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SUMMARY
Coronary artery disease (CAD) is a leading cause of death in patients with systemic lupus erythematosus
(SLE). Despite clinical evidence supporting an association between SLE and CAD, pleiotropy-adjusted ge-
netic association studies are limited and focus on only a few common risk loci. Here, we identify a net positive
causal estimate of SLE-associated non-HLA SNPs on CAD by traditional Mendelian randomization (MR) ap-
proaches. Pathway analysis using SNP-to-genemapping followed by unsupervised clustering based on pro-
tein-protein interactions (PPIs) identifies biological networks composed of positive and negative causal sets
of genes. In addition, we confirm the casual effects of specific SNP-to-gene modules on CAD using only SNP
mapping to each PPI-defined functional gene set as instrumental variables. This PPI-based MR approach
elucidates various molecular pathways with causal implications between SLE and CAD and identifies biolog-
ical pathways likely causative of both pathologies, revealing known and novel therapeutic interventions for
managing CAD in SLE.
INTRODUCTION

Systemic lupus erythematosus (SLE) is a female-predominant

autoimmune disease characterized by immune dysregulation

and multi-organ inflammation that is frequently associated with

the development of cardiovascular disease (CVD).1,2 SLE ex-

hibits hyperactivity of the innate and adaptive immune sys-

tems, increased production of numerous autoantibodies, and

disturbed cytokine balance.3 Although CVD is not a diagnostic

criterion of SLE and was not included in the original descriptions

of the disease, it is currently the main cause of death in SLE,4–6

with coronary artery disease (CAD) directly responsible for

one-third to one-half of all CVD cases and 30% of deaths.7–9

Notably, whereas mortality from infections and active disease

has decreased in SLE patients, CVD-related death rates have

not improved,10 and the standardized mortality ratio related to

CVD has actually increased.11 Women with SLE have a signifi-

cantly increased risk of stroke and myocardial infarction along

with elevated incidence of asymptomatic atherosclerosis

compared with the general population.12,13 Furthermore, tradi-

tional CVD risk factors, such as cholesterol, blood pressure,

and smoking status, fail to fully account for the overall higher

risk of acute CVD events in SLE, although the underlying mech-

anisms remain unknown.14–17 This lack of an understanding for
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the increased risk of CVD in SLE has resulted in limited treatment

options and the puzzling juxtaposition that despite the efficacy of

statins and angiotensin-converting enzyme inhibitors/angio-

tensin receptor blockers in treating the general population,

they appear to have little effect on CVD outcomes in SLE pa-

tients.5,18 As a result, even though SLE has a prevalence of

only about 70 per 100,000, it ranks among the leading causes

of death in youngwomen,1 despite the omission of lupus diagno-

ses in almost half of SLE patients’ death certificates.19,20

Genetic predisposition imposes important risk factors for both

SLE and CVD.21–23 To date, genetic association studies of SLE

patients with and without CVD have been limited in size and

have detected only a few common genetic risk loci, including

IRF8, STAT4, IL19, and SRP54-AS1.22,24,25 Mendelian randomi-

zation (MR) is a causal inference method using genotypes as

‘‘treatments’’ when randomized controlled trials are not feasible.

Bymeasuring andcorrelating the effect sizes of exposure-associ-

atedgenetic variants in large-scale genetic association studieson

traits of interest, a causal effect of the exposure on the outcome

can be estimated. Here, we report the application of multiple,

complementary MR methods to identify causal paths from SLE-

associated variants toCADusing summary statistics fromgenetic

association studies. UsingmultipleMR algorithms, we have iden-

tified large sets of SLEcausal variants that also impart genetic risk
s Medicine 3, 100805, November 15, 2022 ª 2022 The Author(s). 1
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for CAD as well as those that appear to diminish the risk of CAD.

Using innovative approaches to build molecular pathways from

genetic risk factors,26 we have developed a map of SLE-derived

biological processes with causal implications for CAD that may

account for the genetic basis of the association between these

two apparently dissimilar clinical entities andmay also provide in-

sights into the sharedmechanisms underlying each. Understand-

ing the pathogenesis of genetic variants underlying the increased

CAD risk inSLEcanultimatelyprovide insight into the immuneand

inflammatory components of atherosclerosis, aswell as revealing

opportunities for targeted therapeutics.

RESULTS

Pathway analysis reveals gene networks implicated by
genetic variants associated with both SLE and CAD
To explore the shared genetic predispositions for SLE and CAD,

we first identified single nucleotide polymorphisms (SNPs) associ-

ated with each trait in five SLE and one CAD multi-ancestral ge-

netic association study.27–32 In total, 96 SNPs were associated

withbothconditions (FigureS1A).Notably, themajorityof theover-

lapping SNPs mapped to the human leukocyte antigen (HLA) re-

gion of chromosome 6. To identify putative gene(s) influenced by

each of the 96SNPs associatedwith both SLE andCAD,wemap-

ped causal SNPs to genes,26 identifying 189 unique genes encod-

ing 135 proteins in STRINGdb (Figure S1B). Stratified linkage

disequilibrium score regression (S-LDSC) was then used to vali-

date the biological relevance of SNP-predicted gene and protein

sets by assessingwhether they capturedmore disease heritability

than expected by chancewith respect to all genes and STRINGdb

proteins, respectively.33 Application of S-LDSC using genome-

wide association study (GWAS) summary statistics for SLE

(GCST00315527), CVD (GCST00428034), and two CAD datasets

(CAD-I, GCST00099835 and CAD-II, GCST00147936) determined

that the 189 genes predicted by the 96 overlapping SNPs were

significantly (p < 0.05) enriched for genomic regions capturing

the genetic heritability of CAD and CVD (Figure S1C). Nearly iden-

tical results were also obtained using the smaller subset of 135

protein-coding genes (Figure S1C). However, application of stan-

dard LDSC, which was restricted to the use of the relatively small,

European-only SLE GWAS,27 did not reveal a significant level of

genetic correlation between the diseases (Figure S1D).

