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ABSTRACT
Background: About 60% of the annual precipitation in the Loess Plateau occurs
during the summer fallow season, and does not align with the wheat growing season.
In addition, the nitrogen use efficiency is low in this area because nutrient availability
is affected by drought. As a result, rainwater storage during the summer fallow season
is very important to increasing nitrogen use efficiency, and to the stable production of
dryland wheat in the Loess Plateau.
Methods: A 3-year field experiment in the eastern part of the Loess Plateau was
conducted with two tillage methods (no tillage (NT) and deep ploughing (DP)) and
five N rates (0, 120, 150, 180, and 210 kg N ha−1) to study the effect of tillage on soil
water utilization, plant nitrogen utilization, and wheat yield.
Result: Compared to NT, DP showed a larger increase in soil water storage (SWSf)
and precipitation storage efficiency (PSEf) during the two dry summer fallow seasons
than in the normal summer fallow season. DP substantially increased the
pre-anthesis soil water consumption (SWCpre) and N translocation. The average
yield under DP was 12.46% and 14.92–18.29% higher than under NT in the normal
and dry seasons, respectively. A 1 mm increase in SWCpre could increase grain yield
by 25.28 kg ha−1, water use efficiency (WUE) by 0.069 kg ha−1 mm−1, and nitrogen
utilization efficiency (NUtE) by 0.029 kg kg−1. DP could reduce the N rate by
11.49–53.34% in the normal seasons and 40.97–65.07% in the dry seasons compared
to the same highest point of yield, WUE, and NUtE under NT.
Conclusion: Deep ploughing in the summer fallow season, paired with optimized N
application, could help increase wheat yield and nitrogen efficiency in dryland.
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INTRODUCTION
Wheat accounts for 26% of total global agricultural production, making it one of the most
important crops for meeting the daily needs of humans worldwide (FAO, 2020). In China,
the wheat planting area accounts for approximately 22% of the total crop cultivating area,
and the Loess Plateau is one of most important cereal-producing regions, with wheat
production accounting for 44% of all cultivated land. Thus, maintaining stable winter
wheat production is crucial on the Loess Plateau because it provides a primary staple food
source for residents of the area. On the Loess Plateau, more than 60% of the precipitation
occurs when the winter wheat fields are fallow (July to September), during which time
evaporation rates are high because of high temperatures (Jin et al., 2007). Precipitation
during the growing stage (October to June) is less than 30–40% of the annual precipitation
and is not enough to be effectively used for the growth of winter wheat (Fang et al., 2010;
Sun et al., 2011). This low abundance and uneven distribution of precipitation significantly
impacts wheat production in the region. Stable and high yield of dryland wheat is closely
related to soil water storage before sowing, and precipitation during the summer fallow
season is conducive to the recovery of soil moisture (Unger, Payne & Peterson, 2006;
Schillinger, Schofstoll & Alldredge, 2008; Xue et al., 2019).

Dry matter (DM) production and nitrogen (N) uptake are largely regulated by the
available water in the soil (Plett et al., 2020). Tillage affects soil properties, which in turn
affect crop root growth and grain yield (Chu et al., 2016; Xue et al., 2019). Previous studies
have pointed out that areas without tillage suffer from significant soil compaction, leading
to reduced water infiltration and limited root growth and crop yields (Peralta, Alvarez &
Taboada, 2021). Tillage promotes microbial activity, which improves the availability of N
in the soil (Soon et al., 2007; Ruisi et al., 2016). In a long-term study of the Loess Plateau, we
showed that deep ploughing and subsoiling in the summer fallow season mitigates soil
compaction by loosening shallow soil and breaking the plough pan, increasing soil water
storage in the 0–300 cm layer by 8% (Sun et al., 2018; Xue et al., 2019). Higher soil water
content can be obtained through deep tillage and subsoiling during different crop
development stages (Shi et al., 2016). At different stages, the soil layer with the greatest
water consumption gradually deepens, and the correlation between water consumption
and yield after anthesis is higher at depths of 180–240 cm than in the shallower layers (Xue
et al., 2019). Furthermore, when compared with the no tillage (NT), deep ploughing
significantly increased water use efficiency, yield, and aboveground plant DM at maturity.
Jia et al. (2004) reported that reduced tillage had no effect in the first 3 years but then
decreased grain yield by 31.83% in subsequent years. Another study found that NT
increased the soil temperature, soil moisture, and total crop yields, but reduced the soil
respiration of wheat and maize under straw mulching (Li et al., 2022).

Tillage also significantly influences DM production and allocation of N to plant organs.
As the most necessary mineral nutrient for plants, nitrogen plays an important role in
increasing crop yield and the quality of agricultural products. A desire for increased crop
yield is leading to a strong demand for N addition to fields worldwide (Khan et al., 2014;
Schils et al., 2018). However, a certain amount of N is lost from fields in cropping systems,

