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IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a
renaissance due to the growing understanding of its context-dependent roles and
advances in our understanding of the inflammatory response. The immunological role of
IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as
in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic
lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing
body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal
infections. There is a growing interest as to whether IL-36 contributes to host protective
immune responses against infection as well as the potential implications of IL-36 for the
development of new therapeutic strategies. In this review, we summarize the recent
progress in understanding cellular expression, regulatory mechanisms and biological roles
of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36
as a diagnostic or therapeutic target, especially in COVID-19.
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INTRODUCTION

Interleukin (IL)-36 is a member of the IL-1 cytokine family. It plays a role in the orchestration of
innate and adaptive immunity and appears to have pro-inflammatory activities (1, 2). The IL-36
family includes three agonist ligands (IL-36a, b and g, previously known as IL-1F6, IL-1F8, IL-1F9),
which bind to heterodimeric receptor complexes, the IL-36 receptor (IL-36R, also known as IL-
1Rrp2) and co-receptor IL-1 receptor accessory protein (IL-1RAcP) (3). The IL-36 receptor
antagonist (IL-36Ra, formerly known as IL-1F5), an antagonist in the IL-36 family, inhibit IL-36-
induced inflammation via competing with IL-36 receptor (4). The pro-inflammatory role of IL-36 is
well studied in psoriasis (5–9), inflammatory bowel disease (IBD), systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA) and cancer (5, 10–14). IL-36g is a potential diagnostic marker of
psoriatic inflammation (15). The success of treatment using a monoclonal antibody against IL-36
receptor in generalized pustular psoriasis patients highlights the promising potential strategy of
blocking the IL-36/IL-36R signaling pathway in clinical therapy (7). IL-38 (previously known as IL-
1F10), which shows the highest similarity of percentage amino acid identify with IL-1Ra and IL-
36Ra, may act as an IL-36R antagonist (16, 17). Recent study demonstrated the inhibitory function
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of IL-38 on the phosphorylation of P38 MAPK and the subunit
P65 of NF-kB induced by IL-36g in human keratinocytes and
endothelial cells (18). Besides, IL-38 was released from apoptotic
cells and restricted human macrophage-dependent induction of
IL-17 (19). IL-38 knockout mice had delayed disease resolution
with exacerbated IL-17-mediated inflammation, which is
reversed by the administration of matured IL-38 in a mouse
model of psoriasis (20). Hence, IL-38 is considered an anti-
inflammatory factor in the pathologies of autoimmune diseases.

Accumulating evidence suggests that IL-36 is also involved in
infectious diseases, especially viral and bacterial infections. Using
knockout mice for either IL-36 cytokines or receptor, researchers
have revealed that IL-36 plays both protective and pathological
roles in distinct animal models of infection (21–23). On one
hand, IL-36 is beneficial for pathogen clearance by promoting
protective immune responses (21). On the other hand, IL-36
amplifies inflammatory responses, leading to excessive immune
infiltration and tissue damage (24). In this review, we first focus
on the cellular source and target cells of IL-36, and then highlight
the recent advances of the IL-36 research in infectious diseases.
At the end, we discuss IL-36 as a potential therapeutic target for
COVID-19.
PROCESSING OF IL-36 AND
DOWNSTREAM SIGNALING PATHWAYS

Similar to other members of IL-1 family, the inactive precursors
of IL-36 require proteolytic and post-translational processing for
their maturation and pro-inflammatory activity, respectively (25,
26). Neutrophil granule-derived proteases cathepsin G (Cat G),
elastase and proteinase-3 are involved in the processing (25–30).
IL-36a is processed and activated by Cat G and elastase
respectively via truncating at alanine 4 and lysine 3. IL-36b is
selectively stimulated by Cat G through its cleavage at residue
arginine 5 (28). IL-36g can be activated by elastase or proteinase-
3 by means of cleavage at the residue valine 15 (28). In addition,
IL-36g also can be cleaved between residues glutamic acid 17 and
serine 18 by Cathepsin S (29). Removal of a small number of
residues from the N termini of IL-36 increases the biological
activity by more than 10,000-fold (26). Similarly, IL-36Ra is
cleaved to become mature form by elastase through removal of
its N-terminal methionine (30), and the matured IL-36Ra
competes with IL-36 cytokines for IL-36 receptor binding to
suppress IL-36 activity (26).

