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American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae 
and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treat-
ment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, 
Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that 
displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were 
placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of 
honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limita-
tions referring to the application of these beneficial bacteria were addressed.
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Introduction

American foulbrood (AFB) disease is by far the most virulent and del-
eterious bacterial disease that causes fatal brood infection in honey 
bees (Apis mellifera). Its etiological agent is the pathogenic Gram-
positive, spore-forming bacterium Paenibacillus larvae (Bacillales, 
Paenibacillaceae). Spores produced by P. larvae can infect honey 
bee larvae, especially those newly hatched, but not adult honey bees. 
Once being ingested by honey bee larvae, P. larvae spores will germi-
nate in the midgut, develop into vegetative cells and proliferate, then, 
breach the epithelium and enter the hemocoel, finally leading to the 
death of larvae due to bacteremia and the production of additional 
infective spores (Genersch 2010, Ebeling et al. 2016).

P. larvae spores are highly resistant to various environmental 
adversities (Genersch 2008) and can be horizontally transmitted 
within and between colonies through both natural routes (i.e., 
through adult honey bees’ activities such as cell cleaning, larvae 
nursing, honey robbing, and honey bee drifting) and artificial routes 
(i.e., through beekeeping activities such as combination of colo-
nies, exchange, and reuse of contaminated beekeeping equipment) 
(Lindström et al. 2008). P. larvae spores also demonstrated a vertical 
transmission mode between colonies, i.e., from mother colonies to 
daughter swarms (Fries et al. 2006). AFB is a major problem in api-
culture because tenacious P. larvae spores presented in various api-
arian reservoirs are difficult to eliminate. If left untreated, AFB can 
annihilate the whole colony due to the lack of viable offspring and 
cause great economic losses.

Unfortunately, no cure exists for this notorious disease. The 
most commonly applied strategy, especially outside the European 
Union, is the prophylactic application and supplementary feeding 
of antibiotics to suppress clinical AFB symptoms. For colonies not 
yet displaying AFB clinical symptoms, the shook swarm procedure 
(shaking all of the worker bees together with the queen into new 
and empty hives to get rid of any potential contamination on the 
comb, honey, and pollen) is recommended as a way of sanitizing the 
colony (Ohe 2003). For clinically diseased colonies, hive (as well as 
the potentially contaminated equipment) incineration is commonly 
adopted to prevent the spread of AFB.

During the past two decades, there is growing awareness of the 
problems associated with long-term indiscriminate use of antibiotics 
for AFB control in beekeeping practice. These problems mainly 
include the emergence of resistant P. larvae strains (Miyagi et al. 
2000, Alippi et al. 2007, 2014), disturbed honey bee microbiota 
and reduced lifespan of honey bees (Raymann et al. 2018, Powell et 
al. 2021), spread of antibiotic resistance genes and immune deficits 
in honey bees (Daisley et al. 2020a), and undesirable presence of 
residues in beehive products destined for human consumption 
(Reybroeck et al. 2012). These concerns, together with the need for 
sustainable development of apiculture, have urged intensified re-
search for identifying safe alternatives for AFB control.

So far, various approaches have been sought to combat this vi-
ciously contagious disease. A thorough review regarding the po-
tential use of plant extracts, essential oil, propolis, royal jelly, and 
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isolated compounds as natural strategies for the prevention and con-
trol of AFB has been documented (Alonso-Salces et al. 2017). Other 
strategies concerning selective breeding of honey bees for hygienic 
behavior (Spivak and Reuter 2001, Behrens and Moritz 2014), use 
of honey bee venom (Fernández et al. 2014), bacteriophage therapy 
(Tsourkas 2020), fatty acids and probiotics (Kuzyšinová et al. 2016) 
have also been proposed.

Probiotics are ‘live microorganisms that, when administered 
in adequate amounts, confer beneficial effects on the host’ (Hill et 
al. 2014). The alimentary tract of honey bees is a promising res-
ervoir of probiotic bacteria. Commensal bacteria isolated from 
honey bees have demonstrated beneficial functions on the host 
via stabilizing microbiota equilibrium (i.e., reducing the number 
of potential pathogens and increasing the population of the bene-
ficial microorganisms), facilitating the breakdown and utilization 
of pollen grains (Engel et al. 2012), promoting weight gain of indi-
vidual honey bees (Zheng et al. 2017), producing essential nutrients 
(vitamins for example), neutralizing dietary toxins, and enhancing 
the host’s innate immunity through up-regulated expression of 
antimicrobial peptides (AMPs) genes (Kwong et al. 2017, Royan 
2019). Accumulated documents demonstrate that probiotics not 
only have trophological values to the host but also act as a therapeu-
tically microbial-based solution to reduce disease burden in honey 
bees.

