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Abstract 

Background:  Semen cryopreservation has been widely applied in assisted reproductive technologies and sperm 
bank, but it causes considerable impairments on sperm quality. It is necessary to find an evaluation indicator for 
determining the sperm-freezing tolerance.

Methods:  The glycocalyx of good freezability ejaculates was compared with poor freezability ejaculates by lectin 
microarray. The significant different lectins were validated by flow cytometry (FACS). To analyze the relationship 
between the potential biomarker and the tolerance of sperm to cryopreservation, 60 samples with different recovery 
rates were collected and detected the lectin-binding intensity by FACS. The receiver operating characteristic (ROC) 
curve was analyzed to test the capability of the lectin as a potential biomarker for detecting the sperm freezablility.

Results:  ABA and DSL were found to develop significant differences between them. Further validation showed that 
ABA was significantly negative correlated with the sperm recovery rates (r = − 0.618, P < 0.000) and could be a poten‑
tial biomarker for predicting sperm freezability (AUC = 0.733 ± 0.067, 95% CI 0.601 − 0.865, P < 0.01).

Conclusion:  ABA could be a potential biomarker for predicting sperm freezability. It will help to reduce sperm-freez‑
ing recovery tests and improve the efficiency of cryopreservation in human sperm bank.
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Background
After decades of development, semen cryopreserva-
tion has been widely applied in assisted reproductive 
technologies (ART) and sperm bank [1, 2]. The technol-
ogy helps men with azoospermia or severe hereditary 
disease related with infertility have the opportunity to 
have children using the donor’s sperm from sperm bank 
by in vitro fertilization (IVF) or intracytoplasmic sperm 

injection (ICSI). In addition, for some patients who 
are about to undergo chemotherapy treatment or other 
events associated with loss of fertility, sperm cryopreser-
vation can preserve their fertility and make them have 
their own children later [3, 4]. However, cryopreservation 
caused dramatic impairments to sperm containing sperm 
motility, viability, DNA integrity, plasma membrane, and 
matrix density of mitochondrial, and reduced the sperm 
ability of penetration of cervical mucus and egg [5–9]. 
The improvement of the cryopreservation technology 
and the stability of the recovery rate directly impact on 
pregnancy rate.

In order to ensure the safe and effective supply of 
semen, the better quality, higher recovery rate of semen is 
the working focus of sperm bank. However, the tolerance 
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of sperm to cryopreservation varies in individuals. There 
are always some semen samples presenting poor ability to 
resist cryopreservation in clinic. Until now, many studies 
on human semen have attempted to find biomarkers of 
freezability. But, some of them showed controversial. Pre-
freezed motility has been reported to be correlated with 
cryosurvival rate [10, 11]. High initial motility and sperm 
density result in high recovery rate [12]. While other 
studies reported that the parameters of conventional 
semen analysis including sperm concentration, motil-
ity, WHO morphology and total motile count showed 
no correlation with the sperm motility recovery rates 
[13–15]. These suggested that the conventional semen 
parameters have no sufficient capacity to predict the 
sperm freezability. In addition, the traditionary method 
by post-thawed recovery is not only time-consuming, but 
also labor and reagents wasting, which makes an evalua-
tion indicator for determining the sperm freezing toler-
ance urgent.

The sperm glycocalyx is a dense carbohydrate layer 
with 20–60  nm thick, coating on the sperm membrane 
outmost surface with protein and lipid [16]. It plays an 
important role in sperm maturation, motility and fer-
tilization [16–18]. During the process of sperm forma-
tion, maturation, capacitation and acrosome reaction, 
the glycoprotein on the sperm surface is largely rear-
ranged. Subtle change in glycocalyx has significant effect 
on sperm fertility [17, 19–22]. Reports about the cryo-
damage of sperm glycocalyx are few due to the techni-
cal limitation. Only several papers about the avian sperm 
carbohydrate changes caused by cryopreservation. And 
its alterations were associated with the impaired fertil-
ity [23, 24]. As a group of natural glycan binders, lectins 
labeled with different conjugates can detect individual 
glycans by immunocytochemistry, immunohistochemis-
try or flow cytome. This is the main method to study the 
composition of cell glycocalyx. Recently, our lab reported 
a sensitive and high-through technology-lectin microar-
ray to analyze the sperm glycocalyx [22, 25]. It acceler-
ated the study on sperm glycocalyx.

