that FePro labeling

does not alter the in vitro differentiation capacity of CD34 positive

hematopoietic stem cells (HSCs) or bone marrow stromal cells

(BMSC) to osteogenic or adipogenic cells [9,10]. SPION labeling

was also shown not to inhibit cartilaginous differentation, [10] but

another group found a decrease in cartilaginous differentation

when higher concentrations of the SPION were used [11]. None

of the studies have performed an in vivo differentiation assay.

The current assay to establish stem cell function of differenti-

ation and self-renewal, is exemplified by the capacity of a single

prospectively isolated HSC to reconstitute, serially and long term,

multilineage hematopoiesis in lethally irradiated recipient mice.

Progress has been made towards developing an equivalent ‘‘gold

standard’’ assay for human BMSCs. Multipotency of BMSCs is

commonly assessed by in vitro differentiation assays. However,

these assays correlate poorly with results of in vivo differentiation

assays, even when conducted in parallel on the same cell strain

[12,13]. Furthermore, multipotency (a property of a single cell)

cannot be determined based on assays conducted on non-clonal

cell strains in culture. In vitro generation of alizarin red deposits

(osteogenesis), oil red O-stainable cells (adipogenesis), and alcian

blue-stainable matrix (chondrogenesis) in parallel cultures of non-

clonal strains of BMSCs, or any strain of cells, does not predict

multipotency of a single cell [12]. The ability of BMSCs mixed
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with appropriate carrier to make donor-derived bone and

hematopoietic-supporting stroma, frequently called an ‘‘ossicle’’

in a immunocompromised mouse, establishes the stem cell

potential of the tested BMSC population [14]. Colony forming

efficiency of the BMSCs and their CD146 expression are an

indirect measure of the stem cell content of a BMSC population

even though they do not replace the in vivo assay [14]. In this

study, we examined whether FePro labeling affects the ‘‘stemness’’

of BMSCs, as defined by their ability to differentiate and self-

renew, by determining the ability of labeled BMSCs to make

ossicles, colony forming efficiency, CD146 expression in addition

to gene profiling of labeled versus unlabeled cells.

Results

FePro labeling of BMSCs resulted in approximately 100% of

cells being labeled after counting Prussian blue positive cells.

Equivalent Colony forming efficiency after FePro labeling
FePro labeling did not lead to an alteration in the colony

forming ability of BMSCs in assays with varying plating density

and when conducted independently by at least two of the authors.

The number of colonies was higher for both FePro labeled and

unlabeled BMSCs when plated at clonal density compared to

high-density plating (see Figure 1A and 1B).

Lack of difference in CD146 expression after SPION
labeling

FePro labeling did not alter the CD146 expression in any of the

5 donors tested (see Figure 2). A large percentage of the BMSCs

both in labeled and unlabeled cells in different donors were CD

146 positive cells.

Concordant gene expression profiles
Recently, gene expression profiling has been used to

determine stem cells and to test the potency of cellular therapies

[15]. We used global transcriptional profiling to evaluate the

potential effect of FePro labeling on BMSCs. As a control to

FePro -labeled cells, we labeled BMSCs with gold nanoparti-

cles. SPIONs, once internalized by the cell undergo progressive

degradation [9], while gold nanoparticles are inert. Among

more than 36,000 probes in the array, only those genes that

were expressed by greater than 80% of BMSCs and whose fold

change more than 1.5 were selected for analysis. The resulting

8,506 genes were analyzed by unsupervised hierarchical

clustering and multidimensional scaling analysis. The 15

samples were grouped into 3 clusters: one with all 3 hES cells,

one with the 3 adult cells: fibroblasts, smooth muscle cells and

endothelial cells, and another with all BMSCs. Among the

BMSC samples, there was no segregation of samples according

to the labeling method. Similarly, a multidimensional scaling

analysis classified the 3 hES samples into one group, the 3 adult

cells into a second group, and the 12 BMSC samples into the

third group (Figure 3). The BMSC samples did not cluster

according to the labeling method (Figure 3B). Only 72

differentially expressed genes were identified among the three

groups. Among the genes that were changed (at least 2 fold, F-

test, P,0.01) in FePro-labeled BMSCs compared to unlabeled

BMSCs or gold nanoparticle labeled BMSCs were gene families

related to ion binding, ion or vesicle transport, cytoskeleton

related genes or genes involved in the signal transduction

pathways associated with cytoskeletal changes. With regard to

genes involved in iron metabolism, ferritin and iron storage

proteins were upregulated in FePro-labeled BMSCs and

transferrin receptor was not changed.