This review article provides an overview of beneficial bacteria 
that either have the potential to fight against P. larvae (in vitro) or 
have exerted beneficial impacts on honey bees and the whole colony 
(in vivo). Emphasis is placed on studies of using commensal bacteria 
in the alimentary tract of honey bees as probiotics to combat AFB in 
beekeeping. The probiotic roles lactic acid bacteria play in fighting 
against P. larvae are elaborated. The limitations with regard to the 
potential application of these beneficial bacteria are also addressed.

Beneficial Bacteria Exhibiting Probiotic 
Potential in AFB Control

Functions of the Alimentary Microbiota in Honey 
Bees
The honey bee microbiome plays a beneficial role in bee health, fit-
ness, metabolism, and immunity (Nowak et al. 2021). A disrupted 
microbiome, for example, gut dysbiosis resulting from exposure to 
agrochemicals, was associated with compromised honey bee innate 
immunity and increased susceptibility to bacterial infection (Motta 
et al. 2022a), while supplementation of bee gut microbiome (BGM) 
or natural gut strains from honey bee microbiota helped enhance 
honey bees’ resistance to pathogen challenge and replenish perturbed 
gut communities (Powell et al. 2021, Steele et al. 2021). The worker 
bee bacterial community is significantly influenced by AFB (Erban 
et al. 2017). AFB-infected honey bee larvae displayed a perturbed 
microbiome depleted of bacterial genera Lactobacillus (Lactobacillales, 
Lactobacillaceae) and Stenotrophomonas (Xanthomonadales, 
Xanthomonadaceae) which were abundant in healthy honey bee larvae 
(Ye et al. 2021). In this sense, supplementation of endogenous benefi-
cial bacteria with anti-P. larvae activities will prime the host’s innate 
immune system and strengthen their ability to combat AFB.

The alimentary canal of adult honey bees is divided into four 
regions (honey crop, midgut, ileum, and rectum) with each com-
partment containing distinct niche-adapted microbial communities 
(Martinson et al. 2012). A highly specialized set of bacteria, 
consisting of five dominant and recurring phylotypic clusters, has 
been found to colonize mainly in the midgut and hindgut (including 
ileum and rectum) of adult worker honey bees. Of which, one cluster 

was from Firmicutes (Firm-4 and Firm-5, genus Lactobacillus) 
(Cox-Foster et al. 2007). The latter (Firm-5) is now classified as 
Lactobacillus melliventris. Levels of and strain identities of bac-
teria were highly variable between hives (Ellegaard et al. 2015). 
The consistent presence of these distinctive phylotypes in individual 
honey bees implicates their central functions on host health and a 
coevolved symbiotic relationship between bacteria and honey bees 
(Moran et al. 2012, Sabree et al. 2012). To date, the mutualistic rela-
tionship between gastrointestinal bacteria and the host has been well 
recognized (Crotti et al. 2013). The symbiotic roles nonpathogenic 
alimentary microbiota play in honey bees can be summarized as en-
hancement of host metabolic competency, contribution to growth 
and development, provision of protection from pathogens, and mod-
ulation of systemic immunity provision (Kwong and Moran 2016).

Potential Probiotic Bacteria for AFB Control
Certain bacterial species are potential biocontrol agents for AFB 
due to their antagonistic activities against the infectivity and path-
ogenicity of P. larvae, which include the genus Bacillus (Bacillales, 
Bacillaeeae), one of the major antibiotic-producing groups (Bérdy 
2005), genera Lactobacillus and Bifidobacterium (Bifidobacteriales, 
Bifidobacteriaceae), the producer of lactic acid as well as other or-
ganic acids (Quinto et al. 2014). The application of these bacteria 
either as a prophylactic supplement or as a therapeutic treatment 
presents a potential approach for AFB control.