To assess molecular networks encoded by the set of 135 pro-

tein-encoding genes predicted from the overlapping SLE/CAD

SNPs, a protein-protein interaction (PPI) networkwas generated,

and unsupervised clustering revealed 12 distinct gene clusters

that were functionally enriched in a diverse range of immunolog-

ical and cellular categories (Figure S1E), many with relevance to

SLE and CAD/CVD, including cluster 1 characterized by canon-

ical pathways for ‘‘Antigen presentation pathway’’ and ‘‘B cell

development,’’ along with ‘‘Sudden cardiac death,’’ and cluster

3 enriched in ‘‘Atherosclerosis signaling’’ and ‘‘Lupus erythema-

tosus, systemic,’’ among others (Table S1). Although the molec-

ular pathways associated with SNP-predicted genes suggested

a convergence of biological processes underlying SLE and CAD,

it remained uncertain whether the finding of overlapping SNPs

implied shared genetic causation. The subsequent studies pre-

sented here explore this in detail.
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MR estimates a positive correlation between effects of
SLE-associated non-HLA variants on SLE and CAD
MR methods were employed to estimate the association be-

tween effect sizes of relevant variants on SLE and CAD. We first

applied six MR methods using various sets of SLE-associated

instrumental variables (IVs) to determine whether they tend to

confer shared (positive) effects on SLE and CAD, noting that

this initial approach did not satisfy all assumptions for IV validity

or IV independence and therefore could only provide an esti-

mated association (Figure 1A). Initial exploratory analyses em-

ploying IVs derived from the Immunochip and GWASs sug-

gested a net positive association for non-HLA SLE-associated

SNPs on CAD (Figures 1B and 1C). Even when using SLE IVs

determined with the more stringent significance level and

removal of known pleiotropic associations to CVD or con-

founders such as cholesterol, obesity, blood pressure, insulin

resistance, and smoking, the indication of a positive causal rela-

tionship between SLE and CAD remained (Figure 1C, bottom

row).

To validate the robustness of our estimated associations by

satisfying stringent requirement for IV selection, we carried out

two-sample MR analyses using multi-ancestral, non-HLA SNPs

strongly associated (p < 5 3 10�8) with SLE, excluding SNPs

weakly associated (p < 10�5) with CVD or confounders

(Table S2), followed by stringent linkage disequilibrium (LD)

clumping to ensure IV independence37 (R2 = 0.001, 100 kb win-

dow, 1000 Genomes EA reference population) (Figure 2A). SLE

GWAS summary statistics were used for exposure,27 and multi-

ple CAD GWASs were used for outcome (GCST005194,32

CAD-a and GCST005195,32 CAD-b). Since CAD is causative of

myocardial infarction (MI) and atherosclerosis is common to

CAD and ischemic stroke (IS), MR was carried out using sum-

mary statistics for two additional MI GWASs (GCST003117,38

MI-a and GCST011365,39 MI-b) and IS (GCST00690640). Sum-

mary statistics for cardiomyopathy from the FinnGen biobank

analysis (finn-b-I9_CARDMYO, CM) and atrial fibrillation

(GCST006414,41 AFib), which are not associated with athero-

sclerosis or CAD, were also included for comparison. After LD

clumping, 60 independent SNPs were included in the SLE

GWAS and then harmonized with each outcome-GWAS pair

before use as IVs for SLE exposure (Table S9). Between 43

and 56 harmonized IVs for SLE exposure were then tested using

16MRmethods, some of which account for additional IV invalid-

ity, pleiotropy, or heterogeneity, to estimate causal relationships

with the various atherosclerotic and cardiac conditions. The ma-

jority of MR methods resulted in significant (p < 0.05) positive

causal estimates of SLE-associated variants on CAD-a and

both MI GWASs, but not for cardiomyopathy or AFib (Figures

2B and S2A; Table S3). Directional pleiotropy was only detected

between the SLE and CAD-b GWASs by the MR-Egger intercept

test (Figure S2A), indicating potential bias in the causal estimates

based on effect sizes using these summary statistics. Overall, in-

verse variance weighting (IVW), weighted median, penalized

weighted median, maximum likelihood, robust adjusted profile

score (RAPS), and pleiotropy residual sum and outlier

(PRESSO) were significant in four out of five outcome GWASs

(Figure 2B). These results establish a positive causal effect of

SLE on CAD and suggest that the increased CVD risk associated



Figure 1. MR demonstrates a positive association of effect sizes of SLE-associated non-HLA SNPs on SLE and CAD

(A) Graphical depiction of the two-stage approach for an initial exploratory analysis using expanded groups of SNPs as IVs followed by a confirmatory analysis

using highly curated IVs.

