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Abstract

Introduction: The objective of this study was to investigate which genes are regulated by osteogenic protein-1
(OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in
cartilage homeostasis.

Methods: Chondrocytes enzymatically isolated from 12 normal ankle cartilage samples were cultured in high-density
monolayers and either transfected with OP-1 antisense oligonucleotide in the presence of lipofectin or treated with
recombinant OP-1 (100 ng/ml) for 48 hours followed by RNA isolation. Gene expression profiles were analyzed by
HG-U133A gene chips from Affimetrix. A cut-off was chosen at 1.5-fold difference from controls. Selected gene array
results were verified by real-time PCR and by in vitro measures of proteoglycan synthesis and signal transduction.

Results: OP-1 controls cartilage homeostasis on multiple levels including regulation of genes responsible for
chondrocyte cytoskeleton (cyclin D, Talin1, and Cyclin M1), matrix production, and other anabolic pathways
(transforming growth factor-beta (TGF-b)/ bone morphogenetic protein (BMP), insulin-like growth factor (IGF),
vascular endothelial growth factor (VEGF), genes responsible for bone formation, and so on) as well as regulation
of cytokines, neuromediators, and various catabolic pathways responsible for matrix degradation and cell death. In
many of these cases, OP-1 modulated the expression of not only the ligands, but also their receptors, mediators of
downstream signaling, kinases responsible for an activation of the pathways, binding proteins responsible for the
inhibition of the pathways, and transcription factors that induce transcriptional responses.

Conclusions: Gene array data strongly suggest a critical role of OP-1 in human cartilage homeostasis. OP-1
regulates numerous metabolic pathways that are not only limited to its well-documented anabolic function, but
also to its anti-catabolic activity. An understanding of OP-1 function in cartilage will provide strong justification for
the application of OP-1 protein as a therapeutic treatment for cartilage regeneration and repair.

Introduction
Cartilage degeneration is one of the features of osteoar-
thritis (OA). In order to identify cellular mechanisms
that drive OA progression, it is necessary to understand
the interplay between anabolic and catabolic processes
responsible for cartilage homeostasis under physiological
and pathophysiological states. Osteogenic protein-1
(OP-1) or bone morphogenetic protein-7 (BMP-7) is
one of the most potent growth factors for cartilage
maintenance and repair identified thus far [1,2]. A large
number of in vivo and in vitro studies have shown a

high synthetic potency of human recombinant OP-1
(rhOP-1; [2]). In earlier work, we found that the inhibi-
tion of OP-1 gene expression by antisense oligonucleo-
tides (ODNs) caused a significant decrease in aggrecan
expression, aggrecan core protein synthesis, and proteo-
glycan (PG) synthesis, which resulted in the depletion of
PGs from the cartilage matrix [3]. These findings sug-
gest that OP-1 plays a key role in maintenance of carti-
lage integrity and homeostasis, but further work is
needed to understand the mechanisms by which OP-1
acts at the molecular level.
In the current study, we used the Affymetrix Gene-

Chip technology to monitor OP-1 regulation of 22,000
genes from the human genome with specific emphasis
on genes that are relevant to adult articular cartilage.
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Those included matrix proteins, anabolic and catabolic
gene products, as well as their intracellular regulators
and receptors. Recently, applying the same methodology
differential gene expression pattern in normal and
OA cartilage tissue was identified [4]. These analyses
revealed numerous interesting gene expression profiles,
but per se did not allow elucidating cellular reaction pat-
terns in response to defined extracellular stimuli. The
goal of the current project was to evaluate the role OP-
1 plays in regulating human articular cartilage homeos-
tasis by using a gene array approach under conditions
where endogenous OP-1 gene expression was inhibited
by antisense ODNs ([3]; OP-1AS) or OP-1 signaling was
activated and/or enhanced by rhOP-1. Key microarray
findings were verified by real-time PCR and additional
in vitro experiments of matrix synthesis and signal
transduction. We found that OP-1/BMP-7 controls
numerous metabolic pathways that are not limited to its
direct anabolic or anti-catabolic function, but also
related to cell growth, cell proliferation, differentiation,
survival, apoptosis, and death.

Materials and methods
Materials
Dulbecco’s modified Eagle’s medium (DMEM), fetal
bovine serum (FBS), gentamicin, Ham’s F-12, lipofectin,
Opti-MEM, penicillin/streptomycin/fungizone (PSF), 1X
Platinum Quantitative PCR SuperMix-UDG and Super-
Script III reverse transcriptase with oligo (dT)12-18 were
purchased from Invitrogen (Carlsbad, CA, USA). Phos-
phorothioate ODN was custom synthesized by Oligos
Etc. (Wilsonville, OR, USA). RNeasy mini kit, QIA
shredder, RNase-free DNase kit and QuantiTect Primer
Assay were purchased from Qiagen (Valencia, CA,
USA). Real time polymerase chain reaction (PCR) pri-
mers were custom synthesized by Integrated DNA
Technologies (IDT), Coralville, IA, USA. 10,000 X SYBR
Green 1 was purchased from Cambrex, Rockland, ME,
USA. Recombinant human rhOP-1 was kindly provided
by Stryker Biotech (Hopkinton, MA, USA).

Isolation and culture of chondrocytes
Full-thickness articular cartilage from the talus of the
talocrural joint (ankle) from 12 human organ donors (age
55 to 70 years old, Collins grade 0 to 1 [5]) and from the
femur of the tibiofemoral joint (knee) from two human
organ donors (age 67 and 73 years old, Collins grade 2)
was obtained from the Gift of Hope Organ and Tissue
Donor Network (Elmhurst, IL, USA) with Institutional
Review Board approval and appropriate consent within
24 hours of the donor’s death. Knee cartilage was utilized
for verification of the ankle cartilage results using real-
time PCR. Chondrocytes were isolated by sequential
digestion with pronase (2 mg/ml) for 60 minutes and

collagenase P (0.25 mg/ml) overnight [6]. Chondrocytes
were plated in high density monolayer culture (4 × 106

cells/well in a six-well plate) and cultured for 24 hours in
50% DMEM/50% Ham’s F-12 supplemented with 10%
FBS, 1% PSF, and gentamicin (50 μg/ml) for attachment
prior to treatment with either antisense (OP-1 AS) or
recombinant OP-1 (rhOP-1). Both treatments were
administered for 48 hours in the absence of serum.