Zhang et al. (2022), PeerJ, DOI 10.7717/peerj.14153 2/25

http://dx.doi.org/10.7717/peerj.14153
https://peerj.com/


as a result, only around 47% of the applied N is efficiently used (Ladha et al., 2016; Swaney,
Howarth & Hong, 2018). This lost N can leach as nitrate-N into groundwater, or release
nitrous oxide into the air, both of which result in harmful impacts to the environment
(Fowler et al., 2013). Thus, it is widely acknowledged that reducing nitrogen loss and
improving nitrogen use efficiency are critical to crop production, environmental
protection, and the development of sustainable agriculture (Raun & Johnson, 1999; Hirel
et al., 2007). One study showed that 5 years after converting from tillage to NT, there were
significant increases in N utilization efficiency and N remobilization under three N
fertilization regimes (0, 161, 215 kg ha−1), but the grain yield and grain N content were
similar under both CT and NT (Habbib et al., 2017). The one-time application of nitrogen
fertilizer before sowing for dryland wheat is the main reason for the low nitrogen use
efficiency, on the Loess Plateau, drought and water shortages also reduce the effectiveness
of soil nutrients. If the nitrogen fertilizer input is too high, the vigorous growth of wheat
before winter can aggravate the drought. If the nitrogen fertilizer input is too little, the
wheat will not form strong seedlings before winter, resulting in insufficient nutrient supply
in the later growth stages. Too much or too little nitrogen input will cause premature
senescence in the later stage of growth and reduce yield and nitrogen use efficiency.
Therefore, determining the appropriate amount of nitrogen fertilizer based on
precipitation or soil water before sowing is important for improving both yield and water
and nitrogen use efficiency. Proper tillage combined with an adequate N rate can decrease
soil nitrogen loss and increase grain production while lowering N input (Zhou &
Butterbach-Bahl, 2014). However, the effects of deep ploughing, compared with no tillage,
on soil water consumption, plant growth, and nitrogen accumulation of winter wheat and
the regulation of nitrogen inputs are largely unknown. In this study, we investigated the
effects of tillage in the summer fallow season and nitrogen application rates on soil water
consumption, dry matter and nitrogen translocation and total wheat yield and identified
the best tillage methods and nitrogen rate during different precipitation seasons.
Our objectives were: (1) to examine the effects of deep tillage on precipitation storage
ability during the summer follow season as well as the soil water content at sowing and soil
water consumption during plant growth in both dry and normal seasons; (2) to assess the
effects of deep tillage and N rate on nitrogen balance of aboveground and soil, total grain
yield, water use efficiency (WUE), and nitrogen utilization efficiency (NUtE) in both dry
and normal seasons; and (3) to evaluate the contributions of the soil water storage amount
and efficiency during the summer fallow season to soil water consumption, crop yield, and
the optimization of the N rate on the basis of the yield, WUE, and NUtE in the dry and
normal seasons.

MATERIALS AND METHODS
Site description
Field experiments were carried out in a dryland at the Agriculture Research Station of
Shanxi Agricultural University in Wenxi (35�20′N, 111�17′E), Shanxi Province, China,
from July 2014 to June 2017. The experimental site is located in the northeast tableland of
the Loess Plateau, where the dominant cropping system is winter wheat–summer fallow.
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In this region, over 60% of the precipitation falls in the fallow season (July to September).
The experimental site is hill-dryland. From 1964–2014, the annual mean precipitation in
the area was 529 mm and the annual mean temperature was 12.9 �C.

Weather data were collected and recorded by a weather station (AWS 800; Campbell
Scientific, Inc., Logan, UT, USA) approximately 100 m from the experimental field.
Precipitation type was defined as follows (Ren et al., 2019):

P ¼ ðPT � PAÞ=PA

Dry: P � �25%

Normal:�25%,P, 25%

Wet: P � 25%

where PT was the total precipitation of the summer fallow-winter wheat growth season i.e.,
July (previous year) to June (following year) and PA was the thirty-season average
precipitation (1988–2017: 486.8 mm).

The annual precipitation in 2014/2015 was close to the thirty-season average, and
therefore 2014/2015 is referred to as the “normal season” in this study (Fig. 1). The annual
precipitation in 2015/2016 and 2016/2017 were 25.08% and 26.88% lower than the
thirty-season average, so 2015/2016 and 2016/2017 are referred to as the “dry seasons” in
this study (Fig. 1). Based on experiments in the Loess Plateau for eight consecutive seasons,

Figure 1 Precipitation during the summer fallow season and wheat growth period in 2014/2015,
2015/2016 and 2016/2017 and the difference from the 30-year precipitation average (from 1988 to
2017). Summer fallow (SF) is defined as June 21 to September 30, Sowing to anthesis (SS-AS) is
October 1 to May 10 of the following year, and anthesis to maturity (AS-MS) is May 11 to June 20.

Full-size DOI: 10.7717/peerj.14153/fig-1
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Yu et al. (2021) classified the rainfall patterns in the summer fallow season and obtained
similar results as ours in this study.

The soil at the experimental site was classified as calcareous cinnamon soil according to
the classification defined by the International Soil Science Society (ISSS) (sand: 43.9%, silt:
32.0%, and clay: 10.2%). Before sowing in 2014–2015, basic soil properties were measured
(Soil Survey Staff, 2010): the soil pH was 8.01, the total N was 0.53 g kg−1, the Olsen P was
12.56 mg kg−1, available K was 201.55 mg kg−1, and the soil bulk density was 1.29 g cm−3

(cutting-ring method, Xue et al., 2017).

Experimental design and field management
An entire terraced field was divided into three parts. To avoid N and tillage effect buildup,
a different field was used each year. The experiments used a split-plot design with three
complete replications. Each 2.5 × 10 m plot (Fig. S1) used tillage methods in the summer
fallow season and sub-plot treatments with five rates of N fertilizer at sowing (0, 120, 150,
180, and 210 kg N ha−1). A detailed description of the plot treatments is shown in Table 1.

To avoid yield losses, weeds were removed by hand, and pests and diseases were
controlled during the main season using the conventional farming practices of the area.
Plants were machine-harvested on 10 June 2015, 6 June 2016, and 8 June 2017.