Figure 1. Colony forming efficiency in FePro-labeled BMSCs. Secondary colony forming efficiency of BMSCs plated at clonal density (A) or
high density (B) from 5 donors. Data are represented as mean +/2 S.D. of colony forming units for each donor done in triplicates. Note the lack of a
statistically different change in number of colonies in SPION-labeled BMSCs (solid colored bars), Student t test, p.0.5. A similar lack of a statistically
different change in the number of colonies were found when the secondary colony forming efficiency experiments from 5 donors were repeated
independently by two other scientists.
doi:10.1371/journal.pone.0011462.g001

SPION Doesn’t Affect Stemness
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Comparable ability of labeled BMSCs to form a bone/
marrow organ in vivo

After 8 weeks, abundant bone formation supporting hemato-

poiesis was found in the transplants of FePro-labeled BMSCs (see

Figure 4A), GFP-labeled BMSCs (see Figure 4A), both FePro- and

GFP-labeled, or non-labeled BMSCs. The bone formation scores

were similar between the four groups for each of the donors. In

transplants of FePro- or GFP- labeled cells or both, PB or GFP

positive cells were readily detectable (see Figure 4C and figure 5A).

They appeared as stromal/fibroblast-like cells within areas of

fibrous tissue and over carrier surfaces.

Discussion

The closest approximation to estimating the frequency of stem

cells is derived from the primary colony forming efficiency (CFE)

assay, which enumerates the number of Colony Forming Units-

Fibroblast, approximately 1 in 5 of which are stem cells [16]. Since

the only way of establishing ex vivo expanded BMSCs is after

adherence, we used CFE assays on passaged cells at both clonal

and high densities. The increased CFE when cells are plated at a

clonal density is intriguing and further studies are needed to prove

that the colonies formed at clonal density are also an indication

that some of these are stem cells. Although it is unclear if CFE

assays performed on passaged BMSCs are an estimate for the

frequency of stem cells, we nevertheless, did not see any significant

differences after FePro labeling.

In human bone marrow, CD146 positivity marks adventitial

reticular cells, [14] a stromal cell type residing in a subendothelial

position over the abluminal surface of BM sinusoids [17]. CD146

appears to be a marker for the in situ counterpart of the primary

colony forming unit fibroblast, [14] and thus, possibly an indirect

estimate of the stem cells in BMSCs. No differences in CD146

positivity were observed with labeling.

The results of gene profiling after unsupervised hierarchical

clustering and multidimensional scaling analysis suggested that

there are only minor differences in gene expression profiles

between SPION-labeled, gold nanoparticles labeled and unlabeled

control BMSCs [18]. No substantial change in FePro-labeled

BMSCs was observed on any of the genes thought to be critical for

‘‘stemness’’ of embryonic and adult stem cells such WNT pathway

genes, when compared to unlabeled BMSCs. The changes in

genes involved in iron metabolism are consistent with our

previously published study [9].

Figure 2. CD 146 expression in FePro-labeled BMSCs. (A) Representative flow cytometry histogram with overlay of the two groups showing no
difference in CD146 expression after SPION labeling of BMSCs. (B) Bar graph showing mean CD146 expression in FePro labeled and unlabeled BMSC.
Note the lack of statistically significant difference in CD146 expression after SPION labeling (solid colored bars), Student t test, p.0.5. Data shown as
mean +/2 S.D. of CD 146 expression in 5 donors.
doi:10.1371/journal.pone.0011462.g002

SPION Doesn’t Affect Stemness
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FePro-labeling of BMSCs does not affect their ability to differentiate

into bone, marrow adipocytes, fibroblasts and hematopoietic support-

ing stroma in vivo.