Phosphorothioate ODNs
Antisense ODNs were designed to be complementary to
sequences in the 5’- and 3’-untranslated regions of the
human OP-1 messenger RNA (mRNA) sequence
(XM_030621, National Center for Biotechnology Infor-
mation (NCBI)) as described [3]. All verification experi-
ments with appropriate negative controls (sense and
scrambled probes) were performed in a previous study
[3]. For this study, the following antisense ODN was
used: 5’-GGC-GAA-CGA-AAA-GGC-GAG-TGA-3’
(position 237-257).

Treatment groups
Chondrocyte cultures were divided into three experimen-
tal groups and treated for 48 hours as follows: 1) trans-
fected with OP-1 AS in the presence of 10 μg/ml
lipofectin [3]; 2) treated with 100 ng/ml of rhOP-1; and 3)
culture control (no treatment, no serum).

RNA Isolation
Total cellular RNA was isolated using the RNeasy Mini
Kit, following lysis of the cells with a Qia shredder [7]
and included an on-column DNase digestion, according
to the manufacturer’s instructions (Qiagen). All samples
were stored at -80°C until analyzed.

Microarray and pathway analysis
Gene expression profiles were analyzed by HG-U133A
gene chips from Affimetrix (accession number: E-MTAB-
571). At least 10 μg of RNA/per experimental group was
required for analysis. Therefore, the RNA was pooled
from donors in order to have sufficient RNA and to
reduce donor-to-donor variations. Cells from all 12
donors were treated with each experimental condition.
The microarray data collection was in compliance with
the Minimum Information About Microarray Experi-
ments standard [8]. The quality of the RNA was checked
by the Agilent Bioanalyzer (Agilent Technologies, Inc.,
Santa Clara, CA, USA), and the quality of the hybridiza-
tion image was checked by the affyPLM model [9]. To
deal with the technical variation, each gene was measured
by 11 different probes on the Affymetrix U133A microar-
ray. A statistical model at the probe-level was used to
identify the differentially expressed genes. To estimate
the variance more efficiently with a small sample size, we
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utilized an empirical Bayesian correction of the linear
model [10]. Statistical significance was considered with a
P-value of P < 0.001 and fold change larger than 1.5-fold
between the treatment group and corresponding control.
All the data analysis was conducted using the Bioconduc-
tor/R package [11]. To interpret the biological signifi-
cance of differentially expressed genes, a gene ontology
analysis was conducted using DAVID/EASE [12].

Pathway analysis and classification by gene ontology
Regulated genes (R > 1.5-fold, P < 0.001) were used as
input for both analyses. The ingenuity pathway analysis
system [13] was used to project genes onto known biolo-
gical pathways (canonical pathways). The system deter-
mines a significance value for each pathway based on an
F-statistics that the input-genes occur randomly within
this pathway. Grouping of genes was done by computing
over-representation of regulated genes in gene ontology
(GO) classes [14]. Statistical analysis consisted of 1) ana-
lysis of differentially expressed genes under a single
experimental condition in comparison to the correspond-
ing control (up- or down-regulated in the presence of
OP-1 antisense or rhOP-1); 2) analysis of differentially
expressed genes when comparison is made between two
treatments (OP-1 antisense and rhOP-1); and 3) gene
ontology, when changes were analyzed within a family of
genes according to their function (comparison was made
between single treatment and control or between both
treatments). Selected gene array results were verified
experimentally in vitro or by real-time PCR.

Validation experiments -quantitative real time PCR
Selected gene array results were verified by real-time
PCR. SuperScript III reverse transcriptase with oligo
(dT)12-18 was used to transcribe 4 μg of isolated total
RNA into complementary DNA (cDNA) in a total
volume of 20 μl according to the manufacturer’s

instructions (Invitrogen). Real time PCR primer sets spe-
cific for human b-actin, GAPDH, gremlin-1, IL-6, IL-8,
and LIF-1 (Table 1) were designed using the Primer-
Quest program (Integrated DNA Technologies, Inc.,
Coralville, Iowa, USA). The specificity of the primers
was verified by testing in BLAST searches [15]. Real
time PCR primer sets specific for human 18SrRNA and
BMP-2 were purchased from Qiagen. Real time PCR
was performed using the Smart Cycler System (Cepheid,
Sunnyvale, CA, USA). Each 50 μl reaction mixture con-
tained 1X Platinum Quantitative PCR SuperMix-UDG,
0.5X Smart Cycler additive reagent (0.1 mM Tris, pH
8.0; 0.1 mg of bovine serum albumin per ml, 75 mM
trehalose, and 0.1% Tween 20), 0.5X SYBR Green 1
(vendor stock 10,000X; Cambrex, Rockland, ME), 0.2
μM each of forward and reverse primer (IDT primers)
or 1X QuantiTect primers (Qiagen primers) and 1 μl
cDNA (18SrRNA, b-actin, BMP-2, GAPDH, gremlin-1, IL-
6, IL-8) or 2 μl cDNA (LIF-1). Cycling parameters were:
preheat at 60°C for 120 seconds then 95°C for 120 sec-
onds followed by 40 three-step cycles of 95°C for 15 sec-
onds, various annealing temperatures and times (Table 1)
and 72°C for 30 seconds. After the last amplification
cycle, PCR products were analyzed by melting curve ana-
lysis in the Smart Cycler by slowly increasing the tem-
perature to 95°C. The reactions were run in triplicate
with appropriate controls (no cDNA template). The data
were analyzed by using the Cepheid Smart Cycler soft-
ware (version 2.0c) and reported as threshold cycle (Ct).
Change in gene expression was calculated as fold change
= 2-Δ(ΔCt), where Δ(ΔCt) = (Ct sample - Ct housekeeping
gene) - (Ct control - Ct housekeeping gene).

Statistical analysis for real-time
PCR Data are expressed as mean +/- standard deviation.
Statistical significance was assessed by the Student t-test
and P-values < 0.05 were considered significant.

Table 1 Sequence of primers for quantitative real time PCR

Primer Orientation Sequence Annealing temp and time Accession no.