Therefore, the aim of this study was to find the bio-
markers related with human sperm freezability through 
comparing the glycocalyx between good freezability 
ejaculates (GFEs) and poor freezability ejaculates (PFEs) 
by lectin microarray. These will be conducive to optimi-
zation of sperm cryopreservation methods, screening of 
the high quality sperm and improvement of the sperm 
fertilization.

Methods
Sperm collection
All the semen samples in this study were collected in 
Human Sperm Bank of Renji Hospital, Shanghai Jiao 

Tong University School of Medicine. The age of the 
donors ranged from 20 to 35  years. The donors were 
instructed to collect semen samples through mastur-
bation after 3–5  days sexual abstinence. Semen was 
harvested in sterile containers. All these samples were 
evaluated for volume, sperm concentration, total motil-
ity, progressive motility (PR), and non-progressive motil-
ity (NP) according to the fifth edition of WHO laboratory 
manual. The samples with normal semen parameters 
were included; i.e., they presented the normal volume 
(≥ 2 ml), concentration (≥ 15 × 106/ml) and total motility 
(≥ 40%).

Liquefied semen samples were divided into two ali-
quots. One of the aliquots was performed to cryopreser-
vation. The other aliquot was directly fixed for lectin 
microarray analysis or flow cytometry.

All the donors have given the written informed con-
sent. This research was approved by the Institutional 
Review Committee of Shanghai Jiao Tong University. All 
experiments were performed in accordance with the rel-
evant guidelines and regulations.

Semen cryopreservation and thawing
The semen samples were cryopreserved by direct vapor 
nitrogen freezing method [26]. The liquefied semen sam-
ples were mixed with an equal volume of CryoSperm™ 
(ORIGIO, USA), followed with incubation at room tem-
perature (RT) for 10 min. Then, the equilibrated samples 
were transferred to cryovials and placed about 10  cm 
top from the surface of liquid nitrogen. After incubated 
for 20 h, the cryovials were preserved in liquid nitrogen 
at − 196  °C. After 24  h, the cryovials were immediately 
moved from liquid nitrogen into water bath at 37 °C for 
5 min. The sperm total motility was examined to calcu-
late the recovery rate. The recovery rate (%) = Sperm 
motility after cryopreservation/Sperm motility before 
cryopreservation × 100%.

Sperm preparation and lectin microarray analysis
The sperm samples were prepared for lectin microar-
ray analysis as our previously described [22, 25]. The 
fresh semen and the frozen-thawed semen were centri-
fuged (500 g × 10 min) for collecting the sperm cells and 
washed with PBS, followed with fixation with 2% para-
formaldehyde containing 0.2% glutaraldehyde for 15 min, 
and then wash with PBS once, before stored at 4  °C for 
the subsequent lectin microarray and flow cytometry 
experiments.

The preparation of lectin microarray was consistent 
with our previously reported [22, 25, 27]. Simply, 91 lec-
tins with 1 μg/μl concentration were printed in triplicate 
on OPPolymer Slide H slides (CapitalBio, Beijing, China). 
Each slide contained 12 blocks with a matrix with 18 × 16 



Page 3 of 8Xin et al. Clin Proteom  (2018) 15:19 

arrangement. Then, stored at 4  °C overnight for the lec-
tins coated on the surface, the slides were ready for the 
sperm detection.