The donor (human) origin of osteocytes and myelosupportive

stroma have been determined by various methods, whereas the

donor origin of marrow adipocytes has long been suspected and

Figure 3. Global gene expression and multidimensional scaling analysis of FePro labeled BMSCs. BMSC samples from 3 donors (FePro-
labeled, gold nanoparticle-labeled and unlabeled control) and control cells (3 samples from human embryonic stem cells and 3 samples of adult cells)
were analyzed by an oligonucleotide microarray. The multidimensional scaling plot similarly grouped the hES cells together, the adult cells other than
BMSCs together in another group, and all the BMSC samples into a third group. The BMSCs did not cluster according to the type of labeling method.
hES- human embryonic stem cell; adult indicated the adult cells: Fb-fibroblasts, EC endothelial cells, SMC-smooth muscle cells; BMSC-FePro: bone
marrow stromal cellslabeled with FePro; BMSC-Gold: bone marrow stromal cells labeled with gold nanoparticle; BMSC-control: unlabeled BMSC
control; D1: donor 1; D2-donor 2; D3 donor 3.
doi:10.1371/journal.pone.0011462.g003

Figure 4. Immunohistochemical staining of ossicles derived from FePro or GFP labeled and unlabeled BMSCs. A representative ossicle
derived from unlabeled (A) and FePro labeled (B) BMSCs at 8 weeks, stained with H & E showing comparable abundant bone formation and abundant
hematopoiesis. Immunohistochemistry staining for GFP of a representative ossicle derived from BMSCs labeled with both FePro and lentivirus
carrying GFP (C) and control unlabeled BMSCs (D).
doi:10.1371/journal.pone.0011462.g004

SPION Doesn’t Affect Stemness
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even assumed, but never proven owing to their large

cytoplasmic to nuclear ratio, making detection with nuclear

markers difficult. Unlike nuclear markers, labeled SPION,

internalized by macropinocytosis, accumulate within endo-

some/lysosome compartment. Ossicles created with SPION-

labeled cells show several Prussian blue positive adipocytes (see

Figure 5C), strongly suggesting their origin from human

BMSCs, although electron microscopy would be needed to be

definitive. Prussian blue negative, GFP+ osteocytes (see

Figure 4C) are probably the result of dilution of SPION label

during the proliferation and subsequent differentiation of

BMSCs. Labeled SPION are internalized by macropinocytosis,

which accumulate within endosome/lysosome compartment.

The label is diluted after a few passages of BMSCs (see figure 6).

The intense proliferation of BMSCs necessary for bone

formation in vivo possibly resulted in dilution of SPION label

in the osteocytes.

The other distinct property of a stem cell is its capacity to

self renew and the only system for which stem cell self-renewal

is considered to be solidly proven is the hematopoietic system

[19–21]. Evidence for self-renewal of the subset of multipotent

BMSCs has only very recently started to emerge and is thought to

be related to CD146 positivity [14]. It is beyond the scope of our

objective to study self-renewal by serial passage of stroma from the

‘‘ossicles.’’ However, there is no data indicating that SPION

labeling will alter the self-renewal capacity of BMSCs as PB+
pericytes were seen in the ossicles (see figure 5D) and CD146

expression is not different between FePro-labeled and unlabeled

BMSCs (Figure 2). Ex vivo expanded labeled BMSCs reformed

myelosupportive stroma.

In conclusion, our study shows that FePro-labeling of BMSCs

does not affect their ‘‘stemness’’ in any of the fours assays that were

utilized.

Methods

Harvest and expansion of human bone marrow stromal
cells (BMSCs)

Briefly, bone marrow biopsies were obtained from volunteers

after obtaining written informed consents under IRB of the

National Institute of Dental and Craniofacial Institute approved

procedures, and processed as described previously [12]. Fragments

of trabecular bone and marrow were scraped gently with a steel

blade into cold modified Minimum Essential Medium [alpha]

MEM, (Life Technologies, Grand Island, NY). Released cells were

pipeted, passed through 16- and 20-gauge needles and filtered

through a 70-mm pore size nylon cell strainer (Becton Dickinson,

Franklin Lakes, NJ). Single cell suspensions were plated at 1.06107

nucleated cells per 75-cm2 flask (Becton Dickinson, Lincoln Park,

NJ). Cells were incubated at 37uC in a 95% air/5% CO2

atmosphere in growth medium containing [alpha]-MEM, 2 mM l-

glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin sulfate

(Invitrogen, CA), and lot selected 20% fetal bovine serum.