Plant sampling, measurement, and calculations
Soil moisture
Soil samples from a depth of 2 m were excavated using the cutting ring method at 20 cm
depth intervals (Dama et al., 2005). Soil water storage (SWS, mm) was determined using
the oven-drying method (Ma et al., 2015; Liu et al., 2016) on the 45th day after harvesting,
at sowing, at anthesis, and at maturity. SWS was calculated as follows (Sun et al., 2018):

SWS ¼ BD=rw � SWC�H (1)

where SWS, BD, SWC, H, and ρw represent the soil water storage (mm), bulk density
(g cm−3), water content (g water g−1 dry soil), depth (mm), and water density, respectively.
BD and SWC were calculated according to the methods outlined by Sun et al. (2018).

Table 1 Description of tillage practice and nitrogen treatments.

Tillage
methods

Practice
during fallow period

Farming
methods

Fertilizer
before sowing

Cultivation
methods

No tillage
(NT)

No-tillage In the end of August, rotary
tillage and land leveling were
conducted on 25 August 2014,
27 August 2015, and 28
August 2016 to remove weed
and prepare the land of
planting.

Nitrogen fertilizer (urea
containing 46% N, 0, 120, 150,
180 and 210 kg N ha−1), P2O5

(150 kg ha−1), and K2O (90 kg
ha−1) were applied once before
sowing, and the detailed date
same with the sowing date.

The winter wheat cultivar
(Yunhan-20410) was sown on
25 September 2014, 23
September 2015 and 22
September 2016, and the
seeding rate was 180 kg ha−1

by drilling method and row
spacing was 20 cm.

Deep
ploughing
(DP)

DP was performed with furrow
plough (TH-FZL-2, Tianhe
machinery equipment factory,
Jinan, China) at the depth of
30 cm on 12 July 2014, 10 July
2015, and 12 July 2016.
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Soil water consumption (SWC, mm) during the growing season was evaluated using the
following formula:

SWC ¼ R þ DSWS (2)

where R (mm) is the total precipitation amount during the growing season and SWCpre,
SWCpost, and SWCt (mm) are measurements of pre-anthesis, post-anthesis, and total crop
soil water consumption.

Water storage efficiency during the summer fallow season (PSEf) was calculated as
follows:

PSEf ¼ SWSf=Pf (3)

where SWSf and Pf represent the soil water storage (0–200 cm) and precipitation during
the summer fallow season, respectively.

Plant N accumulation and translocation
The N concentration of different organs and the total plant N accumulation were
measured using the indophenol-blue colorimetric method (Meyer, 1983). N accumulation
and translocation were calculated as followed (Moll, Kamprath & Jackson, 1982; Cox,
Qualset & Rains, 1986; Spyridon, Sideris & Christos, 2012):

Pre‐anthesis N translocation ðkg ha�1Þ
¼ Nat anthesis—Nof vegetative parts atmaturity

(4)

Contribution of pre‐anthesis N translocation to grain ð%Þ
¼ ðN translocation=grainN atmaturityÞ � 100

(5)

Soil and plant N balance and N uptake efficiency

At sowing and harvesting, a soil sample (approximately 100 g) was taken from each plot
and then mixed and divided into two subsamples. The first sub-sample was analyzed for
NHþ

4 –N (Forster, 1995) and NO�
3 –N (Miranda, Espey &Wink, 2001). In the no-N (N0)

plots, the apparent N mineralization rate (Norganic) during the winter wheat growing
season was calculated as follows (Cabrera & Kissel, 1988; Olfs et al., 2005):

apparentNmineralization rate ðNorganic; kg ha
�1Þ ¼ soil N0ðstartÞ � soil N0ðendÞ (6)

Apparent N losses (Nloss, kg ha
−1) were calculated in plots with N application using the

following formula (Zhao et al., 2006):

Nloss ¼ soil NðstartÞ þ Nfer þ Norganic—soil NðendÞ—plantN (7)

Soil N(start) and (end) represent the N content of the 0–100 cm soil profile at sowing and
harvesting, respectively, and Nfer is the N rate.

N uptake efficiency ðNUpE;%Þ ¼ plant N accumulation=theN rate (8)
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Grain yield and water, nitrogen utilization
Plot grain yield was determined by harvesting all plants in a 20 m2 area from the center of
each plot to eliminate marginal effect. The harvested grain was then shelled using an FM-
600 machine (Qufu Fumin Machinery Manufacturing Co. LTD, Shandong, China) and
then air-dried before measuring grain yield (grain moisture was adjusted to 12.5%).

WUE (kg ha−1 mm−1) was calculated as follows:

WUE ¼ Y=ET (9)

where Y is the grain yield (kg ha−1), and ET (mm) is the total evapotranspiration over the
entire growing season using the following formula (Ren et al., 2019; Lin et al., 2019):

ET ¼ Pþ DSWS (10)

where P and ΔSWS represent the total rainfall during the growing stage and the change in
0–200 cm soil water storage (planting to maturity), respectively.

N utilization efficiency ðNUtE; kg kg
�1Þ ¼ grain yield=plant N accumulation� 100% (11)

Data analysis

Statistical data analyses (analysis of variance) were performed in Statistix 8.0 (Analytical
Software, Tallahassee, FL, USA). Differences of means of the treatments were compared
based on the least significant difference (LSD) test with a probability of 0.05. Correlations
between traits were obtained using Pearson’s correlation analysis in SPSS software v.26.0
(IBM Corp, Armonk, NY, USA).

RESULTS
Effects of tillage on soil precipitation storage in summer fallow
In 2015/2016, 24.48% of the annual precipitation occurred during the summer fallow
season, while in 2014/2015, 70.76% of the precipitation occurred during the summer
fallow season. There was little difference in the precipitation amounts during the growing
seasons of the 3 years, which ranged between 51.2 and 141 mm (Table 2). The normal

Table 2 Effect of tillage on soil water storage and water storage efficiency during the summer fallow
seasons in 2014/2015, 2015/2016 and 2016/2017.

