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Human tuberculosis remains a huge global public health problem with an estimated 1/3rd of the population being infected.
Defensins are antibacterial cationic peptides produced by a number of cell types, most notably neutrophil granulocytes and
epithelial cells. All three defensin types (𝛼-, 𝛽-, and 𝜃-defensins) have antibacterial activities, mainly through bacterial membrane
permeabilization. Defensins are effective against Gram-negative and Gram-positive bacteria including mycobacteria and are active
both intra- and extracellularly. Mycobacterial resistance has never been demonstrated although themprF gene encoding resistance
in Staphylococcus aureus is present in theMycobacterium tuberculosis genome. In addition to their antibacterial effect, defensins are
chemoattractants for macrophages and neutrophils. There are many cases for their use for therapy or prophylaxis in tuberculosis
as well. In conclusion, we propose that there is considerable scope and potential for exploring their use as therapeutic/prophylactic
agents and more comprehensive survey of defensins from different species and their bioactivity is timely.

1. Introduction

Tuberculosis remains the most important infectious disease
globally, and Mycobacterium tuberculosis is thought to be
present in one-third of the world’s population with 8–10
million new cases of active tuberculosis occurring annually
worldwide. In 2013, an estimated 9.0 million people devel-
oped tuberculosis, and 1.5 million died from the disease [1].
Almost all cases of tuberculosis are caused byM. tuberculosis,
with M. bovis contributing less than 1.4% of all pulmonary
cases outside of Africa and ∼2.8% of cases in Africa with a
crude incidence of 7 cases per 100,000 population [2]. The
incidence of disease in some countries is also exacerbated by
HIV infections [1]. Because of the difficulties of chemother-
apy, the incidence of multidrug-resistant strains ofM. tuber-
culosis has increased in many areas during recent decades [1].
This deterioration in the global situation highlights the need
for new therapeutic agents against mycobacterial diseases.
Recent research has shown that defensins have bactericidal

activity againstM. tuberculosis and indicate their potential to
play a more significant role in tuberculosis control than what
was previously considered [3].

Protective immunity against mycobacterial infections
requires the generation of an effective cell-mediated immu-
nity [4]. However, an efficient innate immune response may
also be important in natural resistance against mycobacte-
rial infection in addition to maintaining longer-term con-
trol of bacillary growth during latent infection. Alveolar
macrophages and lung epithelial cells are themain cells to first
encounter M. tuberculosis during primary infection. Studies
of human airway epithelia in vivo or in vitro show that they
can generate antimicrobial activity through the production of
antimicrobial peptides [5, 6]. In addition, defensins account
for a high proportion of the antibacterial activity associated
with neutrophil granules [7, 8]. Defensins act as a bridge
linking innate and acquired immunity largely through their
chemotactic properties. They belong to a family of small (3–
5 kDa) cationic cytotoxic and oxygen-independent peptides
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that are active against a wide spectrum of microorganisms
including bacteria, viruses, and fungi [9]. This review pre-
sents a brief summary of their role in immunity with specific
reference to human and animal tuberculosis and explores
their potential as a novel approach to therapy or prophylaxis.

2. Defensins in Man and Animals

There are three major classes of defensins expressed by differ-
ent cells within the vertebrate world; 𝛼-, 𝛽-, and 𝜃-defensins
are differentiated by their structure and antimicrobial activity.
𝛼-defensins, which have been identified in humans, mon-

keys, and several rodent species, are particularly abundant
in polymorphonuclear neutrophils (PMNs), certain macro-
phage populations, and Paneth cells of the small intestine [8,
10, 11]. Human neutrophil 𝛼-defensins (HNPs) 1–4 constitute
∼30% of proteins in the azurophilic granules of PMNs [8].
However, against Gram-positive bacteria, HNP-1, HNP-2,
and HNP-3 account for most of the total defensin content
and have greater antimicrobial activity than HNP-4 [12].
In contrast, the potency of HNP-4 against Gram-negative
bacteria is greater than those of HNP-1 and HNP-2 [13]. 𝛼-
Defensins 5 and 6 are found in Paneth cells, the epithelial
granulocytes of the small intestine [14, 15]. 𝛼-Defensins are
also found in alveolar macrophages from rabbits but not
from humans [16]. 𝛼-Defensins show activity in vitro against
Gram-negative and Gram-positive bacteria and fungi [12]
that can be modulated by environmental conditions such as
redox and pH [17].