Binding of IL-36 agonists (IL-36a, -b and -g) to IL-36R/IL-
1RAcP heterodimer induces inflammatory mediators through
MyD88-, MAPK- and NF-kB-dependent signaling pathways
(31–33). It is demonstrated that Staphylococcus aureus
(S. aureus) exposure drives murine skin inflammation, which is
caused by the IL-36R/MyD88-mediated IL-17 (34). IL-36g
stimulation also promoted the expression of NF-kB target
genes (TNFAIP3, NFKBIA, NFKB2, CXCL8, and BIRC3) in a
MyD88-depenent manner in human epidermal keratinocytes
(35). Besides, IL-36 a employed NF-kB and STAT3 for IkBz
induction, and induced several psoriasis-related cytokines and
Frontiers in Immunology | www.frontiersin.org 2
chemokines in psoriatic skin (32). Additionally, activation of
IL-36/IL-36R axis enhanced the secretion of IL-6, IL-8, and
granulocyte-macrophage colony-stimulating factor by
activation of Erk1/2, MAPK and JNK (3), while IL-36Ra
suppressed the IL-36 agonist-triggered IL-8 expression (26).
CELLULAR SOURCE AND FUNCTION
OF IL-36

At steady-state, IL-36 is mainly expressed in epithelial cells and
fibroblasts (36–41). Several kinds of cells, including epithelial
cells, mouse T cells and myeloid cells can respond to IL-36
stimuli (37, 38, 41–43).

Epithelial Cells
IL-36 was predominantly expressed in epithelial cells in
experimental colitis, allergic lung inflammation, chronic
rhinosinusitis and influenza A virus infection (22, 36, 41, 44,
45) and was upregulated by proinflammatory cytokines, such as
IL-17 (41, 46). Reproductive tract epithelial cells also increased
IL-36g and IL-36R expression following treatment with
microbial products (47). It is notable that epithelial IL-36
could be expressed as a full-length form and required a
cleavage to the biologically active form (41). Epithelial cells can
secret inflammatory cytokines in response to IL-36.
Subcutaneous inject ion of IL-36a induced various
inflammatory factors including IL-17, IL-20, IL-22, IL-23,
interferon (IFN)-g, TNF-a and KCs (48). IL-17 production by
Th17 cells may upregulate all three IL-36 expression from
human keratinocytes, creating a feedback loop that drives
inflammation and disease development (49). Human
keratinocytes were potent sources of chemokines following the
exposure of IL-36 cytokines, leading to the recruitment of
macrophages, T cells, and neutrophils (43). Notably, human
keratinocytes upregulated type I and II IFN-responsive genes in
response to IL-36, leading to potent cytokine production (35, 43).
These findings indicate that IL-36 is critical for the early
regulation of IFN and immune cell recruitment in the skin
(50–52). Expression of IL-36R by skin-resident cells (e.g.,
keratinocytes and fibroblasts), but not the hematopoietic cells
(e.g., T cells and DCs) is pivotal for the cutaneous pathology (51).
Consistently, using a conditional knockout murine model,
Goldstein et al. demonstrated that IL-36R signaling in
keratinocytes played a major role in the induction of psoriasis-
like dermatitis (52).

Myeloid Cells
Activated neutrophils were considered a source of IL-36 in
various diseases such as experimental autoimmune
encephalomyelitis (EAE), chronic rhinosinusitis and influenza
infection (21, 41, 53), while neutrophils from naïve mice express
low levels of IL-36g (53). Importantly, IL-36R is abundant on
murine neutrophils derived from bone marrow, spinal cord and
spleen (38, 53). However, IL-36R was not detectable in blood
neutrophils in both mice and patients with inflammatory
May 2021 | Volume 12 | Article 662266
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diseases (41, 53). Consistently, healthy human blood neutrophils
failed to express IL-36R and did not respond to IL-36 cytokines
(43, 50). Interestingly, IL-36R expression on human peripheral
neutrophils could be induced by IL-1b, IL-6, and Der p1 (41),
suggesting that both IL-36 cytokines and receptor might be
inducible on neutrophils by the local inflammatory milieu.
However, a study also reported that IL-36-triggered human
bronchial epithelial cell can release neutrophil-associated
chemokines such as CXCL8, and promote infiltration,
activation, and inflammatory activity of neutrophils (54). In
addition, IL-36 may active neutrophils and amplify lung
inflammation in mice (55)