Year Tillage methods Pf (mm) Soil water storage (mm) PSEf (%)

Pre-harvest sowing SWSf

2014/2015 NT 365.6 391.3 499.6 b 108.3 b 29.62 c

(Normal) DP 541.7 a 150.4 a 41.13 b

2015/2016 NT 94.7 363.2 385.3 e 22.1 e 23.31 d

(Dry) DP 409.7 d 46.5 d 49.13 a

2016/2017 NT 165.4 375.1 417.4 d 42.3 d 25.63 cd

(Dry) DP 453.2 c 78.1 c 47.28 a

Note:
No tillage (NT), and deep ploughing (DP). Precipitation during the fallow period (Pf), soil water storage during summer
fallow (SWSf), and precipitation storage efficiency during summer fallow (PSEf). Means within the same column with
different lower letters were statistically significant at the critical probability levels of 0.05.
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season had the highest SWSf, and the PSEf in the dry season was higher than in the
normal season under DP, but lower under NT. Compared to NT, the SWS at sowing, SWSf,
and PSEf under DP were 7.65%, 38.87%, and 38.87% higher in the normal season,
respectively, and 6.34–8.57%, 84.63–110.41%, and 84.48–110.83% higher in the two dry
seasons, respectively.

Effects of tillage and N rate on the soil water consumption of winter
wheat
Soil water consumption were affected by year, tillage, N rate, and the interactions of all
these variables except the year × tillage and year × tillage × N rate on post-anthesis soil
water consumption (Table S1). The average pre-anthesis soil water consumption in the
normal season (2014/2015) was 12.11–12.99% higher than in the 2015/2016 dry season
and 6.62–8.19% higher than in the 2016/2017 dry season (Table 2A). The average
post-anthesis soil water consumption in the normal season was 26.82–29.51% higher than
the 2015/2016 dry season and 25.65–29.28% higher than the 2016/2017 dry season
(Fig. 2C). The average total soil water consumption in the normal season was
15.81–15.90% higher than the 2015/2016 dry season and 11.12–11.90% higher than the
2016/2017 dry season (Fig. 2E). There was a substantial increase in soil water consumption
in the normal season due to the higher rainfall in the summer fallow season, and an
increase of 286.06% over the 2015/2016 dry season and 121.04% over the 2016/2017 dry
season.

Compared to NT, DP had a higher average soil water consumption, both pre-anthesis
and post-anthesis. The average pre-anthesis soil water consumption for DP was 8.56%
higher than NT in the normal season, and 9.67% and 10.42% higher than NT in the two
dry seasons. The average post-anthesis soil water consumption for DP was 2.88% higher
than NT in the normal season, and 6.81% and 8.16% higher than NT in the two dry
seasons. The average total soil water consumption for DP was 9.13% higher than NT in the
normal season and 9.25% and 10.10% higher than NT in the two dry seasons. Compared
with NT, the increases in pre-anthesis soil water consumption under DP were higher than
post-anthesis soil water consumption. Due to a lower precipitation storage efficiency, the
reduction in soil water consumption in the normal season under DP was 27.10% and
15.57% under NT. In the two dry seasons (2015/2016 and 2016/2017), soil water
consumption under DP was 16.29% and 13.00% higher than NT, respectively.

The N rate increased the soil water consumption, especially pre-anthesis, as well as total
soil water consumption (Figs. 2B, 2D, 2F). The pre-anthesis soil water consumption and
the total water consumption in the normal season was highest at 180 kg N ha−1 with NT
and at 210 kg N ha−1 with DP, but the difference between 180 and 210 kg N ha−1 in both
NT and DP was not significant. The pre-anthesis soil water consumption and the total
water consumption under both NT and DP was highest at 150 kg N ha−1 in the 2015/2016
dry season and at 180 kg N ha−1 with NT and DP in the 2016/2017 dry season, but the
difference in total soil water consumption in the 2016/2017 dry season between 150 and
180 kg N ha−1 in both NT and DP was not significant. These results indicate that the
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Figure 2 Effects of tillage and N rate on soil water consumption of 0–200 cm soil depth in three seasons. No tillage (NT), and deep ploughing
(DP). Pre-anthesis soil water consumption (A), post-anthesis soil water consumption (C) and total soil water consumption (E) of two tillage in three
seasons. Solid and red dashed lines represent median values, box boundaries represent the 25th and 75th percentiles, and bars and dots in or outside
the boxes represent the 10th and 90th percentiles of all data. Pre-anthesis soil water consumption (B), post-anthesis soil water consumption (D) and
total soil water consumption (F) of two tillage at five different N rates in three seasons. The means and SE of three replicates are presented. Different
lowercase letters indicate significant differences between treatments at P < 0.05 by the LSD test. Full-size DOI: 10.7717/peerj.14153/fig-2
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effective N rate is 180 kg N ha−1 in the normal season and 150 kg N ha−1 in the dry seasons,
leading to the increase in soil water consumption.

Effects of tillage and N rate on plant and soil N accumulation and
consumption
Apparent soil N mineralization and N uptake efficiency
The average plant N accumulation in the normal season was 26.20–26.29%, and
18.10–19.50% higher than that in the two dry seasons (2015/2016 and 2016/2017).
The NUpE in the normal season was 22.21–23.44% and 16.78–19.47% higher than that in
the two dry seasons. The apparent N loss was reduced (Table 3) and this loss was affected
by year, N rate, and the interactions of year × N rate (Table S1).