(B andC) Forest plots of sixMR causal estimates (b ± standard error). For results, gray indicates insignificant (p > 0.05) and red indicates positive causal estimates

determined by each MR method. (B) Immunochip-derived SLE-associated non-HLA SNPs were used as IVs for SLE; summary statistics from both the SLE

Immunochip study (left) and SLEGWAS (right) were used for the exposure; summary statistics from the CADGWASwere used for the outcome. (C) Additional MR

analyses using SNPs associated (p < 10�6) with SLE in the Immunochip and GWAS study (rows 1 and 2) or Phenoscanner reaching genome-wide significance

(p < 5 3 10�8, row 3) were used as IVs; summary statistics for the exposure and outcome are indicated. MR analyses excluding the entire short arm of chro-

mosome 6 and excluding only the extended HLA region (chr6: 27–34Mb, left columns). Right columns showMR analyses using the same sets of SNPs excluding

pleiotropic SNPs associated (p < 10�5) with either CAD directly or CVD-related confounders, included on the Phenoscanner platform.

Article
ll

OPEN ACCESS
with SLE is likely to involve atherosclerosis rather than other as-

pects of cardiac pathology.

To eliminate the possibility that the positive causal estimate of

SLE on CAD is bidirectional and therefore unlikely to represent a

true causal relationship, MR was also carried out in the reverse

direction, with CAD or MI as exposure and SLE as the outcome.

Importantly, none of the 14methods yielded a significant positive

causal estimate of CAD or MI on SLE. Of interest, however, sig-

nificant (p < 0.05) negative causal estimates of CAD and MI on

SLE were observed for approximately half of the 14MRmethods

tested (Figure S2B and Table S3).

To understand the pathways underlying the positive causal

estimates of SLE on CAD in greater detail, all SLE-associated
SNPs included as putative IVs before harmonization with each

GWAS were mapped to genes. Consistent with satisfying the

exclusion restriction criteria and independence assumption

with respect to traits imposing significant CVD risk, S-LDSC re-

sults demonstrated that the 284 genes and 160 predicted

proteins captured a significant portion of SLE heritability (p =

3.46 3 10�5 and 3 3 10�5, respectively), but not that of CVD

or CAD (Figure 2C).

Proteins predicted from the SLE IVs were then integrated into

connectivity networks in STRINGdb (Figure 2D). Cluster annota-

tions were dominated by processes commonly dysregulated in

SLE as expected, including canonical pathways for ‘‘Systemic

lupus erythematosus in B cell signaling,’’ ‘‘Th1 pathway,’’ and
Cell Reports Medicine 3, 100805, November 15, 2022 3



Figure 2. MR demonstrates a net positive

causal effect of SLE-associated non-HLA

SNPs on CAD

(A) MR diagram for testing the causal effects of SLE

on CAD with respect to instrument relevance to the

exposure, exclusion from the outcomes (i.e., CAD,

MI, IS), and independence from confounding fac-

tors. LD clumping (R2 < 0.001) was used to obtain

independent IVs.

(B) Forest plots of MR causal estimates (b ± standard

error) for SLE on CAD (CAD-a, CAD-b), MI (MI-a,

MI-b), IS, cardiomyopathy (CM), and atrial fibrillation

(AFib) GWAS using 16 MR methods. Missing

PRESSO-OC (outlier correction) estimates indicate

insignificant global tests for horizontal pleiotropy.

For results, gray indicates insignificant (p > 0.05), red

indicates positive (p < 0.05), and blue indicates

negative (p < 0.05) causal estimates determined by

each MR method. Numbers within forest plots indi-

cate the SNPs used as IVs after harmonization.

NOME, no measurement error.

(C) Application of S-LDSC using summary statistics

for SLE, CVD, and CAD GWAS to estimate the her-

itability (coefficient ± standard error) of the 284 SNP-

predicted genes (top) and 160 SNP-predicted pro-

teins from STRINGdb (bottom). Bar color indicates

coefficient significance.

(D) Cluster metastructures for the 160 putative pro-

tein-coding genes are based on PPI networks.

Functional and cell-type enrichments for each clus-

ter were determined using BIG-C (black labels) and

I-scope (red labels), respectively. Black labels over

colored shadings represent shared functional an-

notations for the clusters they surround.
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‘‘Th2 pathway,’’ as well as gene ontology (GO) terms for ‘‘Regu-

lation of immune response’’ (GO:0050776) and ‘‘Negative regu-

lation of B cell activation’’ (GO:0050869) (Table S4). Interestingly,

disease associations were enriched in various autoimmune

diseases (‘‘Lupus erythematosus, systemic,’’ ‘‘Aicardi-Goutières

syndrome,’’ and ‘‘Hashimoto’s disease’’), along with cardiovas-

cular dysfunction, such as ‘‘Arterial embolism and thrombosis,’’

‘‘Hypertension,’’ ‘‘Plaque, atherosclerotic,’’ and ‘‘Ischemic heart

disease’’ (Table S4).

Single-SNP MR identifies gene networks implicated by
SLE-associated variants with positive and negative
causal estimates on CAD
We next employed single-SNP MR (SSMR) to identify specific

SLE-associated variants with positive or negative estimates on

CAD. SSMR applied to SLE-associated SNPs, including those in
4 Cell Reports Medicine 3, 100805, November 15, 2022
the HLA region, reveal that the majority of

negative causal SNPs are located on the

short arm of chromosome 6; all but one

were tightly packed around the HLA region,

spanning chr6:28,014,374–33,683,352 (Fig-

ure S3). When excluding the short arm of

chromosome 6 and SNPs associated with

CVD or confounders, SSMR identified 80

and 96 SLE-associated variants with signifi-
cant (p < 0.05) positive (Figure 3A, top 25) and negative (Figure 3B,

top 25) causal estimates on CAD, respectively (Figure S4 and

Table S3). The majority of positive causal SNPs were distributed

onchromosomes1,2,and4,whereasover50%ofnegativecausal

SNPs were on chromosomes 7, 11, and 17 (Figures 3C and 3E).