Medium was replaced on day 6 or 7. The cultures were passaged

on day 12 with two consecutive applications of 1x trypsin-EDTA

(Life Technologies, Gaithersburg, MD) for 5–10 min each at room

temperature. Subsequent passages were performed at 4 to 7 day

intervals. BMSCs were used at passages 3 or 4 for this study.

Labeling of BMSC with Ferumoxides/Protamine Sulfate
Ferumoxides (Fe, Feridex IV, Berlex Laboratories, Wayne, NJ)

are dextran coated SPIO nanoparticles approximately 120–

150 nm in size and are provided at a total iron content of

11.2 mg/ml. Protamine sulfate (Pro, American Pharmaceuticals

Partner, Schaumburg, IL), supplied at 10 mg/ml, was prepared as

a fresh stock solution of 1 mg/mL in sterile distilled water

immediately before labeling. Ferumoxides at a concentration of

Figure 5. Prussian blue staining of ossicles derived from FePro or unlabeled BMSCs. Prussian blue (PB) staining of a representative
ossicle derived from BMSCs labeled with FePro (A) and control unlabeled BMSCs (B). PB staining of a representative ossicle derived from
BMSCs labeled with FePro showing PB+ adipocytes (C). PB staining of a representative ossicle derived from labeled BMSCs showing PB+

pericytes (D).
doi:10.1371/journal.pone.0011462.g005

SPION Doesn’t Affect Stemness

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11462



100 mg/ml were put into a 50 ml conical tube containing serum-

free RPMI 1640 (Biosource, Camarillo, CA) with 25 mM HEPES,

MEM nonessential amino acids, sodium pyruvate, and L-

glutamine. Protamine sulfate was added to the solution at 6 mg/

ml and mixed for 2 minutes with intermittent hand shaking.

Culture medium was aspirated from the flasks containing BMSCs

and replaced with media containing FePro complexes. After

2 hours of incubation at 37uC, an equal amount of complete

medium was added for a final concentration of Fe to Pro, 50 mg/

ml to 3 mg/mL, respectively. Cells were incubated overnight

(,16 hours), and washed three times with sterile PBS containing

10 U/mL heparin sulfate (American Pharmaceuticals Partner,

Schaumburg, IL). Complete medium was added to each flask and

labeled cells were kept in culture for 2 days to ensure all FePro

complexes were endocytosed.

Labeling of BMSC with Gold nanoparticles
BMSCs were labeled in serum-free RPMI medium containing

2.256107 gold nanoparticles/mL (British Biocell International,

Wales, U.K, particle size-250 nm) and 10 ng/mL protamine

sulfate at 37C. After four hours, an equal volume of complete

medium was added, and the cells were incubated overnight. The

next day, the cells were washed three times with heparinized

HBSS (10 U/mL) and returned to the incubator in normal

medium. Gold nanoparticle labeling was performed for in vitro

studies to evaluate alterations in gene expression as a result of cell

labeling.

Prussian Blue Staining and FePro Labeling Efficiency
To visualize the iron within FePro labeled cells, Prussian blue

(PB) staining was performed. After 2 days post-labeling, BMSCs

were trypsinized and transferred to cytospin slides. Cells were fixed

with 4% glutaraldehyde, washed, and incubated for 30 minutes

with 2% potassium ferric-ferrocyanide (Perl’s reagent for staining,

Sigma, St. Louis, MO) in 3.7% hydrochloric acid. Cells were

washed again, counterstained with nuclear fast red and evaluated

for iron staining using light microscopy (Axioplan Imaging II;

Zeiss, Oberkochen, Germany) at 406/0.75 objective lens and

Axiovision 4.4 software (Zeiss, Oberkochen, Germany). FePro

labeling efficiency was determined by manual counting of PB

stained and unstained cells at 1006magnification using a 1006/

1.30 oil immersion objective lens. The percentage of labeled cells

was determined from the average of 5 high-powered fields.