Dermal macrophages expressed high amounts of IL-36R
transcript (37), indicating that the expression of IL-36R might
be associated with its anatomical localization and immune
microenvironment. IL-36b was as potent as IL-1b in
stimulating human M2 macrophages, but not M1 and dermal
macrophages (37). In addition, both human M1 macrophages
and mouse lung macrophages were reported to produce IL-36
ligands following bacterial infection and LPS exposure (5, 24),
indicating that macrophages might be the source of IL-36 similar
to IL-1b and IL-33. Bone marrow-derived macrophages have
undetectable levels or express much lower IL-36R compared to
DCs (38, 41). Both human and mouse DCs were found to express
IL-36R and become activated by IL-36 agonists stimulation (41,
43, 50, 56). Human monocyte-derived DCs expressed 6-fold
more IL-36R mRNA than their monocyte precursors and
accelerated maturation by IL-36a, b and g (43, 56). IL-36R
was also detectable in human Langerhans cells, which responded
strongly to IL-36b stimulation (37). Additionally, plasmacytoid
DCs (pDCs) can highly express IL-36R (50, 56). These pDCs
bound by IL-36 potentiated Toll-like Receptor (TLR)-9
activation and IFN-a production (50).

Lymphocytes
T cells are most likely not the main source of IL-36 cytokines, but
can respond to IL-36 due to their expression of IL-36R. Unlike
the receptors of other IL-1 family members, such as IL-33R and
IL-1R, whose expression are upregulated during T cell activation,
IL-36R expression is detectable on naïve T cells, but is negligible
in differentiated Th cells (14, 57). It is reported that IL-36g
synergized with IL-12 to facilitate Th1 differentiation, but
suppressed Th17 differentiation in vitro in murine experiments
(36, 38). Interestingly, IL-36g inhibited Foxp3-expression in
murine regulatory T cell development through the IL-36R/
MyD88/NF-kBp50 axis, while concomitantly promoted the
differentiation of Th9 and Th22 cells (58, 59). Therefore, IL-36
plays a critical role in mouse T cell differentiation.

Whether IL-36 have effect on human T cells is still unclear. It is
reported that IL-36 may induced IFN-g production in human CD3+

lymphocytes in vitro (14, 56). Penha et al. found the IL-36R
expression on CD4+ T cells in the human blood and intestines,
and IL-36b stimulation promoted CD4+ T cell proliferation in vitro
(42). On the contrary, other researchers reported that IL-36R
transcripts were undetectable in blood CD4+ T cells from healthy
donors, and IL-36 failed to effect on resting or activated human T
cells (43). Similarly, no obvious colocalization of IL-36R with
Frontiers in Immunology | www.frontiersin.org 3
human T cells in nasal polyps (41). Further study is needed to
elucidate the regulation of IL-36R as well as the role of IL-36 in
human T cell activation and differentiation. Similar to mouse CD4+

T cells, mouse effector CD8+ T cells increased IFN-g production by
IL-36g stimuli (14, 60), and this process required IL-12 or IL-2
synergy (60). In addition, IL-36g promoted IFN-g production
in vitro by murine NK cells and gd T cells, which were able to
express IL-36R (14). IL-36R mRNA was undetectable in mouse B
cells in a previous study (38); Resident B cells and plasma cells in
inflamed human tissues were found to express IL-36a (61). CD138+

and CD79a+ plasma cells were identified as the cellular sources of
IL-36a in the synovial tissues and psoriatic skin in patients,
respectively (62). How IL-36 regulates B cell functions is still
not understood.

Other Cell Types
IL-36RmRNA has been detected in mouse astrocytes andmicroglia
in the brain, but not in primary neurons (39, 40). However, IL-36
cytokines were dispensable for microglia activation and disease
development of EAE (39, 40, 53). Increased IL-36a g expression was
also observed in murine hepatocytes following IL-1b/TNF-a/IFN-g
stimulation (12, 63), indicating that IL-36 may play a role in liver
diseases. In addition, IL-36b has a pro-inflammatory effect on
human synovial fibroblasts and articular chondrocytes in RA,
suggesting the potential role of IL-36 in inflammatory responses
of autoimmune diseases (64).
IL-36 IN INFECTIOUS DISEASES

There is mounting evidence for the crucial role of IL-36 in
infectious diseases via regulation of type I IFN, induction of
inflammatory cytokines, recruitment of immune cells,
modulation of immune cell activation and differentiation, and
maintenance of mucosal integrity and barrier function
(Figure 1). In this section, we focus on the functional roles of
IL-36 in various infectious diseases (Table 1).