In contrast to 𝛼-defensins, 𝛽-defensins are largely ex-
pressed in epithelial tissues [18, 19]. The first 𝛽-defensin
was identified in bovine tongue tissue, and 𝛽-defensins
subfamilies have now been reported in primates (humans
and apes), bovines, and rodents such as rats and mice [6,
20]. Furthermore, pigs and other farm animals including
birds express only 𝛽-defensins [20–22]. As the most compre-
hensively studied, 𝛽-defensins possess the widest taxonomic
distribution, including invertebrates and plants, indicating
an ancient point of origin [23]. Human 𝛽-defensin 1 (HBD-
1) is expressed constitutively by a number of body systems
including the urogenital tract and respiratory tract [24, 25].
HBD-2 was discovered in extracts of lesional scales from
patients suffering from psoriasis [26] and is expressed by
inflamed skin, lung, oral mucosa, and ocular surfaces [27]. Its
expression by epithelial cells can be induced by TNF-𝛼 [28]
and interleukin- (IL-) 1𝛽 but also by bacteria [18]. HBD-3 is
expressed mainly by the skin and tonsils [29], and HBD-4 is
expressed bymany tissues but is particularly highly expressed
in the gastric antrum and testes [30].The expression of HBD-
1 is constitutive, whereas HBD-2–4 are inducible [31] and are
thought to play a crucial role against bacterial infection as
part of the epithelial barrier [32]. Proinflammatory cytokines,
bacteria, and fungi have all been found to increase the
expression of these defensins in cultured keratinocytes [20].
𝜃-Defensins are the only defensin subfamily with a

circular structure, which likely originated through mutation
of a preexisting 𝛼-defensin gene in Old World monkeys [33].
Theywere first found in themonocytes and neutrophils of the
rhesus monkey (Macaca mulatta) and are the least numerous

subfamily of mammalian defensins [34], with only three 𝜃-
defensins recognized (rhesus theta defensin (RTD) 1–3) from
studies within leukocytes [34]. Circular defensin isoforms
also exist with five identified in peripheral blood leukocytes
and four in the bone marrow in the olive baboon (Papio
anubis). Less is known about the distribution and diversity of
𝜃-defensins because only 11 different 𝜃-defensins have been
isolated from three species of primates since their discovery
in 1999 [35]. The antimicrobial activity of 𝜃-defensins is
thought to be their natural function [35], and they bind to and
neutralize bacterial toxins [36, 37]. For example, the human
𝜃-defensin retrocyclin-1 and its analogues are active against
C. albicans and L. monocytogenes and bind to anthrax lethal
toxin [37].

To date, more than 17 human defensins have been
reported [10]. However, many more 𝛽-defensins have been
reported by in silico analysis [38], and a genome-wide com-
putational search has identifiedmore than 30 human unchar-
acterized 𝛽-defensin genes with full biological significances
currently undetermined [39].

3. Mechanism of Action; the Role of
Defensins in Immunity

3.1. Chemotaxis. The role of defensin chemotactic activity in
initiating and regulating the immune response is now well
known [30–32].The human 𝛼-defensin family chemoattracts
macrophages [8]. Amongst 𝛽-defensins, they possess chemo-
tactic activities for immature memory T-cells and dendritic
cells through the chemokine receptor CCR6 [40]. HBD-2 and
HBD-3 can combine with both CpG and host DNA to form
aggregates that resemble DNA nets, which may enhance the
intracellular uptake of CpG and self DNA and activate plas-
macytoid dendritic cells (pDCs) to promote DNA-induced
IFN-𝛼 production in a Toll-like receptor 9- (TLR9-) depen-
dent manner [41]. Subcutaneous injections of these com-
plexes showed enhanced infiltration of inflammatory cells at
the injection site, indicating a potential pathophysiological
role for defensin/DNA complexes in contributing to inflam-
mation [41]. A recent study showed that murine 𝛽-defensin
2 (mBD-2) immunostaining in tuberculous mice was essen-
tially localized to cells with dendritic morphology located
near the mediastinal lymph nodes and showed a high level
of gene expression [42]. This suggests that 𝛽-defensins may
play an important role in the initiation of a Th1 response as a
link between the innate and adaptive immune responses [42].
HNPs can also promote B- and T-cell interactions by modu-
lating the Th1- and Th2-type cytokines [43, 44]. 𝜃-Defensins
have not been found to possess chemotactic activity.