Non-HLASLE variantswith either significant positive or negative

causal estimates on CAD were separately mapped to 236 (Fig-

ure 3D) and 244 (Figure 3F) predicted genes, respectively, for clus-

tering andpathwayanalysis. PositiveSNP-predictedgeneclusters

were enriched in the canonical pathway for ‘‘Antigenpresentation’’

and functional categories for major histocompatibility complex

(MHC) class I, as well as epigenetic processes, transcription, and

endocytosis (Figure 3E and Table S5), whereas negative SNP-pre-

dicted gene clusters were dominated by processes related to cell

death (‘‘Pyroptosis’’ [GO:0070269], cluster 2; ‘‘Regulation of

oxidative stress-induced cell death’’ [GO:1903201], cluster 6) and



Figure 3. Analysis of SLE-associated SNP-predicted genes with causal effects on CAD by single-SNP MR

(A and B) Forest plots (b ± standard error) of the top 25 (by absolute value of causal estimates) positive (A) and negative (B) causal non-HLA SNPs identified by

single-SNP MR (SSMR) using the Wald ratio method.

(C and E) Pie charts illustrating the chromosomal distribution of 80 positive (C) and 96 negative (E) causal SLE SNPs on CAD.

(D and F) Cluster metastructures for the 200 (D) and 184 (F) predicted genes from positive and negative causal SNPs identified by single-SNPMR. Functional and

cell-type enrichments for each cluster were determined using BIG-C (black labels) and I-scope (red labels), respectively. Bold black labels over colored shadings

represent shared functional annotations for the clusters they surround.

(G and H) S-LDSC using summary statistics for SLE, CVD, and CADGWAS to estimate the heritability (coefficient ± standard error) of genes (open bars) and SNP-

predicted proteins (hashed bars) predicted by positive (G) and negative (H) causal SNPs determined by SSMR. Bar color indicates coefficient significance.
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protein degradation (‘‘Proteasome,’’ cluster 6 and ‘‘Autophagy,’’

cluster 8; Figure 3F and Table S5). Finally, gene sets predicted by

both positive and negative causal SNPs captured a significant

portion of SLE heritability but not that of CAD or CVD, consistent

with their selection as IVs for SLE (Figures 3G and 3H).
Pathway analysis of HLA-region variants associated
with SLE risk and protective of CAD
Risk haplotypes in the HLA region heavily contribute to suscep-

tibility for SLE42 and CAD.43 However, accurate genotyping of

HLA alleles and corresponding GWAS effect size estimates
Cell Reports Medicine 3, 100805, November 15, 2022 5
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are notoriously unreliable.44 Additionally, the complex genetic

architecture of this region makes mapping HLA variants to

genes especially challenging given the extensive LD and high

density of genes in this region. Nonetheless, an examination

of the HLA area (chr6:28.5–33.5 Mb) revealed 30 SNPs signifi-

cantly (p < 10�6) associated with both SLE and CAD in their

respective GWAS. While these SNPs are not independently

associated variants, all 30 SNPs had positive effect sizes for

SLE but were negative for CAD (Figure S5A), possibly reflecting

the extensive LD in this region. Connectivity mapping and clus-

tering of the 69 protein-encoding genes predicted from these

30 SNPs revealed six distinct clusters dominated by processes

dysregulated in SLE, including the functional categories for

MHC class I and MHC class II in clusters 1 and 6, along with

canonical pathways for ‘‘Th1 and Th2 activation,’’ ‘‘B cell devel-

opment,’’ and ‘‘Notch signaling’’, as well as GO term for ‘‘Inter-

feron-gamma mediated signaling pathway’’ (GO:0060334)

(Figures S5B and S5C). Other pathways of interest involving

‘‘Complement system abnormalities,’’ ‘‘LXR/RXR activation,’’

and ‘‘21-hydroxylase deficiency’’ were predicted by cluster 3

(Figure S5C).

PPI-based MR predicts specific sets of SLE-associated
variants and gene pathways causal of CAD
To obtain a more comprehensive view of the possible impact of

SLE-derived molecular pathways on atherosclerosis, we map-

ped SLE-associated, non-HLA Immunochip SNPs with net pos-

itive causal estimates on CAD by MR to genes and pathways

regardless of their associations with CVD-related traits. In total,

838 SNPs predicted 2,336 putative genes and 1,501 proteins

that collectively captured a significant amount of SLE, but not

CAD or CVD, heritability (Figure 4A); these 1,501 proteins clus-

tered into 46 distinct clusters based on PPI connectivity (Fig-

ure 4B). We then grouped SLE-associated SNP mapping to

genes in each of the 46 PPI-based clusters for use as SLE IVs

to estimate cluster-specific associations with atherosclerotic

traits. Initial application of MR-IVW to these 46 subsets of SLE

SNP-derived IVs yielded 16 and 9 significant (p < 0.05) positive

and negative causal estimates, respectively (Figures 4B,

4C, and S6A) for CAD. Additional MR methods, including

mode- and median-based methods, MR-Egger, MR-RAPS,

MR-PRESSO, and maximum likelihood, were carried out for

further validation of the PPI-based MR-IVW causal estimates

(Table S3). Clusters were grouped into tiers with respect to con-

sistency across the various MR methods, with tier 1 clusters

yielding significant positive or negative causal estimates by

almost all (at least 14/16) MRmethods and tier 2 clusters yielding

significant positive or negative causal estimates byMR-IVW or at

least seven MR methods (Figures 4B and 4C). Finally, when

examined individually, 20 of the 46 clusters specifically captured

SLE heritability by PPI-based S-LDSC, many with significant

causal estimates on CAD by PPI-based MR (Figure 4D and

Table S6).