Lectin microarray was firstly blocked in 10  mM Tris 
Buffered Saline with 0.5% (v/v) Tween-20 (TBST) for 
1  h at RT and then washed once in PBST for 10  min, 
followed with twice in PBS for 10 min. The fixed sperm 
labeled with propidine iodide (PI, 20 μg/ml) was adjusted 
concentration to 5 × 106 spermatozoa in 200 μl PBS with 
50 μM CaCl2 and 50 μM MnCl2 for each block of lectin 
microarray, and then incubated in a wet box for 1 h at RT 
in the dark. Each sample was repeated four times in and 
between slides with a diagonal manner. After the excess 
and unbound spermatozoa gently removed by submerg-
ing and inverting the slides in PBST, the air-dried slides 
were scanned with a GenePix 4200A (Molecular Devices, 
Sunnyvale, CA) at 5  μm resolution with the scanning 
condition set to 532 nm filter and 40% PMT value.

Validation by flow cytometry
Sixty samples with different recovery rates were collected 
and fixed. The seminal parameters and recovery rate of 
the samples were in Additional file 1. 2 × 106 spermato-
zoa were re-suspended with 90  μl PBS and added 10  μl 
fluorescein isothiocyanate (FITC)-labeled lectin with 
the final concentration 100  μg/ml, then incubated for 
30 min at 37  °C in the dark. After that the spermatozoa 
were washed once and re-suspended with 500 μl PBS, to 
be analyzed in a Facs Calibur Flow cytometer using Win-
MID2.9 software.

Statistical analysis
The binding signals of the sperm with lectin microarray 
were extracted by GenePix pro 6.0. The signal intensity 
to the local background noise ratio (SNR) was defined as 
F532 Mean/B532 Mean, and all the spots’ SNRs of lectin 
microarray were calculated and normalized. Because of 
each sample performed four blocks repetition and each 
lectin having three repeats on each block, each sample 
had 12 SNRs. All the lectin binding signal data of GFEs 
and PFEs were averaged, respectively. The cut off value of 
the positive lectin binding was set as SNR ≥ 2.

Data analysis and graphs were conducted by SPSS 20.0 
and GraphPad Prism 5 and all the data was described as 
the mean ± SEM. The significantly different SNRs and the 
Geo Mean between the GFEs and the PFEs samples were 
determined by Independent-Samples T Test. The correla-
tion of ABA and recovery rate was analyzed via Pearson 
Correlations and Linear Regression. ROC analyses were 
performed with the ABA binding signal intensity plotted 
against the PFEs. The area under the ROC curves (AUC) 
were calculated to evaluate the sperm freezability.

Results
ABA and DSL being related with sperm freezabiltiy
In order to compare the lectin binding profilings between 
GFEs and PFEs, we collected 12 semen samples (GFEs, 
n = 6; PFEs, n = 6) according to the recovery rate. Among 
them, semen with the recovery rate more than 50% were 
classified to the GFEs group, while that of less than 30% 
were classified PFEs. As showed in Table  1, the aver-
age age of the enrolled donors was about 26  years, and 
semen parameters before cryopreservation had no sig-
nificant difference between the two groups. Obviously, 
the recovery rate showed statistically different (P < 0.000). 
The GFEs and PFEs samples before cryopreserva-
tion were prepared and analyzed by lectin microarray. 
Through comparation of 91 lectins binding signal inten-
sity between the two groups, Agaricus bisporusagglutinin 
(ABA) and Datura Stramonium Lectin (DSL) presented 
significant difference (Fig.  1). The ABA binding signal 
intensity of the GFEs showed lower than that of PFEs, 
while the DSL binding signal intensity was opposite, it 
was higher in the GFEs.

Validation of ABA and DSL by FACS
To validate the different lectins binding between GFEs 
and PFEs, we used fluorescein isothiocyanate (FITC)-
labeled ABA and DSL to analyze the binding signal of 
sperm by flow cytometry (FACS). As indicated in Fig. 2, 
the fluorescence intensity of ABA in PFEs was signifi-
cant increased than GEFs, which was totally consistent 
with the result of lectin microarray. However, the bind-
ing signal of DSL demonstrated no significant difference 
between the two groups. So, ABA was screened for the 
further experiments.