The expression of HBD-2 by human macrophages can
be triggered by M. tuberculosis [45]. The expression and
production of defensins are activated by a number of routes
including direct recognition of pathogen-associated molec-
ular patterns (PAMPs), such as LPS, by TLR [46]. This ini-
tiates MAPK- or NF-𝜅B-dependent cascades that culminate
in a proinflammatory response involving the secretion of
cytokines, chemokines, and defensins [19], which themselves
also have the capacity to induce defensin secretion. Their



Journal of Immunology Research 3

expression is also mediated by receptors other than TLRs,
including NOD2 [47]. Thus, infection of cells with live
Mycobacteria leads to the induction of TNF𝛼 and HBD-2
[48].

Defensins are also thought to contribute to the inflamma-
tory processes by inducing histamine release bymast cells and
increasing hyperresponsiveness of the airways to histamine
[49]. Besides their antimicrobial and potential proinflamma-
tory activities, defensins also display anti-inflammatory roles
by binding toC1q to inhibit activation of the classical pathway
of complement activation [49] and have been demonstrated
to inhibit fibrinolysis [50]. Some defensins are also able to
limit the inhibitory action of glucocorticoids on the sup-
pressor functions of T-lymphocytes, which was abolished
after adrenalectomy [51].

3.2. Antibacterial Activity. The main mode of antibacterial
action is the direct lysis of microorganisms through perme-
abilization of cell membranes [8] either whilst the bacteria
are extracellular or after phagocytosis [52]. It is believed that
electrostatic binding between the arginine groups of cationic
defensins and membranes rich in anionic phospholipids
induces the formation of voltage-regulated channels, which
causes the leakage of intracellular metabolites [8]. Some
defensins can also bind avidly to membrane glycoproteins
[53], which may be in part responsible for their antiviral
activity. This is supported by the fact that defensins do not
have antiviral activity against nonenveloped viruses [8].

In addition, defensins can bind to polyanionic molecules
such as DNA via electrostatic interaction after entering the
bacterial cell [54]. Since HNPs also target genomic DNA,
inducing single-strand DNA breaks [55], it has been hypoth-
esized that adenosine 5󸀠-diphosphate ribosylation might play
a regulatory role in the biological properties of arginine-rich
HNPs [56]. Defensins are highly antibacterial even in micro-
molar concentrations for both Gram-negative and Gram-
positive bacteria, including mycobacteria. Unfortunately, the
relative antibacterial activity between 𝛼- and 𝛽-defensins is
still unknown.

3.3. Bacterial Resistance to Defensins and Cytotoxicity. Path-
ogens that colonize sites where defensins may be present in
high concentrations have developed mechanisms to resist
their antibacterial activity. A number of genes responsible
for defensin resistance have been identified in different
pathogens. A staphylococcal gene, mprF, confers resistance
to several antimicrobial peptides including defensins and
related genes and has been found in the genomes of several
other pathogens such asM. tuberculosis, Pseudomonas aerug-
inosa, and Enterococcus faecalis [57]. MprF reduces the neg-
ative charge of the membrane surface and leads to decreased
binding of the cationic defensins bymodifying phosphatidyl-
glycerol with L-lysine in the membrane lipids [57]. The phoP
gene in Salmonella enterica serovar Typhimurium is also
thought to contribute to defensin resistance because a phoP
mutant shows significantly greater sensitivity to defensins
[58].

Potential clinical application of defensins must thus be
reviewed in the light of possible development or acquisition

of resistance. However, their nonspecific mode of action
suggests that they should show promise in averting the
development of resistance. Moreover, studies have demon-
strated that resistance is less frequent than that observed for
conventional antibiotics [59–61], and selections for resistance
in susceptible strains ofM. tuberculosis, Pseudomonas aerug-
inosa, and Enterococcus faecalis have failed [62].