In an effort to support these results by expanding the size of

the network, we added 914 multi-ancestral, non-HLA SNPs

associated with SLE on the Phenoscanner database to the

analysis. Overall, 1,708 unique SNPs predicted 3,272 putative

genes and 1,972 proteins that collectively captured a signifi-
6 Cell Reports Medicine 3, 100805, November 15, 2022
cant amount of SLE heritability, but not that of CAD or CVD

(Figure 5A) and clustered into 67 distinct sets of protein-coding

genes (Figure 5B). PPI-based MR-IVW using these 67 clusters

of SLE SNPs as IVs yielded 24 and 11 significant (p < 0.05) pos-

itive and negative causal estimates on CAD, respectively

(Figures 5C, 5D, and S6B), many of which captured SLE herita-

bility, but not that of CAD or CVD, by PPI-based S-LDSC (Fig-

ure 5E and Table S6).

To ensure that the majority of predicted causal clusters are

not a result of random chance or multiple-hypothesis testing,

simulations were carried out to estimate the false discovery

rate. Results from these simulations, which account for both

LD and pleiotropy, indicate that SLE-derived and PPI-clustered

modules, as opposed to randomly generated SNP-to-gene

modules, demonstrate a higher rate of significant causal esti-

mates on CAD (Figure S7). Furthermore, to assess the repro-

ducibility of the cluster-specific causal estimates, PPI-based

MR was repeated using CVD-related GWAS datasets on the

MR-Base platform.45 The PPI-based MR-IVW causal estimates

were highly consistent using summary statistics from two CAD

and two MI GWAS on MR-Base, but not cardiomyopathy or

AFib (Table S7), suggesting that the stratified causal estimates

on CAD are associated with the atherosclerotic component of

CVD. Together, these results support the conclusion that the

PPI-based MR results are atherosclerosis specific and unlikely

to be trivial results of random chance or multiple-hypothesis

testing.

SLE-derived clusters in all positive and negative causal tiers

were annotated using multiple functional and cellular composi-

tion tools (Figure 5B and Table S8). These results show that a

wide range of SNP-predicted biological functions known to be

involved in SLE pathogenesis have causal implications for CAD

by MR, such as ‘‘Neutrophil degranulation’’ (clusters 2 and 43),

‘‘Th1 and Th2 activation’’ and/or ‘‘Th17 activation’’ (clusters 3,

5, 8, and 9), ‘‘Interferon signaling’’ (cluster 8), ‘‘Leukocyte extrav-

asation signaling’’ (cluster 12), ‘‘Leukocyte transendothelial

migration’’ (cluster 28), and ‘‘Leukocyte adhesion to endothelial

cells’’ (cluster 2). In addition to immune-related pathways,

many of these positive causal clusters were enriched in disease

phenotypes associated with CVD, including ‘‘Th1 cell activation

and proliferation in atherosclerosis’’ (cluster 9) and ‘‘Lipid and

atherosclerosis’’ (cluster 12). Interestingly, several clusters

were enriched in autonomic nervous system control related

to cardiac function (‘‘Cardiac muscle contraction,’’ clusters 13

and 33) or ‘‘Neuroinflammation’’ (cluster 60) (Figure 5B and

Table S8).

In contrast, SLE-derived clusters with negative causal esti-

mates on CAD were enriched for oxidative stress (cluster 10), ni-

tric oxide (clusters 24, 40, and 64), and high-density lipoprotein

cholesterol (clusters 24 and 50) (Figure 5B and Table S8).

Pathway enrichment was further reflected in assigned functional

categories, with reactive oxygen species protection (clusters

24 and 45), nuclear receptor transcription (cluster 40), and ubiq-

uitylation and SUMOylation (cluster 64) dominating clusters

with protective estimates on CAD (Figure 5B). These results

are highly consistent with the enrichments associated with nega-

tive causal variants in our single-SNP MR and HLA-specific

pathway analyses.



Figure 4. SLE-derived gene network with

causal implications for CAD and PPI-

based MR

(A) S-LDSC using summary statistics for SLE, CVD,

and CAD GWAS to estimate the heritability (coef-

ficient ± standard error) of the 2,336 genes (open

bars) and 1,501 proteins (hashed bars) predicted

by 838 Immunochip SNPs associated with SLE.

Bar color indicates coefficient significance.

(B) Functional and cell-type enrichments for cluster

metastructures were determined using BIG-C

(black labels) and I-scope (red labels), respec-

tively. Bold black labels over colored shadings

represent shared BIG-C functional annotations for

the clusters they surround. Node size is propor-

tional to the number of SNPs (height) mapping to

the genes in each cluster (width). For node color,

red and blue indicate significant positive or nega-

tive estimates, respectively for 14/16 MR methods

used (tier 1); light red and light blue indicate sig-

nificant positive or negative estimates by MR-IVW

or at least 7/16 MR methods (tier 2); gray indicates

insignificant. Thickness of the yellow border is

roughly proportional to the negative log of the

MR-IVW p value. Green border indicates clusters

with �log(MR-IVW p value) > 3.