Bacteria from the genus Bacillus and their anti-P. larvae 
activities.
Gram-positive, spore-forming Bacillus spp. commonly occur in the 
alimentary tract of adult honey bees (Gilliam 1997). For example, 
at the genus level, Bacillus was reported to account for 14% of the 
adult honey bee gut bacteria (Anjum et al. 2018). B. sonorensis, B. 
tequilensis, and B. aryabhattai, as well as Brevibacillus laterosporus 
(previously classified as B. laterosporus) were isolated and identified 
from the digestive tract of healthy honey bees (Khaled et al. 2018).

Bacteria in genus Bacillus can generate a vast array of biolog-
ically active molecules, including antimicrobials (lipopeptides, 
bacteriocins) (Vezina et al. 2020) and enzymes (protease, catalase, 
lipase, levansucrase) predicted to participate in the breakdown 
of macromolecules in honey bees (Lee et al. 2015, Cochrane and 
Vederas 2016). These attributes are crucial for their antibiotic 
properties and are of trophic importance for their hosts. The most 
well-known Bacillus species used for insect manipulation is B. 
thuringiensis (Bt), which is widely used as bioinsecticides due to its 
capacity to produce a wide range of toxins (Malovichko et al. 2019). 
The commercially developed formulations of Bt products are mainly 
targeted for controlling leaf-feeding insects (Lepidoptera), beetle 
pests (Coleoptera), and mosquitoes (Diptera) (Bravo et al. 2011). 
The toxicity of Bt products on honey bees varied with Bt strains, 
concentrations of toxins applied, test duration, and exposure routes 
(Steinigeweg et al. 2021). The majority of the studies showed no 
meaningful negative impact of Bt on honey bees. Due to the low UV 
resistance of Bt spores, Bt products generally have a short half-life 
period under field conditions ranging from a few hours to two days. 
For example, under controlled laboratory conditions, dietary expo-
sure of honey bee larvae and adults to Bt toxins (Bt Cry9Ee and Bt 
Cry78Ba1) did not affect survival or larval weight, pollen or syrup 
consumption, or the core midgut bacterial structure and composi-
tion in adult honey bees (Dai et al. 2019, Han et al. 2021). In field 
bioassays, commercial Bt products (Dipel and Xentari) were proven 
to be safe for foragers and newly merged honey bees (Libardoni et 
al. 2021). In fact, the high frequency of honey bee harboring Bacillus 
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species (mainly the B. cereus group) suggested a stable symbiosis es-
tablished between honey bees and this bacterial taxon, which may 
partly explain honey bees’ stronger capacity to tolerate Bt than that 
of other insects (Evans and Armstrong 2006).

Studies (Supplemental Table S1) have demonstrated that Bacillus 
spp., both exogenous (soil or bacterial collections for example) and 
endogenous (of apiarian sources), exhibited in vitro antagonistic po-
tential against the growth of P. larvae. They could either inhibit the 
germination of P. larvae spores through the production of iturin-like 
peptide (Benitez et al. 2012) or displayed in vitro bactericidal and 
bacteriolytic effects toward P. larvae cells through the production of 
antibiotic-like compounds (Alippi and Reynaldi 2006), bacterioncin 
(for example entomocin 110) (Cherif et al. 2008), lipopeptide surfactin 
(Sabaté et al. 2009, 2012a), or other antimicrobial peptides (Bartel et 
al. 2019). In an in vivo experiment, when administered once a month 
(from May to December) at the concentration of 105 spores/ml in 
supplemental sugar syrup, a honey-originated strain B. subtilis subsp. 
subtilis Mori2 strain, which exhibited in vitro inhibitory activity 
against P. larvae growth, improved colony performance by increasing 
honey storage and the sanitary status of the hive which had the effect 
of reducing spore counts of Vairimorpha (Nosema) sp. and the per-
centage of infestation with Varroa sp. foretica (Sabaté et al. 2012b).

These abovementioned spore-formers from genus Bacillus, when 
applied as probiotic supplements, present advantages in formulae 
preparation due to their spores’ abilities to withstand a relatively wide 
range of temperatures and remain viable in the acidic environment 
of the honey crop. The limitations of current research are that the 
majority of the currently available results were obtained through in 
vitro assays, the chemical nature of substances involved in the anti-P. 
larvae activities, in most cases, remained to be clarified, and more in 
vivo research is necessary to evaluate the inhibitory effects of Bacillus 
spp. against P. larvae. Furthermore, the GRAS (Generally Recognized 
As Safe) (Food and Drug Administration 2016) status of each Bacillus 
spp. still needs to be evaluated at the hive level through in vivo assays 
before they can be used as probiotic supplements in honey bees.