In addition to their toxic effects on microorganisms,
there are a number of reports indicating cytotoxicity for
eukaryotic cells. High concentrations of HNPs are found in
the airway secretions of patients with chronic inflammatory
lung disorders. It has been reported that HNPs are cytotoxic
to airway epithelial cells and can induce chemokine secretion
in several cell types such as macrophages [63]. Other studies
showed that HNPs are cytotoxic not only against various
kinds of human and murine tumor cells but also against
a wide range of normal cells, including human endothelial
cells, lymphocytes, murine thymocytes, PMNs, and spleen
cells in a concentration-dependent (25–100𝜇g/mL) and time-
dependent manner [62, 64]. As cytotoxic molecules, HNPs
can cooperate with hydrogen peroxide, which is also secreted
by activated neutrophils, to affect synergistic cytolytic activity
in vitro. This interaction may contribute to granulocyte-
induced cytotoxicity in vivo [59, 65].

Some studies showed that the minimum inhibitory con-
centration and median inhibitory concentration of HNP-
1 were 2.5 𝜇g/mL and 0.8 𝜇g/mL, respectively, which are
much lower than the harmful concentrations to normal
cells [60]. This indicates that defensins have a relatively
low level of cytotoxicity to normal cells at antimicrobicidal
concentrations. Low cytotoxicity in vitro might be due to
the presence of fetal bovine serum in the culture media, as
serum proteins can protect mammalian target cells [61]. The
inhibitory effect of fetal calf serum (FCS) on lysis and binding
can be completely accounted for by its content of albumin
[61]. Not only could FCS prevent defensin binding, but also
it removed membrane-bound defensin molecules from the
targets [61]. Several proteins that can bind to defensins have
been identified, and some of them may work as defensin
carriers for clearance from tissues and blood [32].

4. Antimycobacterial Activity

A high concentration of 𝛼-defensins has been detected in
bronchoalveolar lavage (BAL) samples and pleural fluid from
patients suffering from pulmonary tuberculosis, and signifi-
cant levels of 𝛽-defensins have been detected in bronchoalve-
olar lavage fluid from patients with M. avium-intracellulare
infection [66]. Moreover, studies of gene expression pro-
files by microarray of peripheral blood mononuclear cells
(PBMC) from patients suffering from tuberculosis and M.
tuberculosis-infected healthy individuals who had repeated
close contact to tuberculosis patients (such as a nurse, physi-
cian, or familymember) andwere tuberculin skin test positive
showed that the concentrations of effector molecules, 𝛼-
defensins 1, 3, and 4, were upregulated in the diseased patients
[67]. Furthermore, mice infected with 1.5 × 104 CFU of M.
tuberculosis H37Rv and treated with different doses of HNP-
1 injected subcutaneously showed significantly improved
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clearance of bacilli from the lungs, liver, and spleen [68].
HNP-1 at 5 𝜇g/mL killed M. avium-intracellulare in vitro
at the optimal pH for bactericidal activity (>5) [69]. The
minimal inhibitory concentration (MIC) of HNP-1 against
M. tuberculosis in vitro in one study was 2.5𝜇g/mL [60],
much lower than that reported in a second study (25𝜇g/mL)
[70]. The difference in MIC observed could be attributed to
differences in experimental design.

HNP was the first defensin found to be effective against
nontuberculous mycobacteria, including M. avium-intra-
cellulare [69]. HNP-2 and HNP-3 were as effective in killing
M. avium-intracellulare in vitro as HNP-1 [69]. For HNP-5,
the linear peptide derived from its N-terminal fatty acylation
can enhance activity againstM. tuberculosis almost compara-
ble to the native peptide [71].

Bovine and rabbit defensins have similar or more potent
antimycobacterial activity than HNPs, especially against M.
tuberculosis clinical isolates in vitro [72, 73]. In contrast,
another study showed that HNP-1–3 are not necessarily more
effective in killing M. tuberculosis even at a much higher
concentration, which may be the result of differing levels of
resistance in the individual strains (M. tuberculosis Erdman)
used [74]. Defensins may play a much more significant role
in immunity against mycobacteria than what was previously
thought. One can therefore speculate that defensin produc-
tion, especially by epithelial cells and neutrophils, is likely to
bemore important early in infection before the establishment
of the granuloma.