(C) Forest plots from PPI-based MR showing es-

timates (b ± standard error) calculated by MR-IVW

for select positive and negative clusters.

(D) PPI-based S-LDSC (coefficient ± standard

error) using GWAS summary statistics for SLE,

CVD, and CAD. Bar color indicates coefficient

significance.
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PPI-based MR stratifies SNPs, genes, and networks
underlying the positive and negative causal effects of
SLE on CAD
To further validate the causal effects of the 67 SNP-to-gene

modules identified by PPI-based MR (Figure 6A), we carried

out additional MR analyses with respect to PPI-based MR clus-

ter groupings after accounting for pleiotropy and LD. Causal es-

timates of SLE onCADwith IVs derived from clustersmeeting the

tier 1 or the tier 1 and 2 criteria, as well as those that surpassed

the MR-IVW p value <0.00075 threshold, were universally more
Cell Reports
positive, significant, and consistent than

those based on all SNPs (Figures 6B and

6C; Table S3). Similarly, negative causal

estimates for SLE on CAD were obtained

using IVs meeting the negative tier 1 and

MR-IVW p value <0.00075 thresholds

from the 67-cluster network. In contrast,

IVs derived from clusters with insignificant

causal estimates generally failed to reach

significance in either direction. While

these trends were observed using sum-

mary statistics from both the SLE GWAS

and SLE Immunochip, causal estimates

were more significant using the SLE

Immunochip, consistent with its larger

sample size. Importantly, these results
demonstrate that PPI-based MR can be used to identify inde-

pendent IVs satisfying MR assumptions that underlie both posi-

tive and negative causal effects of SLE on CAD.

Pathway analysis facilitates drug prediction
Pathways associated with positive causal clusters were used

to facilitate identification of new therapeutic interventions for

managing the unique inflammatory environment contributing

to CAD in SLE (Figure 7A). Canonical pathways related

to immune function in clusters 2, 3, 5, and 8 predicted drugs
Medicine 3, 100805, November 15, 2022 7
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targeting T and B cells and inflammatory cytokines, including

daratumumab (CD38), belimumab (TNFSF13), elotuzumab

(SLAMF7), abatacept (CD80/86), iberdimide (IKZF1/IKZF3),

and sarliumab (IL6R). Broader analysis of pathway categories

also suggested the utility of targeting interferon signaling

with anifrolumab (cluster 8), as well as antiplatelet/coagulant

therapy to combat dyslipidemia (cluster 5).46 Additional note-

worthy targets include PCSK9 (cluster 5), a protease involved

in the degradation and recycling of the low-density lipoprotein

(LDL) receptor targeted by alirocumab and evolocumab, and

oxidated LDL molecules (cluster 5) targeted by orticumab

(Figure 7B).

DISCUSSION

Although genetic association studies have been successful in

mapping disease loci in both immune and cardiovascular dis-

eases, the genetic and molecular basis for the increased CAD

predisposition in SLE patients has remained largely unexplained.

Considering the limited data on CAD in SLE, we developed an

approach that utilized GWAS summary statistics for both dis-

eases to identify and interpret various sets of SLE-associated

variants with causal implications for CAD. New findings suggest

that the causal relationship with SLE appears to be focused on

the atherosclerotic process, evidenced by positive estimates

with CAD, MI, and IS, but not other cardiac conditions such as

cardiomyopathy or AFib. Furthermore, we developed and car-

ried out PPI-based MR approach to identify specific sets of

SLE variants mapping to biologically relevant gene sets with

causal implications for CAD. By coupling various MR methods

with network modeling and variant interpretation, we not only

provided substantial evidence of shared genetic risk but also

identified the putative molecular pathways involved in the devel-

opment of CAD in SLE. Moreover, a number of the immune and

inflammatory pathways identified in these analyses could well

contribute to the pathogenesis of CAD even in the absence of

SLE or other recognized autoimmune conditions. This points

to the larger implication that CAD itself is a heterogeneous

condition and subpopulations, such as those driven by SLE-

associated processes, might require potentially distinct treat-

ment strategies, at least partially motivated by unique genetic

predispositions.

Causal inference using traditional MR methods rely on strict

assumptions for independent IVs; however, given the extensive

pleiotropy underlying complex traits such as SLE and CVD, ef-
Figure 5. Comprehensive PPI-based MR predicts sets of SLE-associa
(A) S-LDSC using GWAS summary statistics for SLE, CVD, and CAD to estimate

1,972 protein-coding genes (hashed bars) predicted by 1,708 combined Immun

nificance.

(B) Functional and cell-type enrichments for cluster metastructures were determin

labels over colored shadings represent shared BIG-C functional annotations for

(height) mapping to the genes in each cluster (width). For node color, red and blu

methods used (tier 1); light red and light blue indicate significant positive or negat

mixed estimates; gray indicates insignificant. Thickness of the yellow border is r

indicates clusters with a negative log of the MR-IVW p value >3.

(C and D) Forest plots from PPI-based MR showing estimates (b ± standard error

The number of SNPs used as IVs for each cluster are indicated in the plots.