Beneficial effects of lactic acid bacteria (LAB) for honey bee 
health.
LAB are a biologically defined group of Gram-positive bacteria func-
tionally related by their phenotypic characteristics of producing large 
amount of lactic acid as the major end-product of carbohydrate me-
tabolism. The LAB genera (currently classified in phylum Firmicutes, 
class Bacilli, and order Latobacillales) include 14 members with 
Lactobacillus being the largest genus (Mokoena 2017). They are 
generally recognized as safe (GRAS) and widely used in food and 
feed industry (Rashid and Sultana 2016).

The beneficial effects LAB exert on honey bees have been well 
understood. Firstly, as important symbionts in honey bees, LAB help 
to maintain intestinal homeostasis and potentially diminish path-
ogen infections (Hamdi et al. 2011). Isolated from the honey crop, 
L. kunkeei (currently classified as Apilactobacilus) significantly 
decreased the mortality of honey bee larvae exposed to the causative 
agent of European foulbrood (EFB) disease, Melissococcus plutonius 
(Lactobacillales, Enterococcaceae) (Vásquez et al. 2012). Lactobacillus 
strains from the gut of honey bees helped reduce the spore load of 
Vairimorpha (Nosema) ceranae (Baffoni et al. 2015) and the incidence 
of both Nosema and Varroa (Audisio et al. 2015) in worker honey 
bees. These LAB strains can provide honey bees with protection against 
pathogenic bacterial and fungal infections, as well as parasites.

As is known, LAB can produce a range of antimicrobial metabolites 
including organic acids (such as lactic acid, acetic acid, and formic 
acid), volatiles, hydrogen peroxide, diacetyl, carbon dioxide, and 

bacteriocins (Vieco-Saiz et al. 2019). These substances are produced 
in a species- and strain-dependent manner, which makes it possible 
for LAB to work synergistically (namely proto-cooperation) and 
provide honey bees with more antimicrobial capabilities to defend 
pathogenic threats (Butler et al. 2013, Olofsson et al. 2016).

LAB also play an important role in host-microbe interactions. 
They produce exopolysaccharides (the main component of extracel-
lular polymeric substances that are involved in biofilm formation, 
cellular recognition, and host colonization), which offers LAB colo-
nization advantage (Pătruică and Mot 2012) and limits the virulence 
and spread of pathogenic bacteria through niche competition under 
a quorum sensing mechanism (Kareb and Aïder 2020).

Secondly, LAB are of trophic importance to honey bees. LAB can syn-
thesize amino acids and vitamins during metabolic processes. They are 
involved in the breakdown and further fermentation of polysaccharides 
and oligopeptides that exist in honey bee diet, thus facilitating the up-
take of nutrients indispensable to honey bees. Enzymes synthesized by 
LAB can even help detoxify some carbohydrates (arabinose, xylose, ga-
lactose, mannose, lactose, melibiose, and raffinose) that may be toxic to 
honey bees (Lee et al. 2015).

Furthermore, LAB can prime honey bees’ innate immune system 
and provide protection against attacks from potential pathogens. 
The exposure of honey bee larvae to LAB strains from the genus 
Lactobacillus spurred the immune response in larvae as evidenced by 
the up-regulated transcriptional expression of AMPs components, 
abaecin (Evans and Lopez 2004) and Apidaecin1 (Janashia and 
Alaux 2016). The administration of Leuconostoc mesenteroides 
TBE-8 (Lactobacillales, Lactobacillaceae) (isolated from the hindgut 
of bumble bee B. eximius) to honey bees significantly increased the 
transcriptional expression of nutrition-related genes (major royal 
jelly protein 1 in the head and vitellogenin in the abdomen) and 
AMPs genes (hymenoptaecin and apidaecin in the abdomen) (Huang 
et al. 2021). All the above mentioned modes of actions LAB exert on 
honey bees are summarized in Fig. 1.