ABA being a potential biomarker for detecting the sperm 
freezability
To analyze the relationship between ABA and the toler-
ance of sperm to cryopreservation, sixty samples with 
different recovery rates were collected and detected the 
ABA binding intensity by FACS. The Pearson Correlation 

Table 1  The characteristics of the GFEs and the PFEs

All values are mean ± SEM

GFEs good freezability ejaculates, PFEs poor freezability ejaculates, PR 
progressive motility, NP non-progressive motility

GFEs (n = 6) PFEs (n = 6) P

Age 26.33 ± 1.82 25.50 ± 1.15 0.707

Semen volume (ml) 3.53 ± 0.62 4.57 ± 0.20 0.145

Sperm concentration (106 per ml) 85.67 ± 12.66 73.67 ± 12.30 0.512

Total motility (PR + NP, %) 57.38 ± 3.92 53.75 ± 3.18 0.489

Recovery rate (%) 58.13 ± 3.00 25.60 ± 1.34 0.000
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Coefficients demonstrated the binding intensity with 
ABA was significantly negative correlated with the 
sperm recovery rate (r = − 0.618, P < 0.000). In addition, 
the linear regression relationship between them is as: 
y = 106.042 − 0.334x (Fig. 3).

Furthermore, to test the capability of ABA as a potential 
biomarker for detecting the sperm freezability, Receiver 
Operating Characteristic (ROC) curve was analyzed. 
The recovery rate of 50% was set as the cut-off value of 
the tolerance of sperm to cryopreservation. As showed 

Fig. 1  The significantly different lectins between the good freezability ejaculates (GFEs) and the poor freezability ejaculates (PFEs) by lectin 
microarray. ABA a and DSL b showing significant difference between GFEs and PFEs, the lower figures presenting the corresponding spots of lectin 
microarray. *P < 0.05
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in Fig.  4, the area under the curves (AUC) of ABA was 
0.733 ± 0.067 (95% CI 0.601–0.865, P < 0.01), which indi-
cated that ABA could serve as a potential biomarker for 
detecting the sperm freezability. The cut-off value of ABA 
based on the data was 157 with 57.1% specificity (95% CI 
0.372–0.755) and 87.5% sensitivity (95% CI 0.710–0.965).

Discussion
High quality semen is the core and key of sperm bank. 
However, there are often some semen samples have bet-
ter semen parameters before freezing, but poor and 

unqualified motility after cryopreservation. Prediction 
of sperm freezability and classification of human semen 
into GFEs or PFEs before cryopreservation will help to 
save time, money and labor and facilitate the full use of 
frozen-thawed human spermatozoa. In this study, by 
comparing the lectin binding profilings of sperm samples 
with high recovery rate (classified to GFEs) with that of 
sperm with low recovery rate (classified to PFEs) through 
the most comprehensive lectin microarray technology, 

Fig. 2  Validation of sperm-lectin binding by flow cytometry. FACS analysis of the good freezability ejaculates (GFEs) and the poor freezability 
ejaculates (PFEs) labeled with FITC-ABA a or FITC-DLS b. ABA showing significant difference consistent with the results by lectin microarray; while 
DLS showing no statistical difference. **P < 0.01

Fig. 3  Correlation of ABA and the recovery rate of human sperm. 
ABA was significantly negative correlated with the sperm recovery 
rates

Fig. 4  Evaluation of ABA being biomarker for sperm freezability. 
The good freezability ejaculates as the control group (n = 32) and 
the poor freezability ejaculates as abnormal group (n = 28). The ROC 
curves and the corresponding AUCs were calculated by SPSS16.0
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ABA and DSL showed significant differences, and ABA 
had the biomarker potential for detecting the sperm 
freezability.