Based on its antimicrobial activity and function in host
immunity, neutrophil-macrophage cooperation against M.
tuberculosis may thus be involved in clearance [75] based
on the following rationale. First, HNPs clearly show antimi-
crobial activity against M. tuberculosis in vitro by increasing
the permeability of the mycobacterial cell envelope [76].
Second, in addition to direct antimicrobial activity, HNPs
secreted by neutrophils recruited into the early lesion are
clearly able to act as chemotactic factors, attracting immune
cells including macrophages, T-lymphocytes, mast cells, and
immature memory T-cells [8]. Third, HNPs released by
neutrophils recruited in the early lesion can also modulate
cytokine production to influence the inflammatory response
since TNF-𝛼 secreted by macrophages may stimulate neu-
trophil mycobactericidal activity, which might be mediated
simultaneously by defensins [74].

In vitro, the capacity of macrophages to controlM. tuber-
culosis growth is improved by transfecting humanmonocyte-
derived macrophages with the HBD-2 gene compared with
non-HBD-2-transfected cells [77]. HBD-2 [78] shows great
antimicrobial activity against M. tuberculosis H37Rv in vitro
[78]. Like HBD-2, HBD-1 also plays a role in immunity
againstM. tuberculosis by permeabilization of both themyco-
bacterial cell wall and the cell membrane [79].M. tuberculosis
infection of endothelial cells in vitro also results in HBD-1
overexpression and profound cytoskeletal rearrangement
[80]. One study found that infection of human limbocorneal
fibroblasts with M. tuberculosis, M. abscessus, and M. smeg-
matis results in overexpression of HBD-1–3 [48]. Recent
studies have emphasized the role of HBD-4, which can be
triggered through the IL-1𝛽 and vitamin D receptor (VDR)

pathways in the innate immune defense against M. tuber-
culosis survival in infected macrophages [81]. One study
showed that intratracheal administration of L-isoleucine into
mice infected with the antibiotic-sensitive strain H37Rv or
a multidrug-resistant clinical isolate can significantly upreg-
ulate 𝛽-defensins 3 and 4 and decrease bacillary loads by
inducing their gene expression [82], demonstrating that it
may be possible to use defensins for treating infection by
modulating their gene expression.

Interestingly,more highly virulentM. bovis strains induce
lower levels of murine 𝛽-defensin 4 (mBD4) expression than
strains of lower virulence during many time points of early
infection [83], indicating the ability to suppress induction
early in infection in vivo. In experimental tuberculosis,
expression of mBD3 and mBD4 by airway epithelial cells in
the early stages of infection correlatedwith temporary control
of mycobacterial growth [84]. Similarly, high and stable pro-
ductionmBD4during latent infection is associatedwith long-
term control of mycobacterial proliferation [83]. The activity
of defensins against mycobacteria coupled with their induc-
tion by infection suggests that the introduction of defensins
either prophylactically or early in infection may affect the
course of the disease to the benefit of the host. There thus
exists the potential for the use of defensins as new prophy-
lactic/therapeutic agents against mycobacterial infections.

5. Antimycobacterial Therapy

The effective in vitro activity of a number of defensins against
mycobacteria combined with their beneficial chemotactic
effects suggests that therapeutic or prophylactic administra-
tion of defensins or their induction in the body might lead to
improvement in the course of infection and host health.

To date, there are relatively few reports on the effects of
defensin administration against M. tuberculosis, but most of
these show beneficial effects. Mice transfected with the 𝛽-
defensin 2 gene showed higher survival and lower bacterial
burden after challenge [85]. HNP-1 injected postinfection
showed significant time- and dose-dependent clearance of
bacilli from lungs, livers, and spleens in mice experimentally
infected withM. tuberculosisH37Rv [68].TheHNP-1 admin-
istered to mice in that study was significantly less (1 and 5 𝜇g
per mouse) than the concentration required (50𝜇g/mL) for
antimycobacterial activity in vitro.The higher in vivo potency
of HNPs is likely due to their immune enhancing effects, such
as chemotaxis of T-cells [86] and monocytes [87].