Skin and Mucosal Barriers
IL-36 was first identified as an inducible inflammatory cytokine
in mouse keratinocytes following herpes simplex virus type 1
(HSV-1) infection (75). IL-36b-deficient mice developed more
severe secondary zosteriform lesions and succumbed more
frequently to HSV-1 infection (65). IL-36g treatment protected
mice from lethal intravaginal challenge, as evidenced by limited
vaginal viral replication, delayed disease onset, decreased disease
severity, and significantly increased survival (66). Further
analysis demonstrated that IL-36b promoted type I IFN
production through upregulation of IFN-a receptor expression
and activation of the STAT signaling pathway in animal model
(76). Indeed, IL-36 also promoted type I IFN in IL-36R+ pDC
(50). Therefore, these studies indicate that IL-36 plays a critical
role in innate immunity by boosting type I IFN signaling,
inducing pro-inflammatory cytokines, and attracting innate
immune cells, such as neutrophils.

Using a murine epicutaneous infection model, Nakagawa and
Liu et al. found that S. aureus induced IL-1 and IL-36a from
May 2021 | Volume 12 | Article 662266
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keratinocytes via secretion of S. aureus-expressed phenol-soluble
modulin a, leading to the induction of IL-17 and recruitment of
neutrophils in the skin (34, 69). Interestingly, IL-36a may not
only regulate Th17 cell activity, but also modulate IL-17-
production by gd T cells and type 3 innate lymphoid cells
(ILC3) (34, 69). Skin inflammation was dependent on IL-1R
and IL-36R signals as well as their signaling adaptor MyD88.
Satoh et al. also demonstrated that Cutibacterium acnes can
induce IL-36g through NF-kB in keratinocytes and subsequently
IL-8, leading to cutaneous neutrophilia (77).

Fungal infection can induce IL-36 expression in epithelial
cells and human PBMC (74, 78, 79). In oral candidiasis, IL-36a,
b and g transcript levels were all increased in the tongue of the
sublingually challenged mice at 2 days post-injection (74).
Candida albicans (C. albicans) infection resulted in increased
Frontiers in Immunology | www.frontiersin.org 4
IL-36 cytokines in human oral epithelial cells via NF-kB, MAPK
and PI3K-dependent pathways (74). IL-36R-deficient mice were
susceptible to acute oral candidiasis as evidenced by higher
fungal loads and greater body weight loss, indicating the
protective role of IL-36 in C. albicans infection (74).

Lung
Influenza virus infection can trigger epithelial cell-derived IL-36
cytokines (22, 46, 80), which activated NF-kB signaling and
increased inflammatory cytokines (e.g. IL-6 and IL-8) in the lung
(46). However, the role of IL-36 in influenza virus infection is
incompletely understood. Aoyagi et al. reported that IL-36R-
deficient mice were protected from influenza virus-induced lung
injury and mortality accompanied by reduced lymphocyte
activation, accumulation of myeloid cells, pro-inflammatory
FIGURE 1 | The crucial role of IL-36 in induction of inflammatory cytokines, recruitment of immune cells, modulation of immune cell activation and differentiation, and
maintenance of mucosal integrity and barrier function in infectious diseases.
May 2021 | Volume 12 | Article 662266
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cytokine and chemokine production (e.g., IL-6, IL-17, CXCL1,
and CXCL10) and permeability of the alveolar-epithelial barrier
(22). However, IL-36g was upregulated in the lungs and played a
protective role in severe H1N1 and H3N2 influenza infection via
modulating macrophage polarization and activity (21). Lack of
IL-36g resulted in increased viral titers, higher levels of IL-6, and
more severe pathology in the lungs (21). Interestingly,
macrophages in IL-36g-deficient mice exhibited an M2-like
phenotype and were likely to undergo apoptosis by infection,
whereas adoptive transfer of WT alveolar macrophages protected
IL-36g-deficient mice against influenza infection (21). The
reason for the discrepancies from the studies using IL-36R-
and IL-36g-deficient mice are not known at present. Different
animal models and interfering strategies, such as neutralizing
antibodies, should be used to further confirm these results.