(E) PPI-based S-LDSC (coefficient ± standard error) using GWAS summary stati
forts to satisfy these assumptions can result in biasing the ana-

lyses by excluding previously established associations. Further-

more, the exclusion of SNPs associated with CVD-related traits

results in the loss of relevant molecular information. While the

use of SLE IVs that are also associated with CVD or confounders

in traditional MR disqualifies the causal estimates from repre-

senting an effect on CAD directly through SLE, these SNPs

can be just as important with respect to understanding the

relevant biological pathways underlying CAD in SLE. Similarly,

stringent LD clumping to obtain an independent set of IVs not

only reduces the statistical power of MR 47 but also can omit

additional SNPs, genes, and pathways underlying CAD in SLE.

Due to our rigorous efforts to satisfy the assumptions and ac-

count for LD in the traditional MR analyses while also employing

numerous MR methods that account for IV invalidity, pleiotropy,

or heterogeneity, these results may give overly conservative es-

timates of the causal effects and underlying mechanisms as a

result of overpruning.

To overcome these limitations of traditional MR, we developed

and employed a PPI-based MR approach using networks

comprehensively derived from large sets of SLE-associated

SNPs, regardless of their associations with CVD-related traits.

By generating cluster-specific associations between effect sizes

on SLE and CAD, biologically relevant SNP-to-gene modules

can be categorized as having shared (positive estimates) or

opposing (negative estimates) effects on SLE and CAD. Tradi-

tional MR using independent, SLE-specific IVs mapping to pos-

itive and negative clusters separately, confirmed that the groups

of causal clusters are representative of positive and negative

causal effects on CAD through SLE, respectively. We believe

that our PPI-based MR approach is particularly beneficial in

cases when the exposure is complex and heterogeneous, such

as SLE which embodies a diverse range of molecular and path-

ophysiological mechanisms that we expect to impose unique ca-

sual effects on CAD.

Genetic variants are typically mapped to genes with respect to

genomic location, identifying genes containing and/or nearby

the SNPs of interest. Additionally, more recent advances have

given rise to identification of trans-acting genomic regions that

can epigenetically and/or transcriptionally influence genes at

distant locations. This is especially important for complex, poly-

genic traits, such as SLE and CAD, of which most associated

variants are non-coding. Here, we link SNPs to genes via amino

acid changes in encoded proteins, proximity, expression quanti-

tative trait loci predictions, and regulatory elements in an effort to
ted variants and pathways causal of CAD
the heritability (coefficient ± standard error) of the 3,272 genes (open bars) and

ochip- and Phenoscanner-derived SNPs. Bar color indicates coefficient sig-

ed using BIG-C (black labels) and I-scope (red labels), respectively. Bold black

the clusters they surround. Node size is proportional to the number of SNPs

e indicate significant positive or negative estimates, respectively for 14/16 MR

ive estimates by MR-IVW or at least 7/16 MR methods (tier 2); purple indicates

oughly proportional to the negative log of the MR-IVW p value. Green border

) calculated by 16 MR methods for select positive (C) and negative (D) clusters.

stics for SLE, CVD, and CAD. Bar color indicates coefficient significance.
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Figure 6. PPI-based MR identifies SLE SNPs with positive and negative causal effects on CAD

(A) Workflow depicting PPI-based MR.

(B and C) PPI-based MR validation. Forest plots (b ± standard error) from 16 MR methods using summary statistics from the SLE GWAS (B) or SLE Immunochip

(C) as the exposure and CADGWAS as the outcome. SLE-associated non-HLA SNPs mapping to positive and negative clusters, separately (by tier) and together

(‘‘All SNPs’’) were used as IVs after excluding CVD and confounder-associated SNPs followed by stringent LD clumping (R2 = 0.001) and harmonization. The

number of SNPs used as IVs for each SNP set are indicated in the plots. For results, gray indicates insignificant (p > 0.05), dark red indicates positive (p < 0.00075),

red indicates positive (p < 0.05), dark blue indicates negative (p < 0.00075), and blue indicates negative (p < 0.05) by each MR method.
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be as comprehensive as possible. Our subsequent PPI-based

clustering elucidated a broad range of biologically relevant mo-

lecular networks within the diverse set of implicated genes and

importantly served to filter out noise. Furthermore, our PPI-

based MR approach served to highlight SNP-to-gene modules

contributing most to the causal effects of SLE on CAD. Together,

these results demonstrate how SLE genetics can be used to

identify both known and novel loci and pathways with causal im-

plications for CAD.

Numerous biologically relevant SNP-to-gene modules were

determined to have positive causal effects on CAD through

SLE by MR, spanning inflammatory factors, adaptive and innate
10 Cell Reports Medicine 3, 100805, November 15, 2022
immunity, intracellular signaling, cell differentiation, microRNA

and mRNA processing, mitochondrial function, and more. A

wide range of enrichments among positive causal clusters

have been hypothesized and/or demonstrated to contribute to

CVD in SLE patients, including glucocorticoids, neutrophil cell

death (NETosis) and degranulation, tumor necrosis factor-like

weak inducer of apoptosis (TWEAK) signaling, canonical and

alternative complement pathways, Th1 differentiation, and lipid

and lipoprotein metabolism, among others.

Considering the drastically increased prevalence andmortality

of CAD in SLE, the considerable portion of SLE-associated risk

variants with negative causal effects on CAD was unexpected



Figure 7. Genes and molecular pathways

associated with positive causal clusters

identify therapeutic interventions for man-

aging CAD in SLE

(A) All tier 1 and a selection of tier 2 clusters were

functionally annotated using BIG-C, IPA, and the

EnrichR database. Select drugs acting on direct

gene targets or on any of the associated pathways

(italics) are listed.