BMSCs labeled with gold nanoparticles were evaluated by

generating optical differential interference contrast images (DIC)

using Olympus BX-UCB microscope attached to a DP70 camera

(Olympus, Center Valley, PA) at 640/0.75 objective lens and

MicroSuiteTM Biological Suite software (Olympus, Center Valley,

PA). The gold nanoparticle labeling efficiency was determined as

described for FePro labeling.

BMSCs transduction with lentivirus
BMSCs were transduced with lentivirus encoding for copeod

green fluorescent protein (copGFP, pSIH1-siLuc-copGFP lentivi-

rus, System Biosciences, Mountain View, CA) by replacing the

Figure 6. Dilution of FePro in cultured FePro-labeled and unlabeled BMSCs. The microphotographs show PB staining of BMSCs cultured in
vitro at passages 3, 4, 5 and 6 after BMSCs at passage 2 were labeled with FePro.
doi:10.1371/journal.pone.0011462.g006
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medium with fresh medium containing viral particles and

incubating overnight at 37uC in a 95% air per 5% CO2

atmosphere. After overnight incubation, media was replaced and

cells incubated for 48 hours. The transfection efficiency was

evaluated by flow cytometry and cells expressing the GFP

transgene were sorted using the MoFlow cell sorter (Dako

Cytomation, Fort Collins, CO).

Colony Forming Efficiency
BMSCs at passage 2 or 3 were plated at concentrations of 41

(clonal density) or 500 (non-clonal density) nucleated cells in

25 cm2 flasks along with 6 mls of growth medium in order to

determine secondary colony forming efficiency (CFE). The colony

forming efficiency assay was performed by at least 2 of the authors

independently for each of the donor BMSCs. After incubation for

10–14 days without medium change, cultures were washed with

HBSS, fixed with 100% methanol and stained with an aqueous

solution of saturated methyl violet. Using a dissecting microscope,

colonies with greater than 50 cells are counted, and the CFE is

determined per nucleated cells plated.

Assay for bone formation and hematopoietic support in
vivo

BMSCs of 3rd or 4th passages from 5 donors were used for the

in vivo transplantation assay. The transplantation technique was

performed as described in detail elsewhere [22]. Briefly,

trypsinized and pelleted BMSCs were resuspended in 1 ml of

standard medium. The cell suspensions were mixed with 40 mg of

hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic powder

(particle size 0.5–1.0 mm, generously provided by Zimmer, Inc.,

Warsaw, IN), and the mixtures were incubated at 37uC for 90 min

with slow rotation (25 rpm) prior to implantation.

Eight- to 15-week-old immunodeficient female beige mice (bg-

nu/nu-xid, Charles River Laboratories, Raleigh, NC, or Harlan

Sprague Dawley, Indianapolis, IN) were used as transplant

recipients. All research involving animals were conducted

according to the National Institutes of Health Animal Care and

Use Guidelines. Animal experiments were performed according to

a protocol approved by National Institute of Dental and

Craniofacial Research’s Animal Care and User Committee

(ACUC) of National Institutes of Health. Animals were main-

tained under ad libitum diet supplied by Harlan Laboratories. Every

effort was made to minimize the number of animals used and their

suffering. Procedures were performed in accordance to specifica-

tions of an approved small animal protocol under anesthesia

achieved with isoflurane in an induction chamber. Mid-longitu-

dinal skin incisions of 1 cm length was made on the dorsal surface

of each mouse, and up to four subcutaneous pockets were formed

by blunt dissection. A single transplant was placed into each

pocket. The incisions were closed with surgical staples.

The transplants were recovered 8 weeks post transplantation,

fixed and decalcified in 0.25 M EDTA (Sigma-Aldrich, St. Luis,

MO), cut into halves, and embedded into a single paraffin block so

that the largest surface areas were sectioned. Three sections

separated by 100-mm steps were prepared from each block and

stained with hematoxylin and eosin. Two independent investiga-

tors masked to the groups of cells estimated the degree of bone

formation using a semi-quantitative scale as previously described

[23]. The average bone formation score was calculated for each

transplant and for each experimental group. The extent of

hematopoiesis (a measure of the presence of the stem cell within

the BMSC population) in the ossicle was also evaluated and scored

by microscopy.