The role of IL-36 in Mycobacterium tuberculosis (M.
tuberculosis) has been documented in several studies. M.
tuberculosis infection induced IL-36g expression in human
macrophages in vitro, and in the lungs of infected mice in vivo
(72, 81). Its expression was induced through microbial ligands,
which triggered host TLR and MyD88-dependent pathways, and
was further amplified by endogenous IL-1b and IL-18 (81).
Increased IL-36g transcriptional expression was also observed
in the plasma and bronchoalveolar lavage (BAL) samples of
patients with Pseudomonas aeruginosa (P. aeruginosa)- or
Streptococcus pneumoniae (S. pneumoniae)-induced acute
respiratory distress syndrome (ARDS) (23, 24). Animal studies
revealed that IL-36 signaling pathway may play a protective role
Frontiers in Immunology | www.frontiersin.org 5
in the lung with bacterial infection. The induction of IL-36
contributed to antimicrobial peptide production and M.
tuberculosis growth restriction through promoting the
accumulation of Liver X Receptor and modulating cholesterol
biosynthesis and efflux (82). Activation of autophagy in
macrophages was considered another hallmark by IL-36g in
restricting M. tuberculosis growth (71). However, IL-36R
deficiency showed negligible impact on M. tuberculosis
infection in mice, as demonstrated by similar survival rates
and bacterial loads (72). Additionally, IL-36g-deficient mice
were more susceptible to S. pneumoniae infection, as evidenced
by increased mortality, ameliorated lung bacterial clearance and
increased bacterial dissemination, which might be due to the
reduced type-1 cytokine expression and impaired lung
macrophage M1 polarization (23). Similarly, the protective
effect of IL-36g was also demonstrated in a Klebsiella
pneumoniae (K. pneumoniae) mouse model (23). Interestingly,
Sequeira et al. revealed that microbiota Bacteroidetes protected
against K. pneumoniae colonization (83) via IL-36 signals and
macrophages (83). In addition, administration of Legionella
pneumophila to IL-36R-deficient mice resulted in more severe
disease as evidenced by higher mortality, delayed lung bacterial
clearance, increased bacterial dissemination to the spleen, and
impaired innate immune responses compared to that in infected
wild-type mice (73). In contrast, IL-36R-/- and IL-36g-/-, but not
IL-36a-/-, mice were resistant to during P. aeruginosa infection,
as demonstrated by the reduction of bacterial burden, pro-
inflammatory cytokine production and lung injury. Further
TABLE 1 | The functional role of IL-36 in infectious diseases.

Pathogen Models or treatment Experimental results and conclusion References

HSV-1 IL-36b-/- mice Increased mortality and weight loss;More severe skin lesions;Similar viral replication (65)
HSV-2 Exogenous IL-36g Increased survival;Delayed disease onset and decreases disease severity;Diminished HSV-2

replication;Induction of the chemokines CCL20 and KC
(66, 67)

Influenza virus
(Influenza A/Puerto
Rico/8/34 virus)

IL-36R-/- mice Decreased mortality, but no change of body weight loss;Attenuated lung injury;Higher viral
burden;Reduced neutrophils and monocytes/macrophages in BAL fluid

(22)

Influenza virus
(influenza A/HK-x31)

IL-36g-/- mice Increased mortality and weight loss;Higher viral burden;Increased IFN-b and IL-6 (21)

Zika Designed DNA-encoded IL-36g Increased survival rate and less weight loss;Increased IFN-g and TNF-a expression (68)
Staphylococcus aureus IL-36R-/- mice andIL-36R

neutralizing Ab
Reduced skin inflammation, decreased disease scores and epidermal thickness;Comparable
bacterial loads;Reduced neutrophil infiltration and impaired IL-17 and IL-22 responses

(34, 69)

Pseudomonas
aeruginosa

IL-36R-/- and IL-36g-/- micebut
not IL-36a-/- mice

Increased survival;Higher bacterial clearance and reduced bacterial dissemination;Reduced
TNF-a, IL-6 and IL-10 expression

(24)

Pseudomonas
aeruginosa

Exogenous IL-36g Alleviated keratitis;Killed and/or inhibited bacteria growth;Increased b-defensin 3, S100A9
and CXCL10

(70)

Streptococcus
pneumoniae

IL-36g-/- mice andAnti-IL-36g Ab Increased mortality;Impaired lung bacterial clearance and increased dissemination;Reduced
expression of type-1 and IL-17 cytokines

(23)

Klebsiella pneumoniae IL-36g-/- mice andAnti-IL-36g Ab Impaired lung bacterial clearance and increased dissemination;Less IL-12, IL-23, and IFN-g
production

(23)

Mycobacterium
tuberculosis

Exogenous IL-36g Inhibited intracellular survival;Induction of WNT5A expression and autophagy (71)

Mycobacterium
tuberculosis

IL-36R-/- mice No alteration of survival and body weight loss;No alteration of bacterial burdens;Reduced
inflammatory cytokine CXCL1, CXCL2, and IL-6

(72)