(B) Venn diagram summarizing therapies that

might uniquely impact SLE or CAD and those that

may target pathways common to both diseases.
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and suggested that numerous variants contributing to SLE have

atheroprotective effects. Further SNP-to-gene mapping and

detailed pathway analyses revealed that these variants are

involved in various processes, predominantly related to oxidative

stress and cholesterol homeostasis, whose atheroprotective ef-

fects have been found to be impaired in certain disease-related

contexts such as SLE. For example, the enzyme responsible for

maintaining cholesterol homeostasis though lipoprotein lipase

synthesis, cholesterol 27-hydroxylase, has been shown to be

decreased in human monocytes and aortic endothelial cells of

SLE patients and is thought to impair the protective mechanism

of efflux of cellular cholesterol.48 Cyp27a1 is the gene that en-

codes cholesterol 27-hydroxylase and is a liver X receptor

(LXR) target activated by oxysterols as well as a target of retinoid

X receptor (RXR) and peroxisome proliferator activated receptor

(PPAR) in human macrophages.49 LXR activation has additional

proatherogenic and atheroprotective effects, as LXR activation

in the liver promotes atherosclerosis via excess lipogenesis

whereas LXR activation in macrophages and dendritic cells

has anti-inflammatory effects, linking lipid metabolism, immune

cell function, and inflammation.50
Cell Reports M
Our approach also has the advantage

of identifying ‘‘actionable’’ points of thera-

peutic intervention with the potential to

impact the inflammatory environment

associated with CAD in SLE. This is

especially important given that CAD risk

in SLE cannot be fully accounted for by

the increased prevalence of traditional

atherosclerotic risk factors. SLE subjects

therefore may derive particular benefit

from treatments that mitigate inflam-

matory intermediates such as type I

interferons with anifrolumab. Our findings

also highlight additional putative targets,

including PCSK9 involved in LDL receptor

recycling. Inhibitors of PCSK9 activity,

such as alirocumab and evolocumab,

are approved by the Food and Drug

Administration to treat hyperlipidemia

and may prove to be effective in control-

ling atherosclerosis in chronic inflamma-

tory conditions.51 Finally, recent reports

also support targeting oxidized LDLmole-
cules (anti-oxLDL, orticumab) for the prevention of cardiovascu-

lar events in SLE.52

Limitations of the study
Limitations of this study include those related to the data inte-

grated in our pipeline. First, SLE genetic association studies

have been restricted in size and scope, yielding limited power

and genomic coverage, especially considering the extensive

heterogeneity and polygenicity of lupus. To maximize both po-

wer and scope, we used the largest genetic association study

for SLE, which is limited to Immunochip SNPs, the largest SLE

GWAS, as well as SLE-associated SNPs pooled from the Pheno-

scanner platform. However, most genetic association studies,

including the multi-ancestral data used in this study, are heavily

biased toward European ancestries53. This is especially prob-

lematic given the increased CVD morbidity and mortality in

SLE patients of African ancestry54 in addition to the ancestry-

dependent disparities observed in both SLE and CAD. It is also

of note that certain risk factors leading to distinct phenotypic

outcomes such as CAD are likely to be impacted by environ-

mental factors that cannot be accounted for by genetics alone.
edicine 3, 100805, November 15, 2022 11
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This is important with respect to the higher disease burden

observed in patients of African ancestry, where barriers to treat-

ment (such as delayed diagnosis and/or limited access to a

specialist) may contribute to elevated mortality in this population

and further underscores the importance of generating large da-

tasets with diverse patient populations. In addition, the ability

to map genetic variants to implicated genes is limited to known

SNP-to-gene relationships included in Ensembl’s variant effect

predictor (VEP), Geno-type-Tissue Expression (GTEx), and Hu-

man ACtive Enhancer to interpret Regulatory variants (HACER)

databases. Although putative causal pathways associated with

the HLA region are intriguing, mapping of the SNPs within the

HLA region to genes is challenging because of the extensive

LD across the region. Additionally, genes included in our PPI net-

works and clusters are limited to protein-coding genes and inter-

actions included in STRINGdb. This is a potential shortcoming of

our pipeline, especially considering the large number of non-

coding genes implicated in our SNP-to-gene predictions in addi-

tion to the growing evidence highlighting the contributions of

non-coding long RNAs and microRNAs in both SLE and

CAD.55,56 Similarly, the ability to annotate gene clusters function-

ally is limited and potentially biased by the data underlying the

numerous enrichment platforms used in our pathway analyses.

Ingenuity Pathway Analysis (IPA), EnrichR, which pools a myriad

of public databases, and cell and functional analytic tools were

all utilized to obtain orthogonal and reproducible annotations. Ul-

timately, however, our robust SNP-to-gene mapping approach,

which included multiple sources of information in combination

with biologically informed clustering employing numerous sour-

ces of annotation, enabled comprehensive analysis of both small

and large sets of genetic variants to specific pathways with

excellent reproducibility.

In summary, we have employed various approaches to clearly

identify shared genetic risk factors for SLE and CAD. These re-

sults have provided new information about common molecular

pathways in SLE and CAD, as well as the genetic and molecular

information needed to consider novel therapeutic interventions

in these conditions.
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Proprotein convertase subtilisin kexin 9 is associated with disease activity

and is implicated in