In addition to these nonspecific effects, there are extra properties 
possessed by LAB that enable them to specifically inhibit the ger-
mination of P. larvae spores. Some LAB are capable of producing 
enzymes that can break down two co-germinants (uric acid and 
L-tyrosine) that are essential for the germination of P. larvae spores 
in the midgut of honey bee larvae (Alvarado et al. 2013). For ex-
ample, some Lactobacilli can vigorously synthesize enzymes in-
volved in the catabolism of uric acid. These enzymes, including 
uricase, allantoinase, and allantoicase, can degradate uric acid to 
urea (Guo et al. 2016). Lactobacillus plantarum Lp39 can produce 
tyrosine decarboxylase, which can break down tyrosine, the other 
key germinant of P. larvae spores (Daisley et al. 2020b). Taken to-
gether, these characteristics make LAB a promising tool for prophy-
lactic and therapeutic treatment of AFB.

Beneficial effects of exogenous and autochthonous LAB strains 
in fighting against P. larvae.
LAB were commonly present in healthy larval instars at different 
developmental stages (Vojvodic et al. 2013), as well as in the ali-
mentary tract of adult honey bees, bee products, beehive, and other 
apiarian sources (Ramos et al. 2019). The elaborated documents re-
garding the occurrence of LAB in honey crop, honey bee guts, and 
bee products are summarized in Supplemental Table S2.

To date, a few exogenous LAB strains have displayed in vitro 
inhibitory properties against P. larvae growth, including 34 strains 
from the genus Enterococcus (Lactobacillales, Enterococcaceae) iso-
lated from nonfermented ecosystems (Jaouani et al. 2014) and var-
ious strains of L. plantarum from fermented food matrices (Lazzeri et 

http://academic.oup.com/jinsectscience/article-lookup/doi/10.1093/jisesa/iead013#supplementary-data
http://academic.oup.com/jinsectscience/article-lookup/doi/10.1093/jisesa/iead013#supplementary-data


4 Journal of Insect Science, 2023, Vol. 23, No. 2

al. 2020). For the nine LAB strains (Lactobacillus spp., Enterococcus 
spp., and Weissella spp.) isolated from fermented feeds and food, 
the in vivo oral administration of them to honey bee larvae or adult 
honey bees (at a density of 107 cfu/ml) stimulated hosts’ innate im-
mune response by significantly increasing the transcriptional expres-
sion of AMP genes (including abaecin, defensin, and hymenoptaecin) 
(Yoshiyama et al. 2013). Additionally, L. reuteri strain ATCC 23272 
(from a culture collection) demonstrated in vitro antagonistic ac-
tivity against the growth and biofilm formation of P. larvae due to the 
acidic nature of its cell free supernatant (CFS) (Betesho et al. 2019).

In the meantime, quite a few autochthonous LAB strains isolated 
from honey bee related sources (Lactobacilus spp., the main repre-
sentatives of LAB in particular) also demonstrated in vitro anti-P. 
larvae activities, which included a Lactobacillus strain (L. apis sp. 

nov.), isolated from the honey crop (stomach) and detected mainly 
in the digestive tracts of 3-day-old honey bees, foraging workers 
and honey bee drones (Killer et al. 2014), the potent lactic acid 
producers of L. plantarum and L. brevis (Mudroňová et al. 2011), 
three L. johnsonii strains (including L. johnsonii CRL1647) (Audisio 
et al. 2011) and a set of LAB isolated from the gut (from esoph-
agus to rectum) of worker honey bees (Kačániová et al. 2018, 2020, 
Al-Ghamdi et al. 2020, Iorizzo et al. 2020, Bielik et al. 2021, Zeid 
et al. 2022, Iorizzo et al. 2022), Enterococcus faecium EFD (Dimov 
et al. 2020) and Enterococcus durans EDD2 (Lactobacillales, 
Enterococcaceae) (Gyurova et al. 2021) isolated from freshly col-
lected pollen granules. In addition, metabolites and peptides, 
produced by LAB in honey, endowed polyfloral honeys with anti-P. 
larvae activities (Erler et al. 2014).