Legionella
pneumophila

IL-36R-/- mice,but not IL-36a-/-
and -g-/- mice

Increased mortality;Delayed lung bacterial clearance and increased bacterial dissemination;
Reduced alveolar macrophage activation and decreased CXCL2/MIP-2 levels

(73)

Citrobacter rodentium IL-36R-/- mice No alteration of body weight and clinical signs of inflammation;Increased bacterial
colonization;Reduced KC, MPO and inflammatory cell (CD11b+F4/80+Gr-1+) recruitment;
Increased Th17, but decreased Th1 and Treg cell associated cytokines

(36)

Candida albicans IL-36R-/- mice Greater weight loss;Higher fungal loads;No alteration of IL-17 and IL-22, but decreased IL-23 expression (74)
May 2021 | Volume 12 | A
rticle 662266

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Role of IL-36 in Infection
investigation is needed to determine the role of IL-36 in
intracellular bacterial infection using various interfering
methods, such as IL-36 cytokine knockout mice and
neutralizing antibodies.

Gut
Clinical evidence showed that ulcerative colitis patients had
higher IL-36a in the colonic mucosa (36). Lack of IL-36R
resulted in defective recovery following DSS-induced damage
and impaired closure of colonic mucosal biopsy wounds due to
the profound reduction of IL-22 (84). Interestingly, IL-36 can
also regulate Treg/Th9 balance and the IL-23/IL-22 network in
model of colitis induced by oxazolone, indicating that IL-36g has
multiple functions in modulating antigen-presenting cell
function and in regulating T cell differentiation in a mouse
model (58, 59). Russel et al. reported that infection with
Citrobacter rodentium resulted in reduced CD11b+F4/80+Gr-1+

inflammatory cell recruitment, imbalanced Th1/Th17 responses
and increased bacterial colonization of the colon in IL-36R-/-

mice (36). Accordingly, suppressed Th17, but enhanced Th1
differentiation was observed in vitro by IL-36a supplement (36,
57). However, since IL-36 is necessary for IL-22 production in
DSS-induced colitis, it is not clear whether IL-36 differently
regulates Th17 and Th22 differentiation in vivo among various
animal models of gastrointestinal dysregulation.

Other Organs
Although IL-36 has been detected in hepatocytes (12, 63), the
function of IL-36 in the liver remains unclear. Higher levels of
IL-36a were observed in chronic hepatitis B virus (HBV)
patients compared with that in healthy individuals (85). The
positive correlation between IL-36a and HBV-DNA titers may
indicate the potential involvement of IL-36 in antiviral immunity
during chronic infection (85). Additionally, hepatitis C virus
infection significantly increased the production of IL-36Ra but
not IL-36 agonist ligands in human monocytes, leading to
reduced NK cell activation (86). Further research is needed to
dissect the role of IL-36 in liver resident cells (e.g., kupffer cells,
hepatic stellate cells and sinusoidal endothelial cells) as well as in
different liver disease models.

In addition to lung infections, IL-36a and IL-36g were also
upregulated in the mouse cornea in early responses to P.
aeruginosa challenge (70). Exogenous IL-36g treatment
enhanced corneal innate immunity and alleviated P. aeruginosa
keratitis. The protective role of IL-36g required S100A9 and was
partially dependent on the CXCL10/CXCR3 axis (70). On the
contrary, IL-36Ra treatment exacerbated the outcome of P.
aeruginosa keratitis (70).

Louis et al. reported that a truncated IL-36g-encoded plasmid
can act as a potent adjuvant for a DNA-encoded Zika virus
(ZIKV) vaccine. Immunization with truncated IL-36g promoted
antiviral T cell responses and protected mice from ZIKV
challenge (68). Moreover, co-delivery of truncated IL-36g can
also enhance antiviral immunity against HIV and influenza DNA
vaccines (68). Besides, both in vivo and in vitro studies have
proved that IL-36 treatment reduced HSV-2 replication in a
lethal genital infection model and in human vaginal epithelial
Frontiers in Immunology | www.frontiersin.org 6
cells (66, 67). The absence of IL-36g led to reduced mature
neutrophil recruitment to the vaginal microenvironment at early
times in HSV-2 infection (66). These findings set the stage for IL-
36 in infectious diseases and shed light on IL-36 in the next
generation of vaccines.
IL-36 AS A THERAPEUTIC TARGET
OF COVID-19