The average plant N rate for DP was 7.73% higher than NT in the normal season, and
7.81% and 6.47% higher than NT in the two dry seasons. The NUpE for DP was 8.83%
higher than NT in the normal season, and 7.74% and 6.38% higher than NT in the two dry
seasons. However, the apparent N loss for DP was 4.46% lower than NT in the normal
season, and 5.92% and 5.73% lower than NT in the two dry seasons. These results indicate
that DP leads to higher NUpE, which promotes N accumulation in plants and reduces
apparent N loss.

Table 3 Effect of tillage and N rate on soil N consumption and N uptake efficiency (NUpE) of 0–100 cm soil layer in 2014/2015, 2015/2016 and
2016/2017.

Year N rate (kg ha−1) Plant N accumulation (kg ha−1) Norganic (kg ha−1) Nloss (kg ha−1) NUpE (%)

NT DP NT DP NT DP NT DP

2014/2015 0 127.28 d 143.41 d 63.64 a 71.71 a 0 0 0 0

(Normal) 120 149.75 c 161.26 c 63.64 a 71.71 a 62.50 b 59.55 b 1.06 a 1.20 a

150 160.98 b 169.54 b 63.64 a 71.71 a 73.57 b 71.94 b 1.00 a 1.08 ab

180 165.25 a 180.27 a 63.64 a 71.71 a 71.28 b 70.18 b 0.89 ab 0.94 b

210 161.86 ab 169.78 b 63.64 a 71.71 a 94.43 a 86.67 a 0.79 b 0.86 b

Mean 153.02 B 164.85 A 63.64 B 71.71 A 75.45 A 72.09 A 0.94 B 1.02 A

2015/2016 0 112.01 c 116.78 d 56.01 a 58.39 a 0 0 0 0

(Dry) 120 126.16 a 134.52 b 56.01 a 58.39 a 80.96 c 72.99 c 0.93 a 0.97 a

150 128.22 a 139.74 a 56.01 a 58.39 a 80.47 c 75.76 c 0.84 ab 0.90 ab

180 120.48 b 136.75 ab 56.01 a 58.39 a 104.24 b 98.86 b 0.71 b 0.78 b

210 118.98 b 125.35 c 56.01 a 58.39 a 123.65 a 118.65 a 0.57 c 0.65 c

Mean 121.17 B 130.63 A 56.01 A 58.39 A 97.33 A 91.56 B 0.77 A 0.82 A

2016/2017 0 113.69 d 122.06 c 56.85 a 61.03 a 0 0 0 0

(Dry) 120 124.33 c 135.01 b 56.85 a 61.03 a 77.89 b 70.40 b 0.95 a 1.02 a

150 135.22 ab 142.25 a 56.85 a 61.03 a 77.02 b 70.94 b 0.83 ab 0.90 ab

180 141.76 a 146.89 a 56.85 a 61.03 a 83.59 b 82.02 b 0.75 b 0.79 b

210 132.83 b 143.55 a 56.85 a 61.03 a 105.30 a 100.75 a 0.68 bc 0.70 bc

Mean 129.57 B 137.95 A 56.85 A 61.03 A 85.95 A 81.03 B 0.80 A 0.85 A

Note:
No tillage (NT), and deep ploughing (DP). Apparent N mineralization (Norganic), apparent N losses (Nloss), and N uptake efficiency (NUpE), Means within the same
column with different lowercase and capital letters were statistically significant at the critical probability levels of 0.05 by the LSD test. Lowercase and uppercase letters
indicate comparisons among five treatments of N rate for each tillage methods and between two tillage methods, respectively.
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The N rate increased the plant N and apparent N loss, but reduced NUpE. The plant N
rate for both NT and DP in the normal season was highest at 180 kg N ha−1, and the
difference between 180 and 150 kg N ha−1 for NT was significant. The plant N rate for both
NT and DP were highest at 150 kg N ha−1 in the dry season (2015/2016) and at 180 kg N ha−1

in the dry season (2016/2017), but the difference between 150 and 180 kg N ha−1 for both
NT and DP in the dry season (2016/2017) was not significant. The apparent N loss for both
NT and DP were highest at 210 kg N ha−1 in the normal and dry seasons, but the differences
were not significant between 150 and 180 kg N ha−1 in the normal season and between
120 and 150 kg N ha−1 in the dry seasons. The NUpE for both NT and DP were highest
at 120 kg N ha−1 in the normal and dry seasons, but the differences were not significant
between 120 and 180 kg N ha−1 with NT in the normal season and between 120 and
150 kg N ha−1 for NT andDP in the dry seasons. These results indicate that the effective N rate
is 180 kg N ha−1 in the normal season and 150 kg N ha−1 in the dry season, resulting in
increased plant N accumulation with appropriate apparent N loss and NUpE.

Plant N accumulation and translocation

Grain N accumulation and pre-anthesis translocation were affected by year, tillage, N rate,
and the interactions of all of these variables except tillage × N rate (Table S1). The effects of
grain N accumulation and pre-anthesis N translocation were larger in the normal season
than in the two dry seasons under NT and DT (Figs. 3A, 3C, 3E). Pre-anthesis N
translocation in the normal season substantially increased by 32.12–35.00% and
23.57–25.46%more than in the two dry seasons. These results show that the normal season
saw higher N accumulation and translocation in the winter wheat growing period,
especially for pre-anthesis N translocation.