Fig. 1. Three modes of nonspecific actions that LAB exert beneficial effects on honey bees. First, the production of substances endowed with antimicrobial or 
biofilm-formation activities helps to protect honey bees against pathogens (Evans and Lopez 2004, Pătruică and Mot 2012, Janashia and Alaux 2016, Vieco-Saiz 
et al. 2019). Secondly, the production of essential nutrients and syntheses of enzymes facilitating the utilization of dispensable nutrients in honey bees diet 
play important roles in host’s nutrition (Lee et al. 2015). Thirdly, the up-regulation of the expression of antimicrobial peptides helps to prime honey bees’ innate 
immune system and promote immunomodulation (Kareb and Aïder 2020).
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In lab experiments or field tests, exposing honey bees or their 
larvae to beneficial LAB has proved to be able to decrease the in-
fection rate and mortality of P. larvae-infected larvae, stimulate the 
innate immune responses, improve colony development, and confer 
health benefit to honey bees (Audisio 2017). Table 1 summarizes 
reports obtained from in vivo bioassays that demonstrated the ben-
eficial effects of anti-P. larvae LAB on honey bee larvae, adult honey 
bees, and the colony. The inhibitory properties of these honey bee-
specific LAB (hbs-LAB) were attributed to their secretome (extra-
cellular fraction) (Lamei et al. 2019). Accumulated results (detailed 
in Supplemental Table S3) demonstrated that the supplementary 
feeding of LAB to honey bees can not only help prevent P. larvae in-
fection but also increase the health level of the whole colony.

Other potential probiotic symbionts in honey bees against P. 
larvae.
There are other honey bee-borne microbes that demonstrated 
probiotic potential in AFB control. Honey bee larvae-
originated Stenotrophomonas maltophilia (Xanthomonadales, 
Xanthomonadaceae), Acinetobacter sp. (Moraxellales, Moraxellaceae), 

Brevibacillus formosus (Bacillales, Paenibacillaceae), and B. fusiformis 
(Evans and Armstrong 2006), Paenibacillus polymyxa TH13 of honey 
origin (Lee et al. 2009), Brevibacillus laterosporus that are consist-
ently detected in the whole body of honey bees at immature (larvae 
and pupae) and mature (emerging workers and foragers) stages 
(Alippi and Reynaldi 2006, Marche et al. 2016), and Streptomyces sp. 
(Kitasatosporales, Streptomycetaceae) AmelAP-1 isolated from pollen 
(Grubbs et al. 2021) all exhibited a high level of in vitro inhibitory 
activity against P. larvae. Brevibacillus laterosporus could inhibit both 
the in vitro vegetative growth and spore germination of P. larvae due 
to the production of bacteriocin laterosporuli and other antimicrobial 
substances (Marche et al. 2019a). This bacterium was envisioned to 
contribute to the maintenance of a balanced gut microbiota in honey 
bees and relate to health improvement (Marche et al. 2019b).

Other symbionts of honey bees, such as the acetic acid bacteria 
(AAB) of genus Gluconobacter (Rhodospirillales, Acetobacteraceae), 
which also metabolize sugars and produce various organic acids, 
may have the potential to inhibit the growth of acid-sensitive P. 
larvae (Crotti et al. 2010). These abovementioned microbes (de-
tailed information shown in Supplemental Table S4) deserve further 

Table 1. Beneficial effects of anti-P. larvae lactic acid bacteria (LAB) on honey bees in in vivo assays

Strains (sources) Methods (A, larval exposure assay; B, field bioassay) Effects References 

Nine strains 
(fermented feeds/
food)

A: oral administration maintained for 24 h at a den-
sity of 107 cfu/m either in an artificial worker diet 
fed to honey bee larvae or in a 50% w/v sucrose 
solution in ddH2O fed to adult honey bees

Stimulation of the innate 
immune response by 
up-regulating the expres-
sion of immune-related 
genes

Yoshiyama et al. 
2013

Eleven strains 
(honey crop)

A: mixture of strains added into the larval food at 
a concentration of 107 cells/ml, co-administered 
with 5 × 103 or 5 × 104 P. larvae spores per ml to 
one-day instar larvae and maintained for 7 days

Decreased the number of 
larvae succumbing to AFB 
infection irrespective of the 
infective dose

Forsgren et al. 
2010

Four strains (honey 
bees’ guts)

A: one-day instar larvae were challenged with 
P. larvae spores at day 1; individual bacterial 
suspensions diluted to 1 × 106 cfu/ml in ddH2O 
were administered to larvae from day1 to day 6