Although several vaccines have been issued for the emergency
use authorization for the prevention of coronavirus disease 2019
(COVID-19), intensive efforts are underway to investigate the
immunopathology of this infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
majority of patients with COVID-19 are asymptomatic or mild
flu symptoms, but in some individuals, who are critically ill with
COVID-19, it can develop into severe pneumonia and life-
threating ARDS. The members of IL-1 family including IL-1b
and IL-33 may contribute to the inflammation and antiviral
immune regulation in COVID-19. In severe cases of COVID-19
patients, increased IL-1a and IL-1b have been detected (87, 88).
SARS2-CoV-2 may facilitate IL-1b activation and maturation,
leading to the cytokine storm together with other pro-
inflammatory mediators such as IL-6 and TNF-a (89).
Blockage of IL-1 signals using IL-1 receptor antagonist
Anakinra might be associated with clinical improvement in
patients (87, 88). The alarmin cytokine IL-33 may also play a
detrimental role in severe COVID-19 cases through expanding
the pathogenic T cells, inducing hyperinflammation, and
promoting the pro-fibrotic type 2 innate immune cells (90).

In patients with COVID-19, airway epithelial cells showed an
average three-fold increase in expression of the SARS-CoV-2
entry receptor angiotensin-converting enzyme-2 ACE2 (91).
Notably, bronchial epithelial cell ACE2 expression was
correlated with IL-36b in bronchoalveolar lavage in asthma
cohorts (92). Moreover, human basal lung epithelial cells
exposed to poly(I:C) exhibited significant increase in protein
concentrations of IL-36g (55). SARS-CoV-2 viral RNA and viral
nucleocapsid protein can be detected in gastrointestinal tissues
from the patients (93, 94). This might be due to the highly
expressed ACE2 in human gastrointestinal epithelial cells (95).
IL-36g was predominantly detected in human intestinal
epithelium (44), and induced expression of chemokines, GM-
CSF and IL-6 (44). Therefore, IL-36 may contribute to the ACE2
regulation and intestinal inflammation in COVID-19 patients. In
addition, vasculopathy and lymphoid infiltrate of the superficial
and deep dermis is main cutaneous manifestations in COVID-19
patient (96–99). It was reported that ACE2 and SARS-CoV-2
RNA can be detected in the blood vessels (100, 101), whereas IL-
36g and IL-36R also expressed in human dermal microvascular
endothelial cells (HDMEC) (18, 102, 103). It is likely that SARS-
CoV-2 infection in endothelia cells may induce IL-36 secretion,
leading to leukocytes infiltration and skin symptoms in
COVID-19 patients. Furthermore, high expression of ACE2
was also found in keratinocytes (104), which can increase IL-
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36 expression by Poly I:C stimuli (80, 105). Besides, IL-36
upregulated ACE2 expression in human keratinocytes
according to publicly available RNAseq data (106). SARS-CoV-
2 infection may promote IL-36 production from keratinocytes
and exacerbate skin lesion. These findings suggest that IL-36
might be a potential biomarker of disease severity in COVID-19.

Profound pulmonary infiltration of myeloid cells including
neutrophils and macrophages/monocytes have been found in
COVID-19 patients with severe clinical progression (107–109).
Local IL-36 may drive these myeloid cell recruitment and
Frontiers in Immunology | www.frontiersin.org 7
activation, resulting in pulmonary hyper-inflammation (37, 41,
55). Moreover, infiltrated neutrophils may produce high
concentrations of neutrophil extracellular traps (NETs) (110–
112), and induce lung epithelial cell death in COVID-19
patients (110). In addition, IL-36 can induce IL-6 and IL-8
expression and further increase inflammatory responses (3),
while IL-1b and IL-6 are capable of inducing IL-36 expression
(81). This proinflammatory positive loop may also contribute to
immunopathogenesis of COVID-19. IL-36 was upregulated in the
lungs after influenza virus infection (22, 46), and led to
FIGURE 2 | In COVID-19 patients, SARS-CoV-2 may promote hyperinflammation in the lung and exacerbate tissue damage. IL-36-activated inflammatory immune
cells (e.g., monocytes, macrophages, neutrophils and pathogenic T cells) produce IL-6, IL-1, IL-17, TNF-a and GM-CSF to further amplify IL-36 responses. IL-36Ra
and IL-38, as the natural antagonistic mediators in IL-36 family might be a promising therapeutic target for COVID-19 via inhibiting IL-36 signaling pathway and
alleviating pulmonary hyperinflammation.
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inflammatory cytokines production (22). GM-CSF, which is
rapidly produced by pathogenic Th1 cells in COVID-19, can act
with other inflammatory cytokines to form a cascade signature of
inflammatory monocytes with high IL-6 expression (113).
Importantly, IL-36 increases the secretion of GM-CSF by
activation of Erk1/2, MAPK and JNK (3). IL-36g cooperated
with poly(I:C) in human macrophages also promoted GM-CSF
expression (55). These findings indicate that IL-36 may contribute
to the induction of IL-6-producing monocytes through GM-CSF.
Moreover, IL-36, as a strong inducer of murine Th1 cells (14, 57),
may play a role in human Th1 differentiation (56), and exacerbate
lung pathogenesis by enhancing pathogenic Th1 responses and the
following cytokine storm. In addition to Th1 responses, IL-36 is
also a key regulator in IL-17 responses through regulating not only
adaptive Th cells, but also gd T cells and ILC3 (34, 69). Notably,
elevated IL-17 levels have been reported in patients infected with
coronavirus, including SARS-CoV, MERS and SAR-CoV-2 (89).
Blockage of IL-36 signals may lead to proposals for a therapeutic
approach to COVID-19 through modulating proinflammatory
IL-17 responses.