18SrRNA Qiagen QuantiTect Primer Assay 62°C, 40 sec [GenBank:X03205]

b-actin Forward 5’-TCCATCATGAAGTGTGACGTGGAC-3’ 62°C, 40 sec [GenBank:NM_001101]

Reverse 5’-TTGATCTTCATTGTGCTGGGTGCC-3’

BMP-2 Qiagen QuantiTect Primer Assay 60°C, 40 sec [GenBank::NM_001200]

GAPDH Forward 5’-TGGACTCCACGACGTACTCAG-3’ 62°C, 40 sec [GenBank:NM_002046]

Reverse 5’-CGGGAAGCTTGTCATCAATGGAA-3’

Gremlin-1 Forward 5’-ATACCTGAAGCGAGACTGGTGCAA-3’ 64°C, 40 sec [GenBank:NM_013372]

Reverse 5’-AACAGAAGCGGTTGATGATGGTGC-3’

IL-6 Forward 5’-GTCAATTCGTTCTGAAGAGGTGAGT-3’ 64°C, 40 sec [GenBank:NM_000600]

Reverse 5’-CCCCAGGAGAAGATTCCAAAGATG-3’

IL-8 Forward 5’-AGACATACTCCAAACCTTTCCACCC-3’ 58°C, 30 sec [GenBank:NM_000584]

Reverse 5’-ATTTCTGTGTTGGCGCAGTGTGGT-3’

LIF-1 Forward 5’-TAAGGAGGCCTCGCAGGATGTC-3’ 64°C, 30 sec [GenBank:NM_002309]

Reverse 5’-TAGTCGTGTACCTTGGCACCTC-3’
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Results
Microarray analysis: overview of data
GeneChip (HG-U133A) expression data from un-stimu-
lated, rhOP-1 and OP-1AS treated chondrocytes
maintained in high-density monolayer culture were gen-
erated. For the analysis of the expression data we used a
three step analytical strategy: (I) processing of raw inten-
sity values and normalization of profiles, (II) examina-
tion of expression levels of gene categories that are
relevant to articular cartilage, and (III) comparison of
gene expression changes between the two treatments -
OP-1AS to knockdown endogenous OP-1 expression vs.
addition of exogenous rhOP-1.
Analyzing the number of differentially expressed genes

(fold changes of larger than 1.5 and corresponding
P-values < 0.001 compared to control) after rhOP-1 or
OP-1AS, we found that rhOP-1 modulated expression of
4,057 genes, while OP-1AS treatment modulated expres-
sion of only 2,618 genes respectively. More genes were
down-regulated than up-regulated by either treatment:
rhOP-1 down-regulated 3,365 genes vs 692 genes that
were up-regulated; while OP-1AS down-regulated 2,364
genes and up-regulated only 254 genes. The functional
groups of genes modulated by lack or excess of OP-1 are
depicted in Figure 1. RhOP-1 primarily controlled genes
responsible for molecular function, biological processes,

and cellular components, while OP-1AS primarily
affected genes controlling cellular processes and catalytic
activity. Interestingly, either treatment up-regulated fewer
functional groups than the number that were down-regu-
lated (Figure 1). For example, rhOP-1 induced only five
functional groups vs four induced by OP-1AS; while
rhOP-1 down-regulated 19 functional groups vs 12
down-regulated by OP-1AS. When the results were com-
pared between the two treatments, we found that very
few gene groups with the same function were differen-
tially regulated by both treatments (Figure 1). Groups
regulated by both OP-1 conditions included the genes
responsible for cellular processes (the same number of
genes were up-regulated by either treatment, 100 vs 101),
development, protein binding, signal transducer activity
and signal transduction.

Analysis of catabolic genes: cytokines and their regulators
Previously, we showed that OP-1 was able to counteract
the catabolic activity of IL-1b [16,17] and other catabolic
mediators such as fragments of cartilage matrix, fibro-
nectin and hyaluronan [17-20]. Therefore, it was of
interest to determine the effects of OP-1 on genes regu-
lating pro-catabolic activity. Consistent with an anti-
catabolic function for OP-1, a broad spectrum of genes
with various pro-catabolic activities (cytokines and their
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Figure 1 Schematic representation of genes grouped according to their function. A, genes up-regulated by treatment with recombinant
OP-1; B, genes down-regulated by treatment with recombinant OP-1; C, genes up-regulated by OP-1 antisense treatment; D, genes down-
regulated by OP-1 antisense treatment.
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regulators, matrix degrading proteinases, apoptosis-
related genes, neuromediators, transcription factors, and
so on) were modulated by OP-1. Multiple cytokines and
chemokines, in particular members of the IL-6 family,
(Figure 2), as well as their receptors and regulators of
their activity (Tables 2 and 3) were found to be regu-
lated by OP-1. Interestingly, among these mediators
only members of the IL-6 family (leukemia inhibitory
factor (LIF), IL-11, IL-8, and IL-6) were differentially
regulated by the two treatment conditions: rhOP-1
down-regulated LIF expression by more than 15-fold,
IL-11 expression by more than eight-fold, IL-8 gene by
four-fold and IL-6 by two-fold, respectively (Figure 2A).
Likewise, when endogenous OP-1 was inhibited by OP-
1AS, expression of these four chemokines was elevated
by about two-fold indicating a tight association between
OP-1 levels and expression of members of the IL-6
family. Verification experiments of gene array findings

included both real-time PCR analysis and in vitro meta-
bolic tests (Figure 2). These tests confirmed that when
chondrocytes in high-density monolayer cultures were
treated with rhOP-1 for 48 hours, gene expression of
LIF, IL-6, and IL-8 was inhibited as detected by real-
time PCR, although the magnitude of changes was dif-
ferent from those identified by gene array (Figure 2A,
B). In metabolic studies, we also found that OP-1 could
overcome an inhibitory effect of IL-6 on PG synthesis in
chondrocytes cultured in alginate beads (Figure 2C). In
addition, our previous studies showed an ability of OP-1
to inhibit mRNA expression of IL-1, IL-6, IL-8, and
other cytokines in primary and immortalized chondro-
cytes [17].
In analyzing the relationship between treatments to

modulate OP-1 and the expression of genes in the IL-6
signaling pathway, we found that OP-1 not only regu-
lates expression of the IL-6 family of cytokines but also
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recombinant protein, 100 ng/ml, 48 hours) on gene expression of IL-6, IL-8, IL-11, and LIF in chondrocytes cultured in monolayers. Graphical
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controls expression of their receptors and downstream
intracellular mediators including signal transducers and
activators of transcription (STATs), mitogen activated
protein (MAP) kinases, and transcription factors. This
suggests OP-1 inhibits IL-6 signaling at multiple levels
(Table 3). Among other genes that either regulate cyto-
kine activity or mediate their signaling, the most affected
by OP-1 were the receptors for IL-1b and tumor necro-
sis factor alpha (TNF-a) (see Table 2) as well as TNF-a
inducible protein. Although under the experimental
conditions expression of TNF-a and IL-1b genes was
not influenced by OP-1, previous studies showed that
injection of OP-1 into nucleus pulposus inhibited

production of autocrine TNF-a and IL-1b elevated in
response to injurious compression of the intervertebral
discs [21] proving an association between OP-1 and sig-
naling pathways of the above mentioned cytokines. In
addition, several other studies have provided evidence of
an ability of OP-1 to regulate either IL-1b induced
responses or IL-1b downstream signaling [16-18,22,23].

Analysis of catabolic genes. Neuromediators
Previous studies have provided evidence that OP-1 may
regulate mediators of pain-related behavior and their
activation in response to injurious compression of the
intervertebral disc and acute cartilage trauma [24-26].

Table 2 Changes in chemokines, cytokines, and their receptors

Gene rhOP-1 vs Cntr OP-1AS vs Cntr

fold change fold change Accession no.

LIF 15.86↓ 2.26↑ [GenBank:NM_002309]

IL-11 8.69↓ 1.82↑ [GenBank:NM_000641]

IL-8 4.01↓ 1.80↑ [GenBank:NM_000584]

IL-6 2.09↓ 1.60↑ [GenBank:NM_000600]

IL-5Ra 2.47↑ 2.40↑ [GenBank:NM_000564]

TNF-a induced
protein 6

2.14↓ [GenBank:NM_007115]

TNF-a induced
protein-3

2.02↓ 1.60↑ [GenBank:NM_006290]

TNF-R12 1.79↓ [GenBank:NM_016639]

TNF-R9 1.73↓ 1.57↓ [GenBank:NM_001561]

TNF-R5 1.88↑ [GenBank:NM_001250]

TNF-13 1.69↓ [GenBank:NM_003808]

IL1-R1 1.59↓ [GenBank:NM_000877]

TNF-R11B (osteoprotegerin) 1.58↓ [GenBank:NM_002546]

IL-13Ra1 1.55↓ [GenBank:NM_001560]

IL-12b 1.74↓ [GenBank:NM_002187]

IL-1R accessory
protein-like 1

1.64↓ [GenBank:NM_014271]

TNF-R6 2.08↓ [GenBank:NM_000043]

Table 3 Changes in the mediators of IL-6 signaling pathway

rhOP-1 vs Cntr OP-1AS vs Cntr

fold change fold change Accession no.

Genes from IL-6 signaling pathway

ELK-1 1.89↓ [GenBank:NM_005229]

IL-6 2.09↓ 1.60↑ [GenBank:NM_000600]

IL-6R 1.81↓ [GenBank:NM_000565]

IL-6 signal transducer (oncostatin M receptor) 1.63↓ [GenBank:NM_002184]

STAT1 2.42↓ [GenBank:NM_007315]

NF�BIa 1.86↓ 1.58↑ [GenBank:NM_020529]

Protein inhibitor of activated STAT3 1.84↓ [GenBank:NM_006099]

STAT6 1.53↓ [GenBank:NM_003153]

MAP 3 kinase 7 1.67↓ [GenBank:NM_003188]

MAPK 14 1.52↓ [GenBank:L35253]

MAPK1 1.55↓
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We also reported that injection of OP-1 into nucleus
pulposus down-regulated substance P expression [26],
bradykinin and bradykinin inducible receptor b1 [26].
Therefore, it was of interest to examine expression of
neuromediators and their receptors in the present array
study. After stimulation for 48 hours with rhOP-1,
expression of the receptors of bradykinin and substance
P was down-regulated (Table 4). Both receptors of bra-
dykinin, constitutively expressed b2 and inducible b1,
were down-regulated by the treatment with OP-1.
Expression of the b1 receptor was differentially regu-
lated under conditions of excess and lack of OP-1, that
is, treatment with rhOP-1 inhibited gene expression of
this receptor by 1.85-fold, while its expression was up-
regulated by 1.59-fold when endogenous OP-1 expres-
sion was inhibited by antisense oligonucleotides. These
results are consistent with previous data on the protein
level in an in vivo model of disc herniation, where injec-
tion of OP-1 into the nucleus pulposus completely abol-
ished bradykinin receptor b1 [26]. Although by gene array
we did not identify significant changes in the expression of
bradykinin and substance P at the time point tested here,
we found changes in substance P receptor and its precur-
sor. We also found that OP-1 inhibited expression of
nerve growth factor-b by almost two-fold.

Analysis of catabolic genes: Transcription factors
Besides cytokines and their receptors, OP-1 also affected
gene expression of transcription factors that regulate
cytokine signaling. Previously, in normal primary and
immortalized chondrocytes, we found that OP-1 inhibits
activation of the nuclear factor kappa-light-chain-enhan-
cer of activated B cells (NF-�B) and activator protein-1
(AP-1) transcription factors [17]. Here, expression of a
large set of transcription factors was found to be modu-
lated by OP-1 (Table 5). In addition to common factors
such as NF-�B, STAT1 and STAT6, gene array also dis-
covered factors that repress IL-2 expression, p38 inter-
acting protein, Runx1, and others. The majority of these
transcription factors regulate directly or indirectly (as
p38 interacting protein) transcriptional responses
induced by various pro-inflammatory mediators (IL-1b,
IL-6, matrix fragments). Others, like Runx1, are involved

in the process of chondrogenesis. To further demon-
strate the effect of OP-1 on activation of transcription
factors, we treated cultured cells and found that OP-1
was able to at least partially inhibit activation of NF-�B
in primary chondrocytes pre-treated with IL-1b or acti-
vation of Stat-1 in chondrocytes treated with IL-6 and
IL-6 soluble receptor (data not shown).

Analysis of catabolic genes: Matrix degrading proteases,
cathepsins, and apoptosis-related genes
Among other catabolic genes influenced by OP-1 were
the matrix metalloproteinases (MMPs), cathepsins, and
a number of proteases with various modes of action
(Table 6). Thus, expression of membrane type-1 MMP
(MMP-14) was inhibited by rhOP-1 by 1.6-fold (P <
0.001) along with tissue inhibitor of metalloproteinases
(TIMP)-3 (2.06-fold, P < 0.001). At the same time,
expression of MMP-2 (gelatinase A), which is activated
by MMP-14 [24], was not affected by rhOP-1, but was
down-regulated by OP-1AS (2.31-fold, (P < 0.001) as
well as was MMP-9 (gelatinase B) (1.5-fold). Interest-
ingly, the same positive correlation was found between
the levels of OP-1 and expression of another TIMP,
TIMP-4, which was decreased by 1.7-fold in the OP-
1AS group confirming its association with MMP-2 [25].
Parallel changes were observed in other types of pro-
teases, such as a disintegrin and metalloproteinases
(ADAM)-9, 10, and 28. Their gene expression was down-
regulated under OP-1AS from 2.34 to 1.75-fold. Treat-
ment of chondrocytes with rhOP-1 inhibited expression
of ADAM-15,-19, as well as urokinase type plasminogen
activator, its receptor, and transglutamianse-2. There
were also some proteinases that were up-regulated by
rhOP-1: ADAM-TS7, ADAM-TS12, and tissue specific
plasminogen activator suggesting that perhaps these pro-
teins are involved in anabolic/remodeling processes.
Among the proteases that were also regulated by OP-1

were cathepsins B, C, and S. So far, these lysosomal
cysteine proteases have been less studied in cartilage,
though cathepsin C appears to be a central coordinator
for activation of many serine proteases in immune/
inflammatory cells [29], while cathepsin B was thought
to play an important role in the development of

Table 4 Changes in neuromediators and their receptors

rhOP-1 vs Cntr OP-1AS vs Cntr

fold change fold change Accession no.

Bradykinin Rb1 1.85↓ 1.59↑ [GenBank:NM_000710]

Bradykinin Rb2 1.68↓ [GenBank:NM_000623]

Tachykinin R1 1.64↓ [GenBank:NM_001058]

Nerve growth factor-b 1.93↓ [GenBank:NM_002506]

Tachykinin1 precursor
(Substance K, Substance P)

2.26↓
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Table 5 Changes in transcription factors

rhOP-1 vs Cntr rhOP-1AS vs Cntr

fold change fold change Accession no.

Transcription factor 8 (represses IL-2 expression) 3.28↓ 2.97↓ [GenBank:NM_030751]

NF-�B2 2.77↓ [GenBank:NM_002502]

STAT1 2.42↓ [GenBank:NM_007315]

Transcription factor AP-2a 2.07↓ 1.52↓ [GenBank:NM_003220]

Suppression of tumorigenicity 2.04↓ 2.20↓ [GenBank:NM_013437]

Runx1 1.89↓ 1.64↓ [GenBank:NM_001754]

NF�BIa 1.86↓ 1.58↑ [GenBank:NM_020529]

NFYb 1.68↓ 1.75↓ [GenBank:NM_006166]

Activating transcription factor 7 1.66↓ [GenBank:NM_006856]

MADS box transcription enhancer factor 2-d 1.65↓ [GenBank:NM_005920]

Upstream transcription factor 2, c-fos interacting 1.58↓ [GenBank:NM_003367]

Transcription factor (p38 interacting protein) 1.57↓ [GenBank:NM_017569]

MADS box transcription enhancer factor 2-C 1.60↑ 1.94↓ [GenBank:NM_002397]

Protein inhibitor of activated STAT3 1.84↓ [GenBank:NM_006099]

Ubiquitin-like 1 (sentrin) 1.60↓ [GenBank:NM_003352]

STAT6 1.53↓ [GenBank:NM_003153]

Table 6 Changes in proteases and their inhibitors

rhOP-1 vs Cntr rhOP-1AS vs Cntr

fold change fold change Accession no.

Bcl-2 2.45↓ [GenBank:NM_001191]

Caspase 4, apoptosis-related cysteine protease 2.11↓ 1.59↓ [GenBank:NM_001225]

Programmed cell death 8 (apoptosis-inducing factor) 1.70↓ [GenBank:NM_004208]

Calpain 9 1.55↓ [GenBank:NM_006615]

Caspase 6 2.18↓ [GenBank:NM_001226]

Caspase 8 1.82↓ [GenBank:NM_001228]

Caspase 2 1.50↑ [GenBank:NM_001224]

MMPs and inhibitors

TIMP-3 2.06↓ [GenBank:NM_000362]

MMP-14 1.55↓ [GenBank:NM_004995]

MMP-2 2.31↓ [GenBank:NM_004530]

TIMP-4 1.69↓ [GenBank:NM_003256]

MMP-9 1.50↓ [GenBank:NM_004994]

ADAM and ADAMTS

ADAM-19 1.83↓ [GenBank:NM_023038]

ADAM-15 1.51↓ [GenBank:NM_003815]

ADAMTS-12 1.88↑ 2.03↑ [GenBank:NM_030955]

ADAMTS-7 1.58↑ [GenBank:NM_014272]

ADAM-10 2.34↓ [GenBank:NM_001110]

ADAM-28 1.63↓ [GenBank:NM_014265]

ADAM-9 1.61↓ [GenBank:NM_003816]

ADAM-7 1.56↑ [GenBank:NM_003817]

Cathepsins

Cathepsin B 2.14↓ [GenBank:NM_001908]

Cathepsin C 1.75↓ [GenBank:NM_001814]

Cathepsin S 1.75↓ [GenBank:NM_004079]

Other proteases

Transglutaminase 2 2.10↓ [GenBank:NM_004613]

Plasminogen activator-urokinase 1.57↓ [GenBank:NM_002658]

Tissue Plasminogen Activator 1.56↑ [GenBank:NM_000930]

Chubinskaya et al. Arthritis Research & Therapy 2011, 13:R55
http://arthritis-research.com/content/13/2/R55

Page 8 of 14

http://www.ncbi.nlm.nih.gov/pubmed/030751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/002502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/007315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/013437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/020529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/006166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/006856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/017569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/002397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/006099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/006615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/000362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/023038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/030955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/014272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/014265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/003817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/001814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/004613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/002658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/000930?dopt=Abstract


osteoarthritis [30]. Expression of all three cathepsin
genes was down-regulated under OP-1AS.
A previous study on acute impact injury in vivo [31]

strongly suggested an anti-apoptotic effect of OP-1 in
post-traumatic OA. Therefore, we expected that OP-1
may control genes involved in apoptosis-related pro-
cesses. We found that rhOP-1 inhibited program cell
death 8 gene (apoptosis-induced factor), Bcl-2 gene and
the calpain-9 gene (Table 6). However, the key caspases
that trigger and promote cell death by apoptosis were
not affected. During the absence of OP-1 (antisense
treatment), expression of caspases 8, 9, and 6 were
inhibited and only caspase 2 was elevated (Table 6). The
reason for a down-regulation of the apoptosis-related
genes under conditions where OP-1 is lacking is not
clear, but may be a response to help avoid cell death.

Analysis of anabolic genes: transforming growth factor-
beta (TGF-b)/BMP family, their receptors and regulators of
signaling
Affimetrix analysis identified a very interesting effect of
OP-1 on members of the BMP/TGF-b family (Table 7).

Treatment with rhOP-1 down-regulated expression of
growth differentiation factor (GDF)-15, BMP-2, and Acti-
vin A, and BMP-2 inducible kinase, while inhibition of OP-
1 expression up-regulated GDF-15 and Activin A. Down-
regulation of BMP-2 expression in chondrocytes treated
with rhOP-1 was confirmed by real-time PCR (Figure 3).
Antisense reduction of OP-1 levels resulted in down-regu-
lation of GDF-10 and TGF-a expression (Table 7). Further-
more, a correlation was also found between OP-1 and the
mediators of its downstream signaling, where OP-1AS
treatment inhibited expression of transcription factors, Id
proteins 2 to 4 (Table 7), binding protein Gremlin (Figure
2), and MAD genes. Changes in Id genes correlated with
the earlier findings from our laboratory, which demon-
strated that the treatment of chondrocytes with rhOP-1 led
to the elevation of Id1, Id2, and Id3 genes and proteins
[32]. Contrary to changes in the Gremlin gene, which
showed a positive correlation with OP-1 levels, expression
of Follistatin binding protein was inhibited by more than
two-fold in chondrocytes treated with rhOP-1.
In addition, OP-1 modulated expression of the TGF-

b/BMP receptors. With the exception of Activin-a RIB,

Table 7 Changes in the expression of TGF-b/BMP family related genes, their receptors, and signaling regulators

rhOP-1 vs Cntr rhOP-1AS vs Cntr

fold change fold change Accession no.

GDF-15 3.04↓ 2.03↑ [GenBank:NM_004864]

BMP-2 2.67↓ [GenBank:NM_001200]

Inhibin-ba (activin A) 2.32↓ 2.15↑ [GenBank:NM_002192]

BMP-2 inducible kinase 1.61↓ [GenBank:NM_017593]

Parathyroid hormone-like hormone 1.60↓ 2.17↑ [GenBank:NM_002820]

ID2 2.32↓ [GenBank:NM_002166]

Notch 4 2.32↓ [GenBank:NM_004557]

MAD-6 2.05↓ [GenBank:NM_005585]

Gremlin 1.88↑ 1.94↓ [GenBank:NM_013372]

GDF-10 1.86↓ [GenBank:NM_004962]

ID4 1.82↑ 1.84↓ [GenBank:NM_001546]

ID3 1.73↓ [GenBank:NM_002167]

MAD interacting protein 1.69↓ [GenBank:NM_004799]

MAD-4 1.67↓ [GenBank:NM_005359]

Notch 1 1.65↓ [GenBank:NM_017617]

MAD-7 1.62↓ [GenBank:NM_005904]

TGF-a 1.54↓

Receptors

Frizzled homolog 10 (Drosophila) 1.57↓ [GenBank:NM_007197]

Activin-a RI 1.53↓ [GenBank:NM_001105]

Activin A-RIIB 2.42↓ [GenBank:NM_001106]

BMPR1A 1.83↓ [GenBank:NM_004329]

TGF-bRI 1.51↓ [GenBank:NM_004612]

TGF-bRIII 1.50↓ [GenBank:NM_003243]

TGF-b R2 1.58↑ [GenBank:NM_003242]

Activin A-RIB 1.53↑ [GenBank:NM_004302]

Bone formation

Osteomodulin 1.78↑ 2.56↓ [GenBank:NM_005014]
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which was inhibited by rhOP-1 and elevated under the
lack of OP-1, expression of other receptors, Activin-a
RIIB, BMPR1A, TGF-b RI, II, and III correlated posi-
tively with OP-1 expression (Table 7).

Analysis of anabolic genes: other growth factors
Previously we showed that rhOP-1 stimulated expres-
sion of insulin-like growth factor (IGF)-1 and IGF-1
receptor genes [17], while inhibition of OP-1 gene
expression by OP-1AS down-regulated mRNA expres-
sion of these genes. We have also documented a syner-
gistic effect of OP-1 on IGF-1 induced responses in
normal and OA chondrocytes [33,34]. Here, we con-
firmed an association between OP-1 and IGF-1 path-
ways by documenting a 1.73-fold decrease in IGF-1
receptor expression and a decrease in two IGF-1 binding
proteins-5 and 7 (1.9- and 1.5-fold respectively) under
OP-1AS. Furthermore, other genes within the IGF-1 sig-
naling pathway were regulated by OP-1. Among them
were PIK3R1, PRKAR2B, MAP2K2, PDE3B, and SOCS3
(Table 8).
Modulation of OP-1 levels affected mRNA expression

of growth factors and some of their receptors that belong
to various families, such as Nerve Growth Factor-b, Vas-
cular Endothelial Growth Factor, Endothelial Cell Growth
Factor 1 (platelet-derived), Capillary Morphogenesis Pro-
tein-1, and Fibroblast Growth Factor (FGF)-7. Their
expression was inhibited by rhOP-1 from 1.93- to 1.5-
fold. Contrary, the expression of the FGF-R2 and 3 recep-
tors, and a and b receptors of Platelet-Derived Growth
Factor was stimulated by rhOP-1 Table 8).

Matrix proteins and their receptors
Cartilage-specific matrix genes were found to be
modulated by rhOP-1 treatment. Expression of the

collagen type IX-a3 chain and cartilage oligomeric
protein (COMP) was up-regulated by about 1.5-fold in
chondrocytes treated with rhOP-1 (Table 9). Among
proteoglycans, versican was affected the most (by
about three-fold down-regulation by OP-1AS) and syn-
decan was differentially regulated under both rhOP-1
and OP-1AS treatments. There were a number of
other matrix genes regulated by OP-1: bone sialopro-
tein, osteonectin, cadherins, chondroitin sulfate PG4
and dermatan sulfate PG3 (Table 9). As expected,
there was a positive correlation between OP-1 and
CD44 expression. Inhibition of OP-1 expression
resulted in 2.34-fold reduction in CD44 expression.
However, contrary to previously published data [35],
rhOP-1 inhibited hyaluronan synthase 2 expression.
A number of basement membrane proteins were
modulated by OP-1: a1,2,3, and five chains of collagen
type IV, laminin, versican among others. Gene expres-
sion of bamacan and laminin was inhibited by rhOP-1

OP-1 treated 
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Figure 3 Effect of OP-1 on BMP-2 gene expression. Real time
PCR of in vitro verification experiments, where knee chondrocytes
cultured in monolayers were treated for 48 hours with 100 ng/ml
recombinant OP-1. The graph illustrates an inhibition of BMP-2
mRNA expression.

Table 8 Association between OP-1 and other growth
factors including igf-1, insulin, and tyrosine-kinase
signaling

rhOP-1 vs
Cntr

OP-1AS vs
Cntr

fold
change

fold change

IGF-BP1 2.17↓

Nerve growth factor-b 1.93↓

VEGF-b 1.62↓ 1.50↓

Endothelial cell growth factor 1
(platelet-derived)

1.56↓

VEGF 1.52↓

Capillary morphogenesis protein 1 1.52↓

FGF-7 2.87↓

FGF-R2 1.69↑ 2.83↓

IGF-BP5 1.90↓

FGF-R3 1.87↑ 1.80↓

IGF-1R 1.73↓

PDGF-Ra 1.62↑ 1.70↓

PDGF-Rb 1.68↓

IGF-BP7 1.58↓

IRS2 (insulin receptor substrate 2) 2.10↓ 1.70↑

DPYSL2 (dihydropyrimidinase-like 2) 1.60↑ 1.60↓

MET (hepatocyte growth factor receptor) 1.70↓ 1.60↑

SPRY2: sprouty homolog 2 (Drosophila) 1.60↓ 1.60↑

SORBS1: sorbin and SH3 domain containing
1

1.70↑ 1.50↓

PIK3R1 (Phosphoinositide-3-kinase,
regulatory subunit 1)

1.72↑

MAP2K2 (mitogen-activated protein kinase
kinase 2)

1.61↑

PDE3B (phosphodiesterase 3B, cGMP-
inhibited)

2.00↑

SOCS3 (suppressor of cytokine signaling 3) 1.79↑
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and stimulated under OP-1AS. OP-1 also modulated
expression of collagens that are not cartilage-specific,
such as collagen type I, IV, V, VI, VIII, XIV, and XVI.
Their expression was inhibited under the OP-1AS
treatment (Table 9). The greatest decrease in mRNA
expression was found for a1 and a2 chains of type I
collagen (more than 2.6-fold).

Discussion
To the best of our knowledge, this is the first report that
uses microarray analysis to provide a comprehensive
understanding of the role OP-1 plays in overall cartilage

homeostasis. We found that OP-1 controls cartilage
homeostasis on multiple levels including regulation of
genes responsible for chondrocyte cytoskeleton (cyclin D,
Talin1, and Cyclin M1, for example, and confirmed in
[36]), matrix production and other anabolic pathways, as
well as regulation of cytokines and various catabolic path-
ways responsible for matrix degradation and cell death.
Importantly, in many of these cases, OP-1 modulated the
expression of not only the ligands, but also their recep-
tors, mediators of downstream signaling, kinases respon-
sible for an activation of the pathways and transcription
factors that induce transcriptional responses.

Table 9 Changes in the expression of matrix proteins, their receptors, and integrins

rhOP-1 vs Cntr OP-1AS vs Cntr

fold change fold change Accession no.

Matrix proteins

Collagen IV-a3 1.82↓ 1.54↓ [GenBank:NM_000091]

Laminin-b1 1.65↓ 3.38↓ [GenBank:NM_002291]

Chondroitin sulfate PG6 (bamacan) 1.60↓ 1.52↑ [GenBank:NM_005445]

Versican (chondroitin sulfate PG2) 2.98↓ [GenBank:NM_004385]

Collagen I-a1 2.63↓ [GenBank:NM_000088]

Collagen XIV-a1 2.59↓ [GenBank:NM_021110]

Collagen I-a2 2.57↓ [GenBank:NM_000089]

Cartilage associated protein 2.13↓ [GenBank:NM_006371]

Cadherin 11 (OB-cadherin (osteoblast)) 2.03↓ [GenBank:NM_001797]

Collagen XVI-a1 2.00↓ [GenBank:NM_001856]

Dermatan Sulfate PG3 1.57↑ 1.95↓ [GenBank:NM_004950]

Collagen V-a1 1.89↓ [GenBank:NM_000093]

Bone sialoprotein 1.83↓ [GenBank:NM_004967]

Collagen VIII-a2 1.73↓ [GenBank:NM_005202]

Collagen VI-a1 1.70↓ [GenBank:NM_001848]

Collagen IV-a1 1.70↓ [GenBank:NM_001845]

Collagen IV-a2 1.69↓ [GenBank:NM_001846]

Syndecan 1.58↑ 1.67↓ [GenBank:NM_002997]

Collagen V-a2 1.65↓ [GenBank:NM_000393]

Osteonectin 1.51↓ [GenBank:NM_003118]

Cadherin 19 1.50↓ [GenBank:NM_021153]

Collagen IX-a3 1.59↑ [GenBank:NM_001853]

Cadherin 1.54↑ [GenBank:NM_001408]

COMP 1.52↑ [GenBank:NM_000095]

Collagen IV-a5 1.89↑ [GenBank:NM_000495]

Chondroitin sulfate PG4 1.64↑ [GenBank:NM_001897]

Matrix protein receptors

HAS2 1.78↓ [GenBank:NM_005328]

CD44 2.34↓ [GenBank:NM_000610]

Integrins

Integrin-a5 1.77↓ [GenBank:NM_002205]

Integrin-b4 1.64↓ [GenBank:AF011375]

Integrin-a6 2.34↓ [GenBank:NM_000210]

Integrin-b-like 1 2.07↓ [GenBank:NM_004791]

Integrin-b3 1.72↓ [GenBank:NM_000212]

Integrin-aE 1.70↓ [GenBank:NM_002208]
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Due to high variability among human samples, only a
few studies have utilized microarray analysis to test the
entire human genome in primary adult articular chon-
drocytes [4,37-39], and only one of Saas et al. [4]
addressed in part the effect of BMP-7/OP-1. These ana-
lyses used the tissue from one or a maximum of two
donor cartilage samples. In the present study, normal
(grade 0) articular cartilage was collected from 12
donors within a similar age range. One of the limitations
of the study is that we examined gene expression pro-
files only at one time point, after 48-hours of culture.
Therefore, changes in early-response genes and late-
response genes might have been missed. This could
explain some results, as for example, the lack of changes
in the expression of major cartilage matrix proteins.
However, such an approach gave us a breath of the
overall effects of OP-1 on cartilage homeostasis.
Due to the abundance of the results, we will discuss

only the most relevant and those that could be
explained by the current knowledge of the field. Perhaps
most important was the finding that OP-1 is a unique
growth factor in its capacity to display simultaneously
pro-anabolic and anti-catabolic activities. It was pre-
viously shown that OP-1 stimulated expression and
synthesis of collagen type II, aggrecan, hyaluronan, and
CD44 [1,2,20,40] as well as IGF-1, IGF-1 receptor, and
responses to IGF-1 [17]. In the current studies, we used
high-density monolayers while in previous work explants
or alginate beads were used with different media condi-
tions (no serum vs serum or ITS-media). The finding
that the microarray results shown here were comparable
to the previous results suggest that the pro-anabolic
effects of OP-1 in human articular chondrocytes are
persistent. With regard to the anti-catabolic activity, the
ability of OP-1 to counteract various pro-inflammatory/
catabolic responses or directly inhibit expression of cata-
bolic mediators was previously shown in primary chon-
drocyte cultures or in animal models of post-traumatic
osteoarthritis or disc degeneration [17-19,24,31]. In this
study, we found that OP-1 inhibits expression of IL-6
and members of the IL-6 family of chemokines as well
as their receptors and signaling mediators. Further-
more, the tight association between these two classes
of mediators (OP-1 and IL-6) was documented under
both experimental conditions (plus or minus OP-1).
Based on our new data on the role of IL-6 in acute
post-traumatic responses [41], it is possible that OP-1
was able to protect cartilage from degenerative
changes caused by acute trauma [31] not only due to
its direct effect on matrix synthesis, but also because
of its ability to inhibit IL-6, TNF-a, and the catabolic
pathways induced by the fragments of the extracellular
matrix: fibronectin [19], hyaluronan [20], and collagen
telopeptides [42].

Another important effect of OP-1 may be an ability to
inhibit expression of neuromediators and their receptors.
Previously, an anti-pain effect of OP-1 was documented
in the rat models of herniated disc or disc degeneration
induced by injurious compression. In these studies, OP-1
injections reduced hyperalgesia and inhibited elevation of
IL-1, TNF-a, substance P, bradykinin and their receptors
in various disc tissues including spinal cord and dorsal
ganglion [21,24,26]. In chondrocytes, it is the first report
that indicates a connection between OP-1 and various
neuromediators, though substance P and its NK-1 recep-
tor were already identified in cartilage in the model of
mechanical stress [43]. Very recently, our findings
received another proof in phase I placebo-controlled clin-
ical studies on OP-1 treatment for osteoarthritis patients
[44], in which a single injection of OP-1 reduced pain
even after six months of treatment.
Interesting results were found with regard to the abil-

ity of OP-1 to regulate the TGF-b/BMP signaling path-
way. The levels of OP-1 expression positively correlated
with the expression of activin-like kinase (ALK)-3 or
BMP-RIA, transcription factors Id proteins 2 to 4, and a
binding protein Gremlin, indicating that this could be a
primary route for OP-1 signaling. We also found that
another binding protein, Follistatin, exhibited a negative
correlation with the levels of OP-1. Thus, our results
suggest a differential regulation of these two binding
proteins by OP-1, which could mean that Gremlin and
Follistatin perform distinct functions in the mediating
BMP responses or they are involved in different stages
of signaling. This point of view is supported by studies
of Tardif et al. [45] who reported their differential
expression and spatial distribution in the dog OA
model. One of the most surprising results was the find-
ing that OP-1 inhibits expression of another member of
the BMP family, BMP-2, which shares the same signal-
ing machinery and in many cases exhibits similar ana-
bolic activities [23,46]. This result was confirmed by
real-time PCR and definitely warrants further studies in
understanding the responses induced by homologous,
yet very different members of the same family [16].
Finally, another unexpected result was the inhibition of

TIMP-3 expression by rhOP-1; while previously, TGF-b
has been shown to induce this inhibitor [47]. The differ-
ences in the results could be attributed to distinct culture
conditions (primary chondrocytes in our case and pas-
saged chondrocytes as in Qureshi et al. [47], assessment
at various time points, or distinct signaling mechanisms
between TGF-b and OP-1 that are responsible for induc-
tion of TIMP-3 expression. However, on the protein level
it has already been reported that OP-1 inhibits TIMP-3
protein [48]. Furthermore, changes in TIMP-3 were par-
allel to changes in certain genes responsible for apoptosis,
which supports the notion that in cancer cells TIMP-3
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may promote cell death by apoptosis [28]. On the other
hand, TIMP-3 has been shown to inhibit aggrecanase-
mediated release of glycosaminoglycans in bovine nasal
cartilage [49]. At this point, the role of TIMP-3 in
human chondrocytes and its regulation by various media-
tors remains to be investigated.

Conclusions
This analysis of gene array data strongly suggests a criti-
cal role of OP-1 in human cartilage homeostasis. OP-1
regulates numerous metabolic pathways that are not
only limited to its anabolic function, but also to its anti-
catabolic activity. Understanding of OP-1 function in
cartilage will provide strong justification for the applica-
tion of OP-1 protein as therapeutic treatment for carti-
lage regeneration and repair.
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