The effect of grain N accumulation and pre-anthesis N translocation was higher for DP
than NT. Pre-anthesis N translocation for DP increased by 9.51% compared with NT in
the normal season, and by 11.89% and 7.86% compared with NT in the two dry seasons.
This result shows that DP largely promotes pre-anthesis N translocation to grain.

The N rate increased grain N accumulation and pre-anthesis N translocation to grain
(Figs. 3B, 3D, 3F). Grain N accumulation and pre-anthesis N translocation to grain for
both NT and DP in the normal season were highest at 180 kg N ha−1, but were highest at
150 kg N ha−1 in the 2015/2016 dry season and at 180 kg N ha−1 in the 2016/2017
dry season, but the difference of pre-anthesis N translocation between 150 and
180 kg N ha−1 was not significant in 2016/2017. These results indicate that the effective
N rate is 180 kg N ha−1 in the normal season and 150 kg N ha−1 in the dry season, resulting
in increased pre-anthesis N translocation and grain N accumulation.

Effect of tillage and N rate on yield, WUE, and NUtE
The effect of yield, WUE, and NUtE were affected by year, tillage, N rate, and the
interactions of all of these variables except year × tillage and year × tillage × N rate on yield
(Table S1). The average yield in the normal season was 40.10–47.37% and 30.92–33.78%
higher than in the two dry seasons (Fig. 4A). The average WUE in the normal season was
17.49–23.67%, and 16.08–17.78% higher than the two dry seasons (Fig. 4C). The average

Zhang et al. (2022), PeerJ, DOI 10.7717/peerj.14153 11/25

http://dx.doi.org/10.7717/peerj.14153/supp-4
http://dx.doi.org/10.7717/peerj.14153/supp-4
http://dx.doi.org/10.7717/peerj.14153
https://peerj.com/


Figure 3 Effects of tillage and N rate on plant N accumulation and translocation in three seasons. No tillage (NT), and deep ploughing (DP).
Grain N accumulation (A), pre-anthesis N translocation to grain (C) and contribution of pre-anthesis N translocation to grain (E) of two tillage in
three seasons. Solid and red dashed lines represent median values, box boundaries represent the 25th and 75th percentiles, and bars and dots in or
outside the boxes represent the 10th and 90th percentiles of all data. Grain N accumulation (B), pre-anthesis N translocation to grain (D) and
contribution of pre-anthesis N translocation to grain (F) of two tillage among five N rates in three seasons. The means and SE of three replicates are
presented. Lowercase and uppercase letters indicate comparisons among five treatments of N for each tillage method and between two tillage
methods, respectively. Full-size DOI: 10.7717/peerj.14153/fig-3
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Figure 4 Effects of tillage and N rate on yield, WUE, and NUtE in three seasons. No tillage (NT), and deep ploughing (DP). Yield (A), WUE
(C) and NUtE (E) of two tillage in three seasons. Yield (B), WUE (D) and NUtE (F) of two tillage at five different N rates in three seasons. The means
and SE of three replicates are presented. Different lowercase letters indicate significant differences between treatments at P < 0.05 by the LSD test.

Full-size DOI: 10.7717/peerj.14153/fig-4
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NUtE in the normal season was 10.69–16.43%, and 9.27–13.08% higher than the two dry
seasons (Fig. 4E). Compared with the two dry seasons, there was a substantial increase in
yield during the normal season because of the higher water consumption.

The average yield for DP was 12.46% higher than NT in the normal season, and 18.29%
and 14.92% higher than NT in the two dry seasons, respectively. The average WUE for DP
was 2.88% higher than NT in the normal season, and 8.28% and 4.38% higher than NT in
the two dry seasons, respectively. The average NUtE for DP was 4.21% higher than NT in
the normal season, and 9.62% and 7.85% higher than NT in the two dry seasons,
respectively. There was a reduction in the increasing rate for the yield, WUE, and NUtE in
the normal season under DP due to the lower PSEf, as compared with the two dry seasons.

The N rate increased the yield, WUE, and NUtE (Figs. 4B, 4D, 4F). The yield for both
NT and DP in the normal season was highest at 180 kg N ha−1, and the difference between
150 and 180 kg N ha−1 for DP was significant. The yield for both NT and DP were highest
at 150 kg N ha−1 in the dry season (2015/2016) and at 180 kg N ha−1 in the dry season
(2016/2017), but the difference between 150 and 180 kg N ha−1 in the dry season
(2016/2017) for both NT and DP was not significant. TheWUE for both NT and DP in the
normal season was highest at 180 kg N ha−1. The WUE for both NT and DP were
highest at 120 kg N ha−1 in the dry season (2015/2016), but at 150 kg N ha−1 for NT and at
180 kg N ha−1 for DP in the dry season (2016/2017); the difference in the dry season
(2016/2017) between 150 and 180 kg N ha−1 for both NT and DP was not significant.
The NUtE in the normal season was highest at 180 kg N ha−1 for NT, and at 150 kg N ha−1

for DP. The NUtE was highest at 150 kg N ha−1 for NT and at 120 kg N ha−1 for DP in the
2015/2016 dry season, and at 120 kg N ha−1 for both NT and DP in the 2016/2017 dry
season, but the difference in the two dry seasons between 120 and 150 kg N ha−1 for
both NT and DP was not significant. These results indicate that the effective N rate is
180 kg N ha−1 in the normal season and 150 kg N ha−1 in the dry season, leading to higher
yield and N efficiency.

Correlations among soil precipitation storage during the summer fallow
season, soil water consumption, and yield
The SWSf was significantly and positively related to SWSpre and SWSpost (Fig. 5A). With a
1 mm increase in SWSf, the SWSpre and SWSpost increased by 0.5298 and 0.2172 mm,
respectively. There was a quadratic relationship between PSEf and SWSpre (R

2 = 0.9055)
and SWSpost (R

2 = 0.8118) (Fig. 5B) across the experimental seasons, and the decreasing
SWS with the increasing PSEf may have been caused by extremely low precipitation during
the summer fallow season, leading to higher PSEf (2014/2015). However, SWS due to low
precipitation is not enough to satisfy the needs of seed germination and tiller production,
or to reduce SWS and yield production indirectly. In summary, SWSf and PSEf have a
stronger relationship with pre-anthesis soil water consumption, and SWCpre significantly
affected pre-anthesis N translocation and NUtE (Fig. 5C). An increase of 1 mm in
SWCpre increased grain yield by 25.28 kg ha−1, WUE by 0.069 kg ha−1 mm−1, and NUtE by
0.029 kg kg−1 (Fig. 5D).
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Response of yield, WUE, and NUtE to N rate under NT and DP

Below a specific N application rate, the yield, WUE, and NUtE under NT and DP increased
with an increasing N rate; above a specific N application rate (red symbol, the optimal N
rate), it then decreased gradually in both the normal and dry seasons (shown in Fig. 6).

In the normal season, the yield, WUE, and NUtE for NT reached their highest points
when the N application rate was 179, 164, and 142 kg ha−1, respectively; and the yield,
WUE, and NUtE for DP reached the highest points when the N application rate was 205,
202, and 186 kg ha−1, respectively. In the dry season, the yield, WUE, and NUtE for NT
reached the highest points when the N application rate was 131, 125, and 122 kg ha−1,
respectively; the yield, WUE, and NUtE for NT reached the highest points when the N
application rate was 136, 132, and 126 kg ha−1, respectively.

Replacing NT with DP for the same highest point of yield, WUE, and NUtE, could
reduce the N rate by 11.49–53.34% in the normal season and 40.97–65.07% in the dry
seasons.

DISCUSSION
Tillage and precipitation in the summer fallow season strongly affect
SWSf and SWCpre

The distribution of summer fallow precipitation varies greatly among different regions.
In the Mediterranean climate region, precipitation during the summer fallow season

Figure 5 Relationships between soil precipitation storage amount and efficiency during summer
follow seasons and soil water consumption and yield (n = 6). The means and SE of three seasons
are presented by the average of five different N rates under two tillage.

Full-size DOI: 10.7717/peerj.14153/fig-5
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accounts for less than 30% of the annual total, whereas it accounts for approximately
60–70% of the annual total on the Loess Plateau. During 2015–2016, 24.48% of the annual
precipitation occurred in the fallow season, but 70.76% of the annual precipitation
occurred during the summer fallow season in 2014–2015 (Fig. 1). Therefore, to ensure high
and stable yields in the drylands of the Loess Plateau, it is necessary to store water during
the summer fallow season to meet the water requirements of the crops during later
growing stages (Zhang et al., 2008; Wang & Shangguan, 2015).

Sufficient pre-sowing soil moisture is a prerequisite for high wheat yield in drylands,
whereas low pre-sowing soil moisture reduces yield (Wang et al., 2016). Studies have
shown that 47% of wheat yield is dependent on soil storage before sowing (Huang et al.,
2003). Tillage in the summer fallow season can significantly improve the precipitation
utilization rate, SWS, and WUE at sowing (Xue et al., 2018), which is consistent with the
results of our study. Our study shows that tillage (DP) in the summer fallow season
significantly increases SWS at sowing and PSEf in the summer fallow season; PSEf in
2014–2015, 2015–2016, and 2016–2017 was 41.13%, 49.13%, and 47.28%, respectively, and
was higher in the dry season than in the normal season (Table 2). PSEf has a significant and
positive relationship with grain yield (Sun et al., 2018), but this study shows that higher
PSE may lead to lower water consumption and thus lower yield, while deep ploughing
increases PSE, which is also a possible negative effect of deep ploughing (Fig. 5). Soil water

Figure 6 Response of yield, WUE, and NUtE to N rate under two tillage methods in normal and dry
seasons (n = 5). No tillage (NT) and deep ploughing (DP). Responses of no tillage in normal (A) and dry
(C) seasons, and responses of deep tillage in normal (B) and dry (D) seasons. The red triangles represent
the peak points of each fitting curves. The red dotted line represents the N rate under deep ploughing in
the same peak points of yield, WUE, and NUtE under no tillage in normal and dry seasons.

Full-size DOI: 10.7717/peerj.14153/fig-6
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consumption is enhanced by increasing the N rate, and the effect is more significant for soil
water consumption from sowing to anthesis as compared with anthesis to maturity (Khan
et al., 2020). Our results show that SWSf is significantly and positively related to SWCpre,
with a 1 mm increase in SWCpre increasing grain yield by 25.28 kg ha−1. PSEf and SWCpre

showed a quadratic linear correlation reflecting the significantly lower precipitation during
the summer fallow period.

Tillage can improve SWS at sowing because of decreasing soil bulk density and
improved soil porosity (Al-adawi & Reeder, 1996; Schiettecatte et al., 2005). However,
conflicting results have been reported, with some showing that short-term tillage during
the fallow season had a slight effect on soil properties, NT increased soil moisture more
effectively than SS, and SWS at sowing improved by 3.0% under NT compared with SS
(Wang et al., 2009; Xue et al., 2017). However, we found that under NT, SWS before
sowing, precipitation storage efficiency of summer fallow, and WUE were all lower than
under DP (Table 2, Fig. 4), suggesting that these parameters caused a low yield. This could
also be due to soil compaction, which is unfavorable for both infiltration and storage of
precipitation in the summer fallow, and for the management and elimination of weeds.
This is consistent with the results of Camara, Payne & Rasmussen (2003). DP is an effective
tillage method for improving SWS and water consumption; thus, DP improved WUE and
yield, and increased yield by 12.46–18.29% and WUE by 2.88–8.28% (Fig. 4), which is
consistent with the results obtained in the current study (Sun et al., 2018).

Tillage and N rate strongly effect pre-anthesis N translocation
Tillage practices can modify the soil environment, improve porosity, increase
disintegration of aggregates, and mix plant materials deeper into the soil, thereby
increasing crop biomass and soil contact (Aziz, Mahmood & Islam, 2013). Reducing nitrate
N leaching through optimal tillage can affect the absorption of N by plants, which is
important for soil, water, and other environmental resource protection (Wang et al., 2015).
Tillage can affect soil mineralization by changing soil physical properties (Wang et al.,
2010; Mu et al., 2016). In NT systems, N immobilization and loss are higher, which
contributes to decreases in soil mineral N (Ruisi et al., 2016). In ploughed systems, the
mineralization rate of organic N is higher than in NT systems. Moreover, NT increases N
immobilization and contributes to reducing soil N availability as compared with those
under tillage because crop residues are deposited on the soil surface under no-tillage
conditions (Giller et al., 2009). Our study shows that DP in the summer fallow season
increased the N mineralization and N absorption efficiency in the normal seasons, reduced
the apparent N loss in the dry seasons, and improved the utilization of N in different
seasons according to the source and location of N, compared with NT (Table 2). Tillage
practices cause leaching of NO−

3 -N in the soil by offering a shorter diffusion path and a
larger surface contact area (Matthews et al., 2000).

Increased yields may also be because of more efficient use of soil water and available
nitrogen due to tillage practices. Tillage during the summer fallow season increases
pre-anthesis N translocation and yield (Sarker et al., 2017; Liang et al., 2019).
The improvement in plant N under tillage was largely caused by an increase in the N
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available in the soil (Soon et al., 2007; Soon, Brandt & Malhi, 2006; Ruisi et al., 2016). This
study showed a similar result: DP during the summer fallow season could promote plant N
accumulation at maturity, promote N translocation, and lead to higher N uptake and
utilization efficiency (Fig. 3). Combined with soil N mineralization and apparent N loss,
applying DP during the summer fallow season increased N mineralization in the soil,
reduced or maintained the apparent N loss and increased uptake efficiency. Thus, more N
was transferred from the soil to the aboveground plant, and the N utilization efficiency
aboveground was higher resulting in higher N accumulation in the plant.

Adjusting N rate according to yield and efficiency in different
precipitation seasons
The availability of water at sowing is the most crucial factor for N uptake and utilization on
the Loess Plateau (Fu et al., 2014). Jan, Amanullah & Hussain (2016) found that adjusting
the N rate according to precipitation could produce a higher wheat yield compared with
baseline application rates. Some studies identified optimal N rates by finding the peak
points of the curves for the N rate and each related indicator (such as environmental cost,
N uptake, water and N utilization, and yield). Yield is often used to optimize the N rate
(Chen et al., 2014; Wang et al., 2017) because it is the most relevant concern for both
farmers and government agencies as it impacts farmer livelihood and national food
security.

An optimal N rate is necessary to achieve high yield, however there is a limit to how
much N crops can absorb, so the N rate should be adjusted according the maximum N
accumulation of crops (Zhong, Ju & Zhang, 2006). N use efficiency can also be used as a
reference trait to estimate suitable N rates (Liang et al., 2008; Zhang et al., 2012; Wang
et al., 2014). Yu et al. (2021) optimized the N rate of different precipitation seasons. In their
study, the results showed that maximum yields were obtained when the N rates were 150
and 180 kg N ha−1 in the dry and normal seasons, respectively. This is consistent with the
results of our study, which used field data (Fig. 4) and the optimal N rates were determined
based on maximum yield and efficiency. In the normal season, the optimal N rate was
142–179 kg ha−1 for NT and 186–205 kg ha−1 for DP; in the dry season, the optimal N rate
was 122–131 kg ha−1 for NT and 126–136 kg ha−1 for DP (Fig. 6). For the same highest
point of yield, WUE, and NUtE, replacing NT with DP could reduce the N rate by
11.49–53.34% in the normal seasons and 40.97–65.07% in the dry seasons (Fig. 6). This
may be because winter wheat under DP can efficiently use nitrogen in the dry seasons
because of the higher apparent N mineralization and NUpE (Ruisi et al., 2016), which
reduces the N rate significantly. Therefore, applying DP during the summer fallow season
in place of NT can improve yield, water, and N use efficiencies and even reduce N
application rates for the same yield level. As such, it is feasible to optimize N rates
according to yield, water, and N use efficiencies under different precipitation conditions.

CONCLUSIONS
We determined that deep ploughing during the summer fallow season improves soil water
storage and precipitation storage efficiency, which have significant linear and quadratic
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correlations with pre-anthesis soil water consumption. DP also promotes plant nitrogen
translocation, and increases yield of winter wheat compared with NT. A 1 mm increase in
pre-anthesis soil water consumption could increase grain yield by 25.28 kg ha−1. DP could
reduce the N rate by 11.49–53.34% in the normal seasons and 40.97–65.07% in the dry
seasons compared to the same highest point of yield, WUE, and NUtE under NT. Deep
ploughing combined with an optimal N rate based on precipitation year type can improve
the utilization efficiency of water and fertilizers, maintain productivity, and promote the
sustainable development of resources and the environment.
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