The application of IL-1 receptor antagonist Anakinra has
shown the potential therapeutic effect in COVID-19 patients
(87, 88, 114). In addition to the agonistic ligands, IL-36Ra acts
as an antagonist for IL-36 signaling pathway and may reduce
IL-36-driven inflammation via competing with their receptor
IL-36R. Additionally, IL-38, the newest member of IL-36
family, can downregulate poly (I:C)-induced IL-6, CCL5, and
IL-1b expressions in bronchial epithelial cells, indicating the
anti-inflammatory role of IL-38 in viral infection (115).
Notably, it is reported that IL-38 increased significantly in
influenza and COVID-19 patients and may function as a
suppressor cytokine that inhibits IL-1, IL-6 and TNF-a in
COVID patients (116, 117). Significant efforts are undergoing
to develop neutralizing antibody targeting the IL-36R signaling
axis for the therapy of IL-36-mediated diseases. Antibody-
mediated blockade of IL-36R signaling reverses established
fibrosis in chronic intestinal inflammation in mice (118)
Chimeric antibodies MAB92 and MAB04, binding primarily
to domain-2 of the human and mouse IL-36R proteins
respectively, have been demonstrated to inhibit skin
inflammation (69, 119). Anti-mouse IL-36R mAb M616
specific for murine IL-36R is also under experimental trials
(120). Importantly, a single dose of BI 655130, a monoclonal
antibody against the IL-36 receptor, reduced the severity of
generalized pustular psoriasis in patients (7). Therefore,
application of IL-36Ra, IL-38 and IL-36R mAbs might be a
promising therapeutic way in COVID-19 patients via
inhibiting IL-36-mediated hyperinflammation (Figure 2).
CONCLUSIONS AND PERSPECTIVES

The accumulated evidence during the past decade indicates that
IL-36 plays a fascinating role in systemic inflammatory diseases
Frontiers in Immunology | www.frontiersin.org 8
and cancer (36, 51, 121). The genetic deficiency of IL-36Ra leads
to generalized pustular psoriasis (GPP), while IL-36Ra was
considered an effective treatment of psoriasis diseases (106).
Inhibition of IL-36R with a single dose of BI 655130
monoclonal antibody reduced the severity of GPP in patients
(7). Interestingly, direct intra-tumoral delivery of IL-36 mRNA
led to robust anticancer responses in a broad range of tumor
microenvironments (122). These studies highlight the clinical
therapeutic potential of IL-36 in inflammatory diseases
and cancer.

Several aspects of IL-36 are less understood and remain
somewhat controversial. It is still not clear what the
distribution of IL-36R is in immune cells, especially in humans
(41, 42). Whether the receptor is inducible by other host factors
or pathogens is still not well understood.

IL-36 may be more than just a general inflammatory marker
but a pathogenic sensor due to its location at epithelial/
environmental interface and its release and activation by
pathogenic damage (123). It is less well elucidated what the
crucial bioactive forms of IL-36 in vivo are or how they are
generated in each infectious disease condition. Moreover, it is
striking that the different isoforms of IL-36 are expressed
differently under physiological as well as pathological
conditions, and have different functions in the development of
infection. Further investigations are needed to elucidate the
molecular mechanisms underlying their biological functions,
especially in COVID-19. In terms of clinical implications,
future study of the functions of the IL-36/IL-36R pathway in
disease pathogenesis may facilitate the development of
therapeutics targeting these cytokines for the treatment of
infectious diseases.
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