Decreased the mortality per-
centage of larvae challenged 
with P. larvae spores

Al-Ghamdi et al. 
2018

Four L. kunkeei 
(Apilactobacilus) 
strains (honey 
bees’ midgut)

A: one-day instar larvae challenged with 1 × 106 
cells/ml P. larvae spores and co-administered with 
individual/mixed strains (1 × 107 cells/ml) for 
48 h; switched to normal diet from day 3 to day 6

Safety of bacteria: newly emerged workers treated 
with individual and mixed bacteria (1 × 107 and 
2 × 107 cells/ml for 7 and 10 days, respectively

Reduced mortality of P. 
larvae-infected larvae; no 
toxic effects on larvae and 
honey bees

Arredondo et al. 
2018

L. johnsonii 
CRL1647 (whole 
gut of honey 
bees)

B: monoculture suspension (105 cfu/ml) in 
sugarcane syrup was consumed within 24-48 h 
and administered every 14–15 days for 3 con-
secutive months, or monthly for 13 consecutive 
months

Stimulation of egg-laying 
and honey storage, and 
enhancement of the coloni-
zation of beneficial bacteria 
belonging to Lactobacillus

Audisio and 
Benítezahrendts 
2011; Audisio 
et al. 2015

B: cell free supernatant (CFS), containing 128.1 mM 
lactic acid, 38 mM acetic acid, and 0.3 mM 
phenyl-lactic acid, supplemented in syrup at the 
dose of 20, 30, 40, and 60 ml CFS per honey bee, 
evaluated at 24, 48 and 72 h post treatment

Improved honey bees’ health 
status implied by possessing 
more fat bodies per honey 
bee and increased popula-
tion size of treated colonies

Maggi et al. 2013

LX3 (Lp39 and 
LGR-1 from 
culture collection 
and LkBR-1 from 
healthy hive)

A: one-day instar larvae were orally supplemented 
with LX3 (1 × 107 cfu/ml of each strain) for 24 h 
before infection; second instars were challenged 
with P. larvae spores (1 × 104/ml); third instars 
were switched to normal diet.

B: LX3 was delivered through Biopatty (250 g of 
base pollen patty ingredients infused with three 
strains each at a final concentration of 10 cfu/g); 
hive supplementation occurred twice on day 0 
and day 7

Reduced pathogen load, 
up-regulated expression 
of key immune genes, and 
improved larval survival 
during P. larvae infection.

Improved honey bees’ sur-
vival, primed the host’s 
innate immune system, and 
lowered opportunistic path-
ogenic E. coli loads

Daisley et al. 
2020b

http://academic.oup.com/jinsectscience/article-lookup/doi/10.1093/jisesa/iead013#supplementary-data
http://academic.oup.com/jinsectscience/article-lookup/doi/10.1093/jisesa/iead013#supplementary-data
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investigations to evaluate their potential as biocontrol agents in AFB 
prevention.

Limits About the Current Application of 
Probiotics in AFB Control

The abovementioned beneficial microbes are promising in fighting 
against P. larvae infection in honey bees and negating the concerns 
arising from the long-term application of antibiotics. However, fur-
ther research needs to be performed before specific suitable probiotic 
products can be applied for AFB control in apiculture.

Firstly, similar to the functions of antibiotics, these beneficial 
microbes mainly target the vegetative forms of P. larvae, but do not 
destroy the infectious P. larvae spores. They can mitigate and prevent 
the outbreak of AFB, but cannot eliminate the disease. Combined 
use of other methods that can synergistically function together with 
these beneficial microbes to intervene in the spore stage of P. larvae 
and impede its vegetative growth would be an effective strategy to 
deal with AFB.

Secondly, the majority of currently available results were obtained 
under well controlled laboratory conditions using newly emerged 
bees or individual larvae. Probiotic effects of hbs-LAB observed 
at the individual level may fail to be validated at the colony level 
(Stephan et al. 2019). Further research conducted in AFB-infected 
colonies in open fields will give more convincible results.