CD146 determination
For FACS, the entire cell suspension was pelleted, resuspended

and preincubated in PBS/1% BSA for 30 min on ice with regular

mixing (blocking). After washing in PBS, cells were centrifuged,

and the pellet was resuspended in PBS and centrifuged again.

Subsequently, they were incubated with PE-conjugated anti-

CD146 (clone P1H12 monoclonal antibody BD Biosciences, 20 ml

per 16106 nucleated cells) for 30 minutes on ice, washed twice

with PBS/1% BSA, and resuspended in the desired volume of the

same buffer. After washing, CD146+ and CD1462 fractions were

separated using a FACS DIVAntageSE flow cytometer (BD

Biosciences Labware, San Diego, CA) or alternatively, cell

suspensions were used for flow cytometry analysis. Expression of

markers was assessed by using a FACS Calibur flow cytometer and

CellQuest software (Becton Dickinson Biosciences, San Diego,

CA).

GFP staining
Recovered transplants were fixed, decalcified in 0.25 M EDTA

(Sigma-Aldrich, St. Luis, MO), cut into halves, embedded in

paraffin blocks and sectioned. Deparaffinization and rehydration

of the 10-mm paraffin sections was followed by inhibition of

endogenous peroxidase and antigen retrival. Sections were

incubated for 2 hours with 10% bovine serum albumin in PBS

and then incubated overnight with the primary anti-GFP antibody

(0.5 mg/ml, Millipore, Billerica, MA). The sections were incubated

in the biotinylated secondary antibody (anti-rat-IgG peroxidase

conjugate, Sigma, St. Louis, MO, 1:200), treated with ABC

reagent (Elite Vector Kit, Vector Laboratories, Burlingame, CA)

and the tissue-bound peroxidase was developed was developed

using diaminobenzidine.

Gene microarrays and statistical analyses
Total RNA from BMSCs of three donors (FePro labeled, gold

nanoparticle labeled and unlabeled control) was extracted using

Trizol reagent and amplified into anti-sense RNA (aRNA) as

previously described [24]. For comparison, total RNA extracted

from human embryonic stem cells (hES) WA (H9) and adult cells:

fibroblasts, endothelial cells and smooth muscle cells was amplified

using the same procedure. Total RNA from peripheral blood

mononuclear cells (PBMCs) pooled from six normal donors was

amplified into aRNA to serve as the reference. Both reference and

test aRNA (6 mg of each sample) were directly labeled using ULS

aRNA Fluorescent Labeling kit (Kreatech, Salt Lake City, UT)

and co-hybridized to a custom-made 36K oligo-based microarray

platform encompassing the whole human genome. The arrays

were printed in the Infectious Disease and Immunogenetics

Section ofTransfusion Medicine, Clinical Center, NIH (Bethesda,

MD) using a commercial probe set which contains 35,035

oligonucleotide probes, representing approximately 25,100 unique

genes and 39,600 transcripts (Operon Human Genome Array-

Ready Oligo Set version 4.0, Huntsville, AL). Hybridization was

carried out at 42uC for 18 to 24 hours and the arrays were then

washed and scanned on a Gene-Pix scanner Pro 4.0 (Molecular

Devices, Downingtown, PA).

The resulting jpeg and gene expression data files were deposited

in a microarray database (mAdb) (http://nciarray.nci.nih.gov) and

further analyzed using BRBArrayTools developed by the Biomet-

ric Research Branch, National Cancer Institute (http://linus.nci.

nih.gov/BRB-ArrayTools.html). Briefly, the raw data set was

filtered according to standard procedure to exclude spots with

minimum intensity and size. The filtered data were normalized

using Lowess Smoother. Differentially expressed genes were

identified using F-tests with a P-value cutoff of 0.01; P-values
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were adjusted for multiple comparisons by False Discovery Rate ,

0.05. Clustering and visualization of expression profiles was

preformed with Cluster and Treeview software (http://rana.lbl.

gov/EisenSoftware.htm) [25]. All the data is MIAME compliant.

The entire microarray dataset is available at http://www.ncbi.

nlm.nih.gov/geo/(GSE20431).
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