Sperm glycocalyx, composed of glycoproteins and gly-
colipids, located on the outer surface of the plasma mem-
brane, protects sperm from the immune surveillance in 
the uterus and helps maintain sperm survival [28–30]. 
It is reported that cryopreservation changes the sperm 
carbohydrates in avian, and that is associated with the 
impaired fertility [23, 24]. In addition, we found that cry-
opreservation significantly changed the sperm glycoca-
lyx in human, and the sialic acid, generally located at the 
terminal of the sugar chain of glycoprotein, was seriously 
lost [31]. This suggested to some extent that the glycoca-
lyx played an important role on protecting sperm from 
cryopreservation. Studies of the effects of cryopreserva-
tion on spermatozoa mainly focused on proteomics of 
seminal plasma or sperm membranes in many mammal 
species [32–36]. To the best of our knowledge, this is the 
first study that associate the glycocalyx with semen freez-
abiltiy in human.

It is reported that Kruger strict morphology is signifi-
cantly correlated with the progressive motility recovery 
rate (r = 0.294, P = 0.028) and marginally significant with 
the relationship between cryosurvival rate (r = 0.249, 
P = 0.064) [15]. While we found that the Pearson Cor-
relation Coefficients of ABA and sperm recovery rates 
(r = − 0.618, P < 0.000) was more relevant and significant 
than Kruger morphology. Jiang et al. [37] reported a mul-
tivariate model for predicting semen cryopreservation 
outcomes by three semen parameters, including progres-
sive motility (PR), straight-line velocity (VSL) and aver-
age path velocity (VAP), and the AUC of the multivariate 
model is 0.789. In this study, the AUC of ABA was 0.733. 
It was illustrated that the one factor of ABA had consid-
erable predictive capacity compared with the multivari-
ate model.

According to the glycosylation site of the peptide chain, 
glycoproteins possess two type glycans, N-linked glycans 
and O-linked glycans. N-acetylgalactosamine (GalNAc) 
is generally added to serine (Ser) or threonine (Thr) resi-
dues at the first step in O-glycosylation of proteins by 
polypeptide N-acetylgalactosaminyl transferase-6 (pp-
GalNAc-T6) catalyzation [38, 39], followed by galactose 
(Gal) and N-Acetylglucosamine (GlcNAc) transfera-
tion and added sialic acid (Sia) at the terminal of glycan 
chains. The lectin ABA specifically recognized the oligo-
saccharides of O-linked glycosylation (GalNAc-Ser/Thr) 
which was generally located in the inside of glycocalyx. 
In this study, the binding signal of ABA was significantly 
increased in PFEs. The sperm glycocalyx coated on the 
outmost surface of sperm membrane and played an 
important role on protecting sperm. The increase of ABA 

might be due to the imperfect glycocalyx and exposure 
of the inner oligosaccharides in PFEs. In addition, the 
previous paper in our lab had been found that the cryo-
damaged sperm showed the higher binding intensity to 
ABA than the fresh sperm [31]. It is suggested that the 
glycocalyx of PEFs had been impaired when ejaculated, 
and had no competence to resist cryopreservation.

It is reported that the protein composition has signifi-
cant difference between GFEs and PFEs, and related with 
sperm motility and fertility [36, 37]. In this study, the 
sperm glycocalyx between them also showed significant 
difference. It is reported that the alteration of spermato-
zoal glycocalyx is associated with impaired fertility in the 
fowl [40]. It seems reasonable to hypothesize that sperm 
freezability is the inherent characteristic of sperm, and it 
varies in individuals. Furthermore, on the basis of mas-
tering the technique of sperm cryopreservation and the 
quality control in laboratory, sperm freezability should be 
considered as one of the evaluation indicators of sperm 
quality. By comparing the glycocalyx between GFEs and 
PFEs prior to freezing, ABA will be one of potential bio-
markers to predict the sperm freezability. This will help 
to reduce sperm freezing recovery tests, thereby reduc-
ing the workload and semen waste and improve the effi-
ciency of cryopreservation in human sperm bank.
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