Thirdly, there is a lack of standardization as to the protocol of 
how to evaluate the efficacy of a probiotic product for honey bees. 
The discrepancies in the methods used by different researchers, 
which included the enterobacterial repetitive intergenic consensus 
(ERIC) type of P. larvae, the number of spores used to challenge 
larvae, the composition of the probiotic strains, the dose, the timing 
and the duration of application, make accurate comparisons of 
currently available results almost impossible. Taken the dosage 
of human probiotic products as an example, the concentrations  
of 106 cfu/ml in the small bowel and 108 cfu/g in the colon are 
quoted as necessary to achieve clinical effects (Minelli and Benini 
2008). However, to our best knowledge, no consensus has reached 
as to the appropriate dosage of probiotics applied on honey bees. 
Therefore, the standardization of application procedures would be 
the key link allowing results obtained by different researchers to be 
compared with each other.

It is worth mentioning that some commercial probiotics for an-
imals and humans have demonstrated beneficial effects on tested 
honey bees (Kaznowskia et al. 2005, Mishukovskaya et al. 2020), 
while others, even hbs-LAB, have been reported to increase pathogen 
susceptibility (Schmidt and Engel 2016) and bee mortality (Borges et 
al. 2021), and fail to reduce background loads of P. larvae spore in 
honey bee colonies (Lamei et al. 2020). The application of potential 
probiotic strains does not necessarily confer expected positive health 
effects on the host. Improperly selected probiotics products may even 
dysregulate honey bees’ immune systems, increase their mortality, 
and promote pathogen infections. Healthy honey bees supplemented 
with a commercial probiotic (Lactobacillus rhamnosus) 9 days be-
fore Varimorpha (Nosema) ceranae infection had a 25-times higher 
load of microsporidian spores and a shorter lifespan than the con-
trol (Ptaszyńska et al. 2016). In an in vitro larval rearing assay, the 
commensal and probiotic strain, Parasaccharibacter apium strain C6 
(Corby-Harris et al. 2016), failed to improve larval survival of honey 
bee larvae infected with virulent Melissococcus plutonius (Floyd et 
al. 2020). Under laboratory-controlled conditions, newly emerged 
honey bees fed with the sugar syrup supplemented with 10% EM 
for bees (a commercial probiotic product) had a significantly higher 

mortality than honey bees fed with pure sugar syrup (Tlak Gajger 
et al. 2020). These results highlight the importance for proper se-
lection and application of probiotics, as well as the discreetness of 
translating probiotic effectiveness from the individual level to the 
colony level.

More importantly, the probiotic properties of these beneficial 
microbes, in most cases, have not been assessed. Some researchers 
suggested the use of ‘beneficial microorganisms’ or ‘apipromotor’, 
instead of ‘probiotics’ to refer to these beneficial microbes be-
fore their probiotic status has been proven (Alberoni et al. 2016). 
Researchers have begun to evaluate the probiotic capacities of 
hbs-LAB regarding their abilities to survive and colonize in the in-
testinal environment of honey bees, their hemolytic activities, and 
detailed technological characteristics in the production of not only 
probiotics targeted for honey bee use (Iorizzo et al. 2020) but also 
probiotic food products for human consumption (Elzeini et al. 2021, 
Toutiaee et al. 2022). Their findings will greatly promote the uti-
lization of specific probiotics targeted for AFB control and health 
improvement in honey bees. Therefore, future probiotics research 
in honey bees needs to focus on selecting honey bee-derived strains 
capable of re-establishing and persisting in honey bee hosts (Motta 
et al. 2022b), optimizing delivery system, timing and dosage of ap-
plication, and validating in field trials (Chmiel et al. 2021) before the 
reproducibility of relevant research can be achieved and the efficacy 
of beneficial bacteria in beekeeping can be claimed.

Finally, it should be pointed out that the aim of disease reduc-
tion in honey bees is not always consistent with the improvement 
of colony productivity (honey yield in particular). The activation of 
immune system (even by endogenous bacterial LAB strains) is costly 
in honey bees, which may occur at the expense of bee development, 
reduced productivity, and longevity of honey bees (Evans and Pettis 
2005, Janashia and Alaux 2016). There is a trade-off between colony 
health and productivity which needs to be taken into consideration.

Conclusions

Collectively, beneficial bacteria have great potential in serving as 
biological alternatives for AFB control. The determination of their 
GRAS status and detailed probiotic properties, their combined appli-
cation with other disease-controlling methods to achieve synergistic 
functions, and the evaluation of their practical effects in more field 
tests will be necessary before incorporating them into the integrated 
strategy of AFB prevention and treatment.
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