Humandefensins are reported to show synergistic activity
with antituberculosis drugs, which suggests that they may
be a promising adjunct to antituberculosis chemotherapy
[88]. A number of studies have explored the combined effect
of defensins and antituberculosis drugs against intracellular
mycobacteria. In vitro studies suggest that HBD-2 is involved
in reducing M. tuberculosis growth, and the combination
of HNP-1 with antituberculosis drugs (i.e., isoniazid and
rifampicin) resulted in a significant reduction (𝑃 < 0.001) in
mycobacterial load [76]. HBD-1 has a lower activity against
M. tuberculosis, and its combination with isoniazid signifi-
cantly reduced M. tuberculosis growth in comparison with
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the peptides or isoniazid alone by permeabilization of both
the mycobacterial cell wall and the cell membrane [79].
Moreover, a protective role for 𝛼-defensin against mycobac-
terial infection has been reported in human eosinophils [89].
𝛼-Defensin released by eosinophils upon stimulation with
lipomannan fromM. bovis BCG, when used with eosinophil
cationic protein, showed a synergistic inhibitory effect on
mycobacterial growth inhibition [89].

Since the peculiar mycobacterial cell envelope is consid-
ered to contribute to the resistance to conventional antimy-
cobacterial drugs, the combination of HNPs and antituber-
culosis drugs against M. tuberculosis H37Rv not only results
in increased permeability of both the mycobacterial cell
wall and the cell membrane but also increases the access
to intracellular targets for antituberculosis drugs. Therefore,
antimicrobial peptides are potential adjuncts to chemother-
apy together with conventional drugs against tuberculosis.
Antimicrobial peptides can be more potent in vivo because
of their immune enhancing effects by acting as a chemotactic
factor and regulatory factor, interacting with immune cells
like T-cells and monocytes and modulating the production
of cytokines and inflammation.

Studies have shown that M. bovis BCG-induced HBD-
2 mRNA expression in human epithelial cells can influence
protection against M. tuberculosis challenge [90], and M.
bovis BCG cell wall components (18–30 kDa) can stimulate
human pulmonary epithelial cells to express defensins [91].
It also shows that prime-boost BCG vaccination with 𝛽-
defensin 2 DNA vaccines can enhance the activity against
M. tuberculosis [85]. It is known that protection conferred by
BCG against tuberculosis is variable and can maintain long-
term immunity [92], and defensins could be important as
a component part of this protection against human tuber-
culosis.

Although 𝜃-defensins have antimicrobial activity against
diverse pathogens [35, 93], especially viruses [94], there is,
as yet, no evidence that 𝜃-defensins are involved in defense
against mycobacterial infection. Table 1 shows a summary of
different defensins and there function in antimycobacterium.

6. Future Perspective

Previous studies have widely demonstrated that defensins
have activities against microorganisms including mycobac-
teria. Rivas-Santiago et al. found that vitamin D and L-
isoleucine can induce the production of defensins by modu-
lating their gene expression [82, 95].Therefore, future studies
should focus on the mechanism by which defensin gene
expression is modulated. On the other hand, although a large
number of studies have discovered the antimycobacterial
activity of defensins in vitro, there are fewer studies in vivo,
and further study should include the activity of defensins
against tuberculosis in vivo. Although defensins have been
examined for their clinical treatment of infections with no
success, defensins have a huge clinical potential, and more
research into their application is needed.

7. Conclusion

Defensins are a family of antimicrobial peptides that are
abundant amid an array of oxygen-independent antimicro-
bial proteins and peptides in neutrophil granules and secreted
by epithelial cells. They are effective against a wide spectrum
of microorganisms including mycobacteria.

The advantages and disadvantages of the various forms of
defensin therapy/prophylaxis againstmycobacterial infection
of man and animals outlined above indicate that this could
be an effective new approach to treatment and prevention
of these chronic infections, which are becoming increasingly
intractable to chemotherapy. Administration of defensins
may have direct effects on the pathogens, stimulate innate and
adaptive immunity, or be used synergistically with currently
used or new chemotherapeutic agents. The experimental
workwithmycobacterial infections combinedwith their wide
spectrum of activity suggests that bacterial infections other
than those caused by mycobacteria may also be amenable to
this approach.
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