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Abstract

Several key transcription factors have unusually short half-lives compared to other cellular

proteins. Here, we explore the utility of active degradation in shaping how the multiple antibi-

otic resistance activator MarA coordinates its downstream targets. MarA controls a variety

of stress response genes in Escherichia coli. We modify its half-life either by knocking down

the protease that targets it via CRISPRi or by engineering MarA to protect it from degrada-

tion. Our experimental and analytical results indicate that active degradation can impact

both the rate of coordination and the maximum coordination that downstream genes can

achieve. In the context of multi-gene regulation, trade-offs between these properties show

that perfect information fidelity and instantaneous coordination cannot coexist.

Author summary

Very few proteins are actively degraded in bacteria, and those that are tend to be regula-

tory molecules. One example is MarA, which is a master regulator of stress response in E.

coli. To study the role of active degradation, we decreased the degradation of MarA two

ways: either by knocking down the protease that degrades it, or by modifying MarA to

make it resistant to degradation. We measured how changes to the half-life of MarA

change the way MarA’s downstream genes are coordinated over time. Combining these

results with a theoretical model shows that active degradation in MarA represents a trade-

off favoring an increased rate of coordination over high maximum coordination. By com-

bining experimental results with a theoretical framework, this research provides new

insights into the advantages and disadvantage of actively degrading MarA.

Introduction

Active degradation is a rare feature in bacteria, affecting only 2–7% of total cellular proteins in

Escherichia coli [1,2]. Active degradation is accomplished by ATP-dependent proteases such as

ClpXP, HflB, and Lon [3]. These proteases play a role in protein quality control by degrading
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misfolded proteins [4–6], but they can also degrade functional proteins. Active degradation of

functional proteins can serve as a type of post-translational regulation to modify protein con-

centration [7]. This can be important in time-sensitive processes when removal through dilu-

tion is insufficient. Metabolic processes that incorporate active degradation include DNA

damage repair, gene expression during stationary-phase, cell division, filamentation, and

accelerated removal of certain regulatory proteins [8,9]. Although active degradation can play

a regulatory role, this comes with an energy cost due to the ATP necessary to activate the pro-

teases, and a metabolic investment required to replace degraded proteins [10]. Active degrada-

tion occurs in many other microorganisms as well, such as with the ComK regulator of

sporulation in Bacillus subtilis [11] and in many regulatory proteins in humans including the

p53 tumor suppressor [12,13] and IκBα, which dictates NF-κB activity and cellular stress

response [14,15]. The refractory period of NF-κB pulses is determined by this degradation

rate, which dictates the limit of information transmission in the system [16]. In eukaryotes, the

percentage of proteins that are primarily removed through active degradation ranges from

~15% in yeast [17] to ~50% in humans [18]. Therefore, despite active degradation’s role in reg-

ulation across domains of life, it is still comparatively rare in bacteria due to their rapid growth

rate, which produces stronger dilution effects. The relative rarity coupled with the cost implicit

to active degradation makes the presence of any short half-life protein in bacteria conspicuous.

What potential utility could necessitate the use of this rare design feature?

To answer this, we focused on the multi-antibiotic resistance activator (MarA) in E. coli as a

case study. MarA has a short half-life even by the standards of an actively degraded protein,

with an estimated half-life of 1–3 minutes due to Lon protease activity [19,20]. Moreover,

MarA regulates over 60 downstream targets involved in a variety of antibiotic resistance roles,

from genes encoding efflux pump components like acrAB and tolC to stress response proteins

like inaA [21,22]. The majority of the downstream genes encode for stable proteins, therefore

MarA has a much shorter half-life than most of its downstream targets [21]. MarA is part of a

greater regulon, where three homologous proteins—MarA, Rob, and SoxS—regulate an over-

lapping suite of downstream genes [23]. However, MarA’s clear correlation with phenotypic

outcomes make it an ideal target for studying why evolution would select for actively degraded

regulatory molecules [24].

Recent studies have revealed that marA is expressed stochastically, creating phenotypic

diversity within isogenic populations. This noisy expression is linked to transient antibiotic

resistance [24]. Thus, stochastic expression of marA can impact whether a cell lives or dies

under antibiotic exposure. At the population level, there is a distribution of MarA levels where

some cells are antibiotic resistant and others are susceptible. This may serve as a bet hedging

strategy, where cells with high marA expression act as insurance policy to protect against the

sudden appearance of antibiotics or other stressors.

In conditions with small numbers of cells, the rate at which diversity in MarA levels is gen-

erated is important. Starting with a single cell at a single time point, there is no diversity. As

the cell grows and divides, diversity develops within the population. The rate at which this

diversity develops depends on the time scale of the stochastic dynamics of the genes being

expressed, including their rate of degradation [11,25]. We measure diversity as the distribution

of distinct protein concentrations present in a population. The half-life of the protein impacts

the rate of diversity generation and the maximum diversity achieved (Fig 1A). For a regulatory

protein such as MarA (X), phenotypic diversity can propagate to its downstream targets such

as AcrAB and InaA (Y and Z) (Fig 1B). The rate at which diversity appears in downstream

genes is impacted by how the upstream regulator changes with time. Active degradation affects

the variability in the activator concentration—how quickly the concentration changes in one

cell over time, as well as the diversity in concentrations between cells. This produces a
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spectrum of phenotypes where individual cells exhibit a range from low to high expression for

all downstream targets (Fig 1C). This coordinated diversity in expression of genes that share a

master regulator is different from the uncoordinated diversity in two uncoupled genes (Fig

1D). We used mutual information to quantify increasing coordination of downstream genes.

Mutual information describes how well knowing the concentration of one of these proteins

allows us to predict the concentration of the other [26]. It measures their co-expression prop-

erties even if the correlation between them is nonlinear, an important feature because tran-

scriptional dose response curves typically saturate, following the shape of a Hill function [27].

S1 Movie shows an animation of how stochastic expression of an activator produces coordi-

nated diversity within downstream targets.

Coordination as a function of a shared master regulator is important for establishing syner-

gistic effects between downstream targets. For instance, MarA activates expression of genes in

the AcrAB-TolC efflux pump, the small RNA micF which decreases porin expression, and

other stress response genes such as inaA. Conceptually, expressing multiple genes is like lock-

ing both the front door and the back door to a home in order to protect it; locking just one

door makes the home only marginally safer and expends energy. Thus, coordinating expres-

sion of stress response genes is essential.

Fig 1. Statistics of stochastic protein expression in individual cells determine coordinated diversity in populations. (A) Variability in the master regulator (X)

expands over time. Teal trace corresponds to a simulation of a single stochastic protein trajectory in one cell for a protein half-life of 30 minutes; shaded cells illustrate

how we expect this to appear in vivo. τ governs how quickly the trace changes in time and scales with the protein half-life. Shaded gray region (σ) shows analytical

solutions of how the projected diversity evolves over time (one standard deviation around the mean). Below, experimental data from growing microcolony shows

how individual heterogeneity in MarA becomes population-level diversity. (B) Activator diversity propagates to downstream genes. This mirrors the architecture of

MarA and two of its many downstream targets. Colored traces and gray shaded regions are the same as (A), but for Y and Z instead of X. (C) X produces growing

coordinated diversity in Y and Z. Pink trace shows how coordinated diversity increases over time. Gray point clouds show how increasing information between two

downstream targets appears visually. Experimental data from growing microcolony shows how heterogeneity between individual cells produces population-level

variability in InaA and AcrAB. (D) Comparison between uncoordinated and coordinated downstream genes. Left scatter plot indicates two genes not governed by a

master regulator. They have high variability, but low coordination. Right plot shows equally high variability, but increased coordination due to a common regulator.

https://doi.org/10.1371/journal.pcbi.1006634.g001
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Here, we investigate the role of activator half-life in controlling how a stochastic regulator

generates coordinated diversity in multiple downstream genes. We do this by controlling the

half-life of MarA, either by modulating the concentration of Lon protease or by protecting

MarA itself from proteolytic degradation. We then evaluate the impact of MarA’s half-life by

computing both the maximum amount of coordinated diversity that MarA can achieve as well

as the rate at which it achieves it.

Results

We first developed an analytic model of how noise in MarA propagates to downstream genes

as a function of its half-life to generate predictions that we could test experimentally. In the

model, an upstream regulator (X) activates two downstream proteins (Y and Z). We modeled

noise in X using an Ornstein-Uhlenbeck process [27–29]. The simulation and analytical results

from this model produce results in terms of units of concentration of X. The model has two

free parameters: τ, which is a scaled version of the half-life of the molecule (τ = λ/ln(2), where

λ is the half-life) and σ, which specifies the noise in protein expression (Methods). Using this

model, τ changes the dynamics of the process as well as the population distribution that such a

process can produce (Fig 2A). The stochastic simulations demonstrate that having a longer

half-life causes the protein concentration to change more slowly–negative values indicate a

lower concentration than the mean, positive values indicate a higher concentration. Addition-

ally, the longer half-life allows the trajectory of protein concentration to wander farther away

from the mean, increasing the standard deviation (Fig 2A). In this case, σ = 1 and the standard

deviation scales as
ffiffiffiffiffiffiffi
t=2

p
[28]. Analytical solutions to these functions show that as the half-life

of a molecule increases, it takes longer to reach the maximum variability (Fig 2B). Here, vari-

ability is measured as variance because it is a zero mean process (S1 File).

Variability in a regulatory molecule propagates to the downstream genes it controls. To

quantify the correlation between the concentrations of two downstream proteins (Y and Z)

regulated by X, we measured the mutual information between their concentrations as a func-

tion of time. First, we observed an apparent advantage to longer half-life activators, as increas-

ing half-life increases the mutual information between two downstream targets (Fig 2C). Large

variability in the activator concentration allows for coordinated diversity in the downstream

genes, and a longer half-life molecule produces greater information between the two down-

stream genes. The decreased mutual information of short half-life activators is due to filtering

of high-frequency changes. Downstream genes function as low-pass filters in which signals

that change quickly are averaged out [30]. Moreover, because increasing the half-life increases

the standard deviation of protein levels, the variability in downstream genes increases as well,

allowing for a greater range of coordinated activation. These results show that longer half-life

proteins may be better at generating coordinated diversity in downstream targets. However,

this conclusion is dependent on allowing the standard deviation to scale freely with the half-

life of the regulatory molecule.

To validate these analytic predictions, we designed a genetic system to modify the concen-

tration of Lon protease. Changing the concentration of Lon should change the statistics of

MarA and the downstream genes it regulates. We used CRISPRi to knock down Lon expres-

sion, allowing us to control the level of MarA. We first transformed E. coli with dCas9 and a

sgRNA targeting lon [31]. Lon protease knockouts have been shown to increase the half-life of

MarA to ~30 minutes, therefore increasing the mean concentration MarA in E. coli, but this

change affects other genes in addition to marA [19,32]. In order to avoid off-target pleiotropic

effects from eliminating Lon protease such as cell filamentation [33], we designed the sgRNA

to increase MarA levels, but to produce no qualitative morphological changes to the cell (S1

Active degradation of MarA controls downstream coordination
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Fig). The half-life of MarA under these conditions should be increased above the wild type rate

of 1–3 minutes but below the lon knockout rate of ~30 minutes. As in other studies, we were

unable to quantify the exact half-life because the unusually fast degradation rate of MarA pre-

vents observation via Western blot in the absence of overexpression (S2 Fig). We note that the

lon knockdown may introduce more subtle changes, therefore we use this approach in tandem

with computational modeling and an alternative experimental method protecting MarA from

proteolytic degradation. Decreasing Lon protease is expected to affect the correlation time τ of

MarA, as well as the standard deviation of its time trace (Fig 2D). The analytical modeling

requires that all chemical species are abundant enough such that the propensity functions do

Fig 2. CRISPRi knockdown of Lon protease to increase half-life. (A) Simulation of how the half-life of regulator X affects correlation time and variability. Sample

trajectories with varying degradation rates produce different probability distributions (right). Negative and positive values indicate relative changes in concentration

compared to the mean. (B) Analytical solutions for the variability of a protein as a function of differing half-lives. Individual traces demonstrate increasing variance as a

function of time and the half-life. (C) Analytical solutions for the coordination of two downstream genes as a function of differing activator half-lifes. Individual traces

demonstrate increasing coordination in two downstream genes as a function of time and the half-life of the activator. (D) Experimental schematic for CRISPRi

knockdown of Lon protease. Upper row shows how time-constant τ and the noise scaling term σ are modified via decreased concentration of Lon protease due to

CRISPRi knockdown. Bottom row indicates wild type system where Lon actively degrades MarA, producing time-series changes in protein concentration. (E)

Experimental results showing differences in activator variability between wild type and CRISPRi systems. Dots show mean coefficient of variation over n = 5 growing

microcolonies. Shaded regions show standard error (S3 Fig). (F) Histograms showing distributions of PmarA at final time point of (E). The two distributions are

statistically different by the Kolmogorov-Smirnov test, p<0.001. (G) Downstream coordination expands differently in wild type and CRISPRi strains. Mutual

information between YFP and RFP (PinaA and PacrAB) is calculated across replicates in n = 5 growing microcolonies. Mean and standard error are represented as in (E).

(H) Maximum coordinated diversity is increased in CRISPRi system over wild type. Bivariate scatter plots show PinaA and PacrAB expression levels at the final time point

across n = 5 microcolonies. The two distributions are statistically different by the 2D Kolmogorov-Smirnov test, p<0.001. Snapshots give examples of coordination in a

single microcolony. Blue is PinaA, red is PacrAB, downstream coordination appears as magenta. Note that lack of coordination appears as red or blue cells.

https://doi.org/10.1371/journal.pcbi.1006634.g002
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not change at low copy numbers [34]. Here, we found that all fluorophores were well above

background levels, indicative of non-zero gene product concentrations.

We co-transformed cells with the CRISPRi construct with a plasmid containing transcrip-

tional reporters for MarA and its downstream genes. To report MarA levels, the plasmid con-

tains a modified marRAB promoter controlling cyan fluorescent protein (cfp). This cfp is

modified by the addition of an ssrA tag in order to decrease its half-life to align it with the

dynamics of the actively degraded MarA [35]. Our analytical results predict that extending the

half-life of an activator should produce increased variability in growing microcolonies. By

measuring the CFP levels of individual cells in the CRISPRi knockdown system and a wild

type strain we found that the half-life of MarA determines how noise expands in growing

microcolonies (Fig 2E). The analytical results predict that the rate of diversity generation

should not be altered in growing microcolonies, but that the maximum diversity will be (as

quantified by coefficient of variation). The coefficient of variation is used to measure variabil-

ity in expression as the cellular fluorescence has a non-zero mean. Moreover, dividing by the

mean removes the possibility that arbitrary adjustments to the gain of the microscope would

impact the results. Consistent with our analytical predictions, we found that the slope of the

curves was similar, but the maximum value changes. The distribution of CFP within microco-

lonies at the final time step of the experiments highlights the differences in maximum diversity

(Fig 2F). As in the theoretical predictions, the mean and standard deviation of MarA in the

CRISPRi knockdown system, which has a longer half-life, increase compared to the wild type

system.

In addition to the marA reporter, we also measured expression of two downstream genes:

inaA, which is a pH-inducible gene involved in stress response [36] and acrAB, which is a

component of the acrAB-tolC antibiotic efflux pump [37,38]. We selected these two genes

because of their disparate functionality, yet similar dose response curves [27]. We used PinaA to

control expression of yellow fluorescent protein (yfp) and PacrAB to control red fluorescent pro-

tein (rfp). By simultaneously measuring the dynamics of all three fluorophores (PmarA-cfp,

PinaA-yfp, PacrAB-rfp) via time-lapse microscopy, we were able to quantify variability in the

marA input and two outputs in both the CRISPRi and wild type systems.

We used these fluorescence data to calculate the coordinated diversity in the microcolony

by measuring mutual information over time. This metric captures the value of a large spectrum

of correlations between two downstream genes without over-valuing high correlations

between a few cells, such as would occur during the beginning growth stages of a microcolony

[26]. Mirroring the analytical results, we see that there is an advantage to increasing the half-

life of MarA, where coordinated phenotypic diversity is higher between the two downstream

genes in the CRISPRi strain (Fig 2G).

To emphasize the differences, we compared single-cell data from the final time point of the

movies. As expected, the mean concentration of both YFP and RFP increases in the CRISPRi

system relative to wild type due to decreased MarA degradation (Fig 2H). Importantly, sample

snapshots of the two conditions show greater correlation between the fluorophores (higher

proportion of magenta cells) in the longer half-life CRISPRi system. This illustrates that in

addition to increasing mean expression of the downstream genes, the correlation between

downstream gene promoter activities increases with the half-life of the activator.

These results show clear advantages for longer half-life activators (equivalent to conditions

without active degradation), but they do so without constraints–the variance of the activator is

allowed to increase without a limit. This may not be the case in natural systems which have a

target concentration range for the activator molecule. In order to investigate this, we modified

our mathematical model to create a system where the standard deviation does not increase as a

function of the activator half-life. We did this by requiring the noise to be inversely related to

Active degradation of MarA controls downstream coordination
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the correlation time s ¼
ffiffiffiffiffiffiffi
2=t

p
. This represents a system where the total variability is con-

strained, but where the rate at which it grows is a free parameter. Three example trajectories

from stochastic simulations with varying degradation rates but normalized standard deviations

show different time series behaviors that produce identical steady state distributions (Fig 3A).

Under this constraint, we see that the rate at which the variance of a population develops is a

function of activator half-life (Fig 3B). Moreover, when the activator variance is constrained, a

short half-life activator increases mutual information faster, but plateaus sooner and at lower

values than a longer half-life activator (Fig 3C). Thus, faster-degrading activators are capable

of generating coordinated diversity faster, but the maximum correlation that they can produce

between two downstream genes is limited. Here is the first evidence of a potential trade-off as

we increase activator half-life by inhibiting active degradation: maximum coordination

between two downstream targets increases but the rate at which coordination is generated

decreases.

In order to verify these theoretical results experimentally, we developed a system in which

we could control the mean activator concentration independently of the half-life. To this end,

we employed a modified version of MarA that is resistant to degradation by Lon and placed it

under the control of an inducible promoter. In this design, marA is translationally fused to cfp
thereby protecting the C terminus from recognition and degradation by Lon protease [24,39].

This modified MarA has an estimated half-life of ~30 minutes compared to the wild type half-

life of 1–3 minutes [24] (S2 Fig). Expressing the MarA fusion from the PlacUV5 promoter

allowed us to tune its expression level using IPTG. Thus, we were able to tune the steady state

concentration of MarA and the noise that scales with it. We transformed the MarA fusion plas-

mid into E. coli ΔmarRAB along with a two-color version of the downstream gene reporter

plasmid (PlacUV5-marA-cfp with PinaA-yfp, PacrAB-rfp). By monitoring the real-time MarA level

Fig 3. MarA-CFP fusion shows different downstream statistics than wild type MarA, even at similar expression levels. (A) Simulation of how modulating the half-

life of regulator X affects correlation time. Sample trajectories with varying half-lives but constrained population variance produce the same distributions (right). (B)

Analytical solutions for the variability of a protein as a function of time and half-life. (C) Analytical solutions for the coordination of two downstream genes as a

function of differing activator half-lives. (D) Experimental schematic comparing wild type and MarA fusion systems. Top row indicates wild type system. Bottom row

indicates protection of MarA from active degradation by Lon via a translational fusion with CFP. This modification changes the correlation time τ compared to wild

type. IPTG induction of the LacUV5 promoter allows us to adjust σ independently of τ. (E) Experimental results showing growing variability of wild type and MarA

fusion strains. (F) Experimental results of growing coordinated diversity of wild type and MarA fusion. For (E) and (F) dots show mean coefficient of variation over

n = 5 growing microcolonies. Shaded regions show standard error. S4 Fig shows the scatter plots of the final time point for both of these strains.

https://doi.org/10.1371/journal.pcbi.1006634.g003
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directly using CFP, we were able to quantify how much MarA was present in each cell. We

compared this strain with altered MarA degradation to a system with wild type MarA under

the control of the PlacUV5 promoter as well as the three-color reporter described previously (Pla-

cUV5-marA with PmarA-cfp, PinaA-yfp, PacrAB-rfp).

The two systems produce protein concentrations with different statistics over time (Fig

3D). The MarA fusion has a longer correlation time due to protection from Lon protease, how-

ever unlike in the CRISPRi system, the expression level can be tuned via IPTG induction. In

experiments, we observed that wild type MarA achieved its maximum diversity faster than the

MarA fusion (Fig 3E). This is in contrast to the CRISPRi knockdown system in which the rates

did not change substantively as a function of half-life. This is an essential difference because

the rate of activator diversity generation determines the rate of coordination in downstream

targets. S2 and S3 Movies show how the growing microcolonies exhibit differences in how

diversity is generated. Wild type MarA produces diversity quickly while the microcolony

expressing the MarA fusion takes longer. Therefore, we see that both maximum diversity and

the rate of diversity generation can be altered by modulating the half-life of the molecule.

As with the CRISPRi system, the changes in activator dynamics go on to alter how down-

stream genes are regulated, where increasing MarA’s half-life increases the maximum coordi-

nated diversity between downstream genes (Fig 3F). However, unlike in Fig 2G, the rate at

which the wild type and MarA fusion generate coordination between downstream genes is dif-

ferent. We observed that the wild type strain approached its maximum degree of coordination

between the two genes faster than the MarA fusion. This is a reflection of activator diversity

accumulating faster when the system produces wild type MarA. Also, in contrast to the CRIS-

PRi knockdown example, here both strains express the same steady state levels for each of the

downstream genes. This shows that even if the mean expression is equivalent, the coordination

between genes can be different (S4 Fig).

So far, we have compared the maximum coordinated diversity that a system can produce

and the rate at which this diversity grows. The information rate is an important metric to con-

sider because it explicitly outlines the role that a stochastic activator plays in managing the pro-

gressive development of phenotypic diversity among multiple genes. In order to conceptualize

the difference between the information rate and total mutual information, consider Fig 4A

showing two increasingly resolved maple leaves. We see that in the two rows, we must consider

both the rate at which the image gains clarity as well as the maximum clarity of the image.

Genetic networks may optimize for increased rate at the expense of low mutual information in

time-sensitive conditions. Alternatively, a decreased information rate may be acceptable if

time constraints are not an issue and total information is more important. To quantify this

Fig 4. Trade-offs in mutual information versus information rate as a function of activator half-life. (A) Illustration

of the differences between information rate and maximum information. Growing resolution of maple leaf indicates

increased information. Top row has higher maximum information, but it is accrued at a lower rate as compared to the

bottom row. (B) Mutual information and information rate between two downstream genes as a function of activator

half-life.

https://doi.org/10.1371/journal.pcbi.1006634.g004
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trade-off, we used the methods described in [40] to calculate the information rate for our

model and compared that to the maximum information between two downstream genes. First,

at extremely short half-lives both the information rate and the maximum information are very

low. This is because near the uncorrelated white noise limit, the activator signal X is filtered by

the downstream genes Y and Z. However, as we increase the activator half-life we see a marked

increase in both information rate and mutual information. This is a function of a rapidly

changing activator passing information to downstream targets, which allows them to coordi-

nate. As the activator half-life increases further, the maximum information continues to

increase monotonically while the information rate decreases. A slowly changing signal in X is

passed faithfully to downstream targets but the rate of information is slow. Note however that

information transmission rate is not simply the derivative of mutual information over time, as

it is computed from the complete power spectra of the two signals and includes information

passed with time delays [40] (Methods).

We have demonstrated how active degradation of a master regulator can change the way a

growing microcolony generates coordinated phenotypic diversity. Importantly, we have

highlighted a role for active degradation in increasing the rate of information transmission.

However, this increased information rate comes at the cost of decreased maximum mutual

information between downstream targets. Together, these opposite design demands represent

a trade-off that genetic networks can optimize based on individualized requirements.

Discussion

In E. coli, several key regulators are subject to active degradation. We show that in the case of

MarA, the half-life of a regulatory molecule affects not only its time-series behavior and popu-

lation statistics, but also its ability to coordinate downstream genes. This downstream coordi-

nation develops over time, with both a rate and maximum value.

We focus on how individual founders of new bacterial populations can quickly establish a

spectrum of coordinated phenotypes. We show that generating variability in downstream tar-

gets is limited by variability in the activators that control them. Also, signals from activators

that change too quickly can be filtered, narrowing the spectrum of coordination in down-

stream targets. Our results indicate that there is a trade-off between information rate and max-

imum information in coordinating downstream targets. While this will depend on a number

of system specific parameters, this trade-off shows that perfect information fidelity and instan-

taneous coordination cannot coexist. This is analogous to instructing two people to do a task

in tandem–the faster you speak, the faster they can be instructed to coordinate and execute the

objective, but at some point information is lost and mistakes will be made.

Although we focused on how individual genes and proteins generate phenotypic diversity,

extrinsic factors like growth rate have the potential to affect this as well. For instance, varying the

cell division time can affect how variability in MarA forms (S5 Fig). In effect, the analytical solu-

tions to the variance functions represent the upper limit on how diversity develops, and decreasing

the growth rate scales this curve. Moreover, the greater complexity of the combined mar-rob-sox
regulon may affect the rate at which their shared downstream genes coordinate [23]. Expanding

this study to investigate the role of each component may reveal more complex emergent effects.

While our experiments and models focused on downstream genes where the typical con-

centrations of MarA fall within their linear regime of activation, it should be noted that this is

not true for all downstream targets of MarA. Previous research has highlighted that each

downstream target possesses a unique nonlinear dose response curve as a function of MarA

activation [27,32]. It may be possible for growing cells to exploit the inherent nonlinearity of

each downstream gene’s activation curve to better achieve the stoichiometric balance required
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by downstream targets with wide ranging functions. That is to say, while multiple downstream

targets may be necessary to mount an effective barrier to stressors such as antibiotic challenge,

the optimal activation curves of each may be unique. This flexibility of downstream activation

allows for this balance to occur despite signals coming from a single shared activator. Alterna-

tively, it may be possible that the promoters compete for a shared pool of regulatory molecules

[41]. This would produce an anti-correlation between downstream gene responses, unlike the

correlated responses we observed. Still in other systems or possibly in other regimes of MarA

expression, this phenomenon may be observable.

Moreover, we have focused on the role of MarA as a stochastic activator, however the con-

centration of MarA is also dependent on the environment [42]. Interestingly, the natural deg-

radation rate of MarA may be below our calculated optimum for balancing between rate and

information. In this case, the utility of active degradation may play a role in signal transmission

as well by decreasing the response time [43,44]. For instance, active degradation may allow for

a transcription factor to more accurately track a time-varying environmental signal. By erasing

the memory of a previous protein level, active degradation may allow for a more responsive

and agile signaling network. Alternatively, the capacity of a degraded activator to generate phe-

notypic diversity rapidly may be useful for a few remaining cells to regenerate diversity follow-

ing antibiotic challenge.

Using a combination of single-cell time-lapse movies with multiple fluorescent reporters

and analytical models we have demonstrated a role that protein half-life plays in generating

single-cell variability and the ability of an activator to produce coordinated diversity in down-

stream genes. Our results show that both maximum coordinated diversity as well as the rate of

coordination between multiple targets is dependent on activator half-life. This suggests a possi-

ble design advantage for active degradation and sheds light on how cells grow from individuals

to diverse populations, while coordinating expression of related processes.

Materials and methods

Strains and plasmids

We used two strains for the experiments: wild type E. coli MG1655 and E. coli MG1655 Δmar-
RAB from [24].

In order to construct the three color reporter plasmid, we modified pNS2-σVL from [29] by

placing PmarA, PinaA, and PacrAB upstream of cyan fluorescent protein (CFP), venus yellow fluo-

rescent protein (YFP), and mCherry red fluorescent protein (RFP), respectively. All other plas-

mids were derived from the BioBrick library described in [45].

For the CRISPRi knockdown of Lon protease, we transformed the plasmid system from

[31], using one plasmid containing the constitutively expressed lon targeting sgRNA and

another plasmid containing dCas9 under the control of a tetracycline inducible promoter.

For the MarA fusion experiments, we cotransformed the IPTG inducible MarA-CFP trans-

lational fusion plasmid from [24] with a two-color reporter plasmid bearing PinaA and PacrAB

controlling YFP and RFP into E. coli ΔmarRAB.

Additional details on plasmid construction are available in S1 File.

Time-lapse fluorescence microscopy

Cultures were inoculated from single colonies and grown overnight at 37˚C with 200 rpm shaking

in Luria-Broth (LB) medium. All strains were grown in 30 μg/ml kanamycin. In addition, strains

containing the CRISPRi knockdown system were grown in the presence of 100 μg/ml carbenicil-

lin and 30 μg/ml chloramphenicol. Strains containing the wild type or MarA fusion inducible

plasmids were grown with 100 μg/ml carbenicillin in addition to 30 μg/ml kanamycin.
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Overnight cultures were diluted 1:100 in selective LB medium. For the wild type or induc-

ible MarA experiments, we added 0 μM IPTG for the MarA-CFP fusion and 10 μM IPTG for

wild type MarA and grew cultures for four hours. The differences in IPTG induction allowed

for similar mean concentrations with different degradation kinetics (S4 Fig). For the other

experiments containing CRISPRi knockdown plasmids, cultures were refreshed for 4 hours

without addition of inducer. For microscopy movies, we placed cells on 1.5% MGC low melt-

ing point agarose pads [29]. We used a Nikon Instruments Ti-E microscope to image cells at

100× magnification. Time-lapse movies were taken at a temporal resolution of every three

minutes for 10 hours. We used Super Segger cell tracking software to extract fluorescence data

from individual cells [46]. When computing the coefficient of variation and the mutual infor-

mation of growing microcolonies of a given size, data from five replicates were combined and

binned according to the number of cells in the microcolony (S3 Fig).

Stochastic simulations

We modeled the activator X and the downstream products Y and Z by:

_x ¼ �
x
tx
þ sZx ð1Þ

_y ¼
1

ty
gyx � y
� �

þ sZy ð2Þ

_z ¼
1

tz
ðgzx � zÞ þ sZz ð3Þ

where X represents the activator concentration and Y and Z are the concentrations of two

downstream proteins. The system is assumed to start at equilibrium and models the relative

changes in concentration away from that steady-state point. Moreover, the model uses contin-

uous units of concentration, allowing the functions to be resolvable at arbitrarily small time

steps [34]. X, Y, and Z mirror PmarRAB, PinaA, and PacrAB in our experimental system. τ is the

correlation time of each of the downstream proteins and is proportional to the half-life (λ) of

the molecule: τ = λ/ln(2). g is the gain of each downstream promoter. σ is the noise scaling

term, which is set equal to one in the case where the variance is not normalized by the correla-

tion time or is allowed to inversely scale with the correlation time: s ¼
ffiffi
2

t

p
. η is a zero mean

Gaussian distributed white noise random variable.

Variance

To compute the analytical solutions to the variance over time we applied the methods from

[28] to Eq 1:

Var XðtÞf g ¼
tx
2

1 � e
� 2t
tx

� �
ð4Þ

To compute the variance for systems that converge to the same final value, we modified Eq

1 to include a normalization term:

_x ¼ �
x
tx
þ

ffiffiffiffi
2

tx

s

Zx ð5Þ
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Computing the variance over time from this function yields:

Var XðtÞf g ¼ 1 � e
� 2t
tx ð6Þ

Derivations for variance calculations of downstream genes can be found in S1 File.

Mutual information

Mutual information is calculated from the analytical solution to the correlation function

between Y and Z:

Corr y; zð Þ ¼
Covðy; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðyÞ � VarðzÞ

p ð7Þ

I y; zð Þ ¼ �
1

2
ln 1 � Corrðy; zÞ2
� �

ð8Þ

The maximum mutual information between Y and Z is computed analytically by calculat-

ing the correlation using Eqs 2 and 3.

I y; zð Þ ¼ �
1

2
ln 1 �

gygz
2tzty

ðtyþtzÞðtytz � tx
2Þ
�

tx
ððty � txÞðtzþtxÞÞ

� �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tz

2txty
þ

gy2ðty � txÞ

2ðty
2 � tx

2ÞÞ

� �
tz

2txtz
þ

gz2ðtz � txÞ

2ðtz
2 � tx

2Þ

� �r

0

B
B
@

1

C
C
A

2
0

B
B
B
@

1

C
C
C
A

ð9Þ

The analytical calculations for mutual information over time in growing microcolonies can

be found in S1 File.

Mutual information was calculated from experimental fluorescence data using the YFP and

RFP fluorescence data and k-nearest neighbor distances (k = 3) [47].

Information rate

The information rate between downstream genes is computed using Eqs 2 and 3 and following

the methods outlined in [40]. Syz is the cross power spectral density between Eqs 2 and 3, Syy is

the power spectral density for Eq 2, and Szz is the power spectral density for Eq 3:

R y; zð Þ ¼
� 1

4p

R1
� 1

doln 1 �
jsyzðoÞj

2

syyðoÞszzðoÞ

" #

ð10Þ

Computing the above power spectra and performing the integration yields the equation

below, where R(y,z) is the information rate:

R y; zð Þ ¼
1

tx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
gy

2tx

ty

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
gz

2tx
tz

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
gy

2tx

ty
þ

gz
2tx
tz

s

� 1

 !

ð11Þ

Supporting information

S1 Fig. Morphology of wild type, Δlon, and CRISPRi knockdown strains. Phase contrast

images of microcolonies after 200 minutes of growth. Slower growth rate and increased fila-

mentation are evident in the Δlon strain.

(TIFF)

S2 Fig. Half-life quantification for MarA in CRISPRi knockdown system and MarA fusion

protein. Minute markers represent when sample was taken after spectinomycin exposure.
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Missing bands in the expected 32 KDa range demonstrate that MarA does not exist in suffi-

cient quantities even at t = 0 to be assayed via Western blot in the CRISPRi knockdown system

due to rapid degradation. The band at 42 KDa is associated with the MarA-CFP fusion, which

is stable and appears on the Western blot. For experimental details, see S1 File.

(TIFF)

S3 Fig. Generating coefficient of variation statistics from growing microcolonies. Microco-

lonies were allowed to grow for 300 minutes with data taken every 3 minutes. Variance was

computed for each microcolony at each time point and then plotted against the number of

cells in the microcolony (orange dots). These data were then binned (gray bars) and summary

statistics such as the mean coefficient of variation across microcolonies (green dots) were gen-

erated for each bin.

(TIFF)

S4 Fig. Downstream gene expression for wild type and MarA fusion strains. YFP (PinaA)

and RFP (PacrAB) fluorescence values from growing microcolony data plotted without the time

dimension. Error bars show means and standard deviations for the two bivariate distributions.

10 μM IPTG induced PlacUV5-MarA elicits a very similar downstream response to 0 μM IPTG

induced PlacUV5-MarA-CFP translational fusion (two distributions are statistically equivalent

by the 2D Kolmogorov-Smirnov test, p>0.1).

(TIFF)

S5 Fig. Impact of growth rate on generation of MarA variance. (A) Example simulation of a

growing bacterial microcolony with a cell division time of 15 minutes. Individual trajectories

show level of X. (B) Analytical solution to the variance functions including growth rate terms.

Plot also shows the average variance for 1000 stochastic simulations with cell division. The

shaded regions represent the standard error over all simulations centered around the mean for

each simulation set. The solid lines represent the analytical solutions, with the gray line repre-

senting the theoretical maximum. See S1 File for growth rate functions.

(TIF)

S1 Movie. Animation of activator noise propagating to downstream targets to produce

coordinated diversity. (A) Example of stochastic activator (X) expression over time. Teal line

shows example trajectory; shaded gray region outlines one standard deviation around the

mean. (B) Orange line shows example trajectory of downstream gene Y as it responds to signal

from X. Orange dots show location of other example trajectories over time. Shaded gray region

outlines analytical solution for standard deviation around the mean. (C) Purple line shows

example trajectory of downstream gene Z as it responds to signal from X. Purple dots show

location of other example trajectories over time. Shaded gray region outlines analytical solu-

tion for standard deviation around the mean. (D) Analytical solution to mutual information

over time. Red dot shows current mutual information at time point in simulation. (E) Visuali-

zation of mutual information between downstream genes. Each gray dot shows example trajec-

tory value between Y and Z for a given time point of the simulation. Orange and purple dots

from B and C are examples of the dots here.

(MP4)

S2 Movie. Diversity in wild type MarA in a growing microcolony. (A) Example of a growing

bacterial microcolony expressing CFP under control of the PmarA promoter. (B) Time traces of

fluorescence for each cell in the microcolony.

(MOV)
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S3 Movie. Diversity in MarA fusion in a growing microcolony. (A) Example of a growing

bacterial microcolony with the MarA-CFP fusion strain. (B) Time traces of fluorescence for

each cell in the microcolony.

(MOV)

S1 File. Supporting text, including details on plasmid design and analytical solution deri-

vations.

(PDF)
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6. Laskowska E, Kuczyńska Wiśnik D, Skórko Glonek J, Taylor A. Degradation by proteases Lon, Clp and

HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in

vitro. Mol Microbiol. Blackwell Science Ltd; 1996 Nov 1; 22(3):555–71. https://doi.org/10.1046/j.1365-

2958.1996.1231493.x PMID: 8939438

7. Wickner S, Maurizi MR, Gottesman S. Posttranslational Quality Control: Folding, Refolding, and

Degrading Proteins. Science. American Association for the Advancement of Science; 1999 Dec 3; 286

(5446):1888–93. PMID: 10583944

8. Fu GK, Smith MJ, Markovitz DM. Bacterial protease Lon is a site-specific DNA-binding protein. J Biol

Chem. American Society for Biochemistry and Molecular Biology; 1997 Jan 3; 272(1):534–8. PMID:

8995294

9. Flynn JM, Neher SB, Kim Y-I, Sauer RT, Baker TA. Proteomic Discovery of Cellular Substrates of the

ClpXP Protease Reveals Five Classes of ClpX-Recognition Signals. Molecular Cell. 2003 Mar; 11

(3):671–83. PMID: 12667450

10. Kafri M, Metzl-Raz E, Jona G, Barkai N. The Cost of Protein Production. Cell Reports. 2016 Jan; 14

(1):22–31. https://doi.org/10.1016/j.celrep.2015.12.015 PMID: 26725116

Active degradation of MarA controls downstream coordination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006634 December 27, 2018 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006634.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006634.s009
http://www.ncbi.nlm.nih.gov/pubmed/4912536
http://dxdoiorg/101146/annurevgenet301465
http://dxdoiorg/101146/annurevgenet301465
https://doi.org/10.1101/gad.1670908
http://www.ncbi.nlm.nih.gov/pubmed/18708584
https://doi.org/10.1046/j.1365-2958.1996.1231493.x
https://doi.org/10.1046/j.1365-2958.1996.1231493.x
http://www.ncbi.nlm.nih.gov/pubmed/8939438
http://www.ncbi.nlm.nih.gov/pubmed/10583944
http://www.ncbi.nlm.nih.gov/pubmed/8995294
http://www.ncbi.nlm.nih.gov/pubmed/12667450
https://doi.org/10.1016/j.celrep.2015.12.015
http://www.ncbi.nlm.nih.gov/pubmed/26725116
https://doi.org/10.1371/journal.pcbi.1006634


11. Mugler A, Kittisopikul M, Hayden L, Liu J, Wiggins CH, Süel GM, et al. Noise Expands the Response
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17. Christiano R, Nagaraj N, Fröhlich F, Walther TC. Global Proteome Turnover Analyses of the Yeasts S.

cerevisiae and S. pombe. Cell Reports. 2014 Dec; 9(5):1959–65. https://doi.org/10.1016/j.celrep.2014.

10.065 PMID: 25466257

18. Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, et al. Proteome Half-Life Dynamics in

Living Human Cells. Science. 2011 Feb 10; 331(6018):764–8. https://doi.org/10.1126/science.1199784

PMID: 21233346

19. Griffith KL, Shah IM, E Wolf R. Proteolytic degradation of Escherichia coli transcription activators SoxS

and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibi-

otic resistance (Mar) regulons. Mol Microbiol. Blackwell Science Ltd; 2004 Mar 1; 51(6):1801–16.

PMID: 15009903

20. Das M, Bhaskarla C, Verma T, Kumar A, Nandi D, Mahadevan S. Roles of Lon protease and its sub-

strate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia

coli. Microbiology. 2016 May 1; 162(5):764–76. https://doi.org/10.1099/mic.0.000271 PMID: 26944926

21. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by con-

stitutive expression of MarA. J Bacteriol. American Society for Microbiology; 2000 Jun; 182(12):3467–

74. PMID: 10852879

22. Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcrip-

tional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial

relationship to the core promoter. Mol Microbiol. 1999 Nov; 34(3):431–41. PMID: 10564485

23. Chubiz LM, Glekas GD, Rao CV. Transcriptional cross talk within the mar-sox-rob regulon in Escheri-

chia coli is limited to the rob and marRAB operons. J Bacteriol. American Society for Microbiology; 2012

Sep; 194(18):4867–75. https://doi.org/10.1128/JB.00680-12 PMID: 22753060

24. Meouche El I, Siu Y, Dunlop MJ. Stochastic expression of a multiple antibiotic resistance activator con-

fers transient resistance in single cells. Sci Rep. 2016; 6:19538. https://doi.org/10.1038/srep19538

PMID: 26758525

25. Garcia-Bernardo J, Dunlop MJ. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic

resistance network from interlinked positive and negative feedback loops. Miyano S, editor. PLoS Com-

put Biol. Public Library of Science; 2013; 9(9):e1003229–11. https://doi.org/10.1371/journal.pcbi.

1003229 PMID: 24086119

26. Tkacik G, Walczak AM. Information transmission in genetic regulatory networks: a review. J Phys: Con-

dens Matter. IOP Publishing; 2011 Apr 20; 23(15):153102–32.

27. Rossi NA, Dunlop MJ. Customized Regulation of Diverse Stress Response Genes by the Multiple Anti-

biotic Resistance Activator MarA. Ioshikhes I, editor. PLoS Comput Biol. Public Library of Science;

2017 Jan 6; 13(1):e1005310. https://doi.org/10.1371/journal.pcbi.1005310 PMID: 28060821

28. Gillespie DT. Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys Rev

E. American Physical Society; 1996 Aug 1; 54(2):2084–91.

29. Dunlop MJ, Cox RS, Levine JH, Murray RM, Elowitz MB. Regulatory activity revealed by dynamic corre-

lations in gene expression noise. Nat Genet. 2008 Nov 23; 40(12):1493–8. https://doi.org/10.1038/ng.

281 PMID: 19029898

30. Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional

cascade. Proceedings of the National Academy of Sciences. National Acad Sciences; 2005 Mar 8; 102

(10):3581–6.

31. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an

RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell. 2013 Feb; 152

(5):1173–83. https://doi.org/10.1016/j.cell.2013.02.022 PMID: 23452860

Active degradation of MarA controls downstream coordination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006634 December 27, 2018 15 / 16

https://doi.org/10.1371/journal.pcbi.1004793
http://www.ncbi.nlm.nih.gov/pubmed/27003682
https://doi.org/10.1038/nchembio.250
http://www.ncbi.nlm.nih.gov/pubmed/19841631
http://www.ncbi.nlm.nih.gov/pubmed/9765199
https://doi.org/10.1038/emboj.2008.73
http://www.ncbi.nlm.nih.gov/pubmed/18401342
https://doi.org/10.1038/sj.onc.1209954
http://www.ncbi.nlm.nih.gov/pubmed/17072321
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1016/j.celrep.2014.10.065
https://doi.org/10.1016/j.celrep.2014.10.065
http://www.ncbi.nlm.nih.gov/pubmed/25466257
https://doi.org/10.1126/science.1199784
http://www.ncbi.nlm.nih.gov/pubmed/21233346
http://www.ncbi.nlm.nih.gov/pubmed/15009903
https://doi.org/10.1099/mic.0.000271
http://www.ncbi.nlm.nih.gov/pubmed/26944926
http://www.ncbi.nlm.nih.gov/pubmed/10852879
http://www.ncbi.nlm.nih.gov/pubmed/10564485
https://doi.org/10.1128/JB.00680-12
http://www.ncbi.nlm.nih.gov/pubmed/22753060
https://doi.org/10.1038/srep19538
http://www.ncbi.nlm.nih.gov/pubmed/26758525
https://doi.org/10.1371/journal.pcbi.1003229
https://doi.org/10.1371/journal.pcbi.1003229
http://www.ncbi.nlm.nih.gov/pubmed/24086119
https://doi.org/10.1371/journal.pcbi.1005310
http://www.ncbi.nlm.nih.gov/pubmed/28060821
https://doi.org/10.1038/ng.281
https://doi.org/10.1038/ng.281
http://www.ncbi.nlm.nih.gov/pubmed/19029898
https://doi.org/10.1016/j.cell.2013.02.022
http://www.ncbi.nlm.nih.gov/pubmed/23452860
https://doi.org/10.1371/journal.pcbi.1006634


32. Martin RG, Bartlett ES, Rosner JL, Wall ME. Activation of the Escherichia coli marA/soxS/rob Regulon

in Response to Transcriptional Activator Concentration. Journal of Molecular Biology. 2008 Jul; 380

(2):278–84. https://doi.org/10.1016/j.jmb.2008.05.015 PMID: 18514222

33. Schoemaker JM, Gayda RC, Markovitz A. Regulation of cell division in Escherichia coli: SOS induction

and cellular location of the sulA protein, a key to lon-associated filamentation and death. J Bacteriol.

American Society for Microbiology; 1984 May; 158(2):551–61. PMID: 6327610

34. Gillespie DT. The chemical Langevin equation. The Journal of Chemical Physics. American Institute of

Physics; 2000 Jun 21; 113(1):297–306.

35. Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. New unstable variants of green

fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol. 1998

Jun; 64(6):2240–6. PMID: 9603842

36. Rosner JL, Slonczewski JL. Dual regulation of inaA by the multiple antibiotic resistance (mar) and

superoxide (soxRS) stress response systems of Escherichia coli. J Bacteriol. American Society for

Microbiology (ASM); 1994 Oct; 176(20):6262–9. PMID: 7928997

37. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the AcrAB-TolC multi-

drug efflux pump. Nature. Europe PMC Funders; 2014 May 22; 509(7501):512–5. https://doi.org/10.

1038/nature13205 PMID: 24747401

38. Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype

of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol. American Society for Micro-

biology; 1996 Jan 1; 178(1):306–8. PMID: 8550435

39. Smith CK, Baker TA, Sauer RT. Lon and Clp family proteases and chaperones share homologous sub-

strate-recognition domains. Proceedings of the National Academy of Sciences. National Acad Sci-

ences; 1999 Jun 8; 96(12):6678–82.

40. Tostevin F, Wolde ten PR. Mutual Information between Input and Output Trajectories of Biochemical

Networks. Phys Rev Lett. American Physical Society; 2009 May 27; 102(21):218101. https://doi.org/10.

1103/PhysRevLett.102.218101 PMID: 19519137

41. Stamatakis M, Adams RM, Balázsi G. A common repressor pool results in indeterminacy of extrinsic

noise. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2nd ed. American Institute of Physics;

2011 Dec 29; 21(4):047523.

42. Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, et al. The multiple antibiotic resistance regulator MarR

is a copper sensor in Escherichia coli. Nat Chem Biol. 2014 Jan; 10(1):21–8. https://doi.org/10.1038/

nchembio.1380 PMID: 24185215

43. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007 Jun; 8(6):450–61.

https://doi.org/10.1038/nrg2102 PMID: 17510665

44. Griffith KL, Shah IM, E Wolf R Jr. Proteolytic degradation of Escherichia coli transcription activators

SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple

antibiotic resistance (Mar) regulons. Mol Microbiol. 2004 Feb 4; 51(6):1801–16. PMID: 15009903

45. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, et al. BglBrick vectors and datasheets:

A synthetic biology platform for gene expression. Journal of Biological Engineering 2011 5:1. BioMed

Central; 2011 Sep 20; 5(1):1. https://doi.org/10.1186/1754-1611-5-1

46. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. SuperSegger: robust image segmenta-

tion, analysis and lineage tracking of bacterial cells. Mol Microbiol. 2016 Nov; 102(4):690–700. https://

doi.org/10.1111/mmi.13486 PMID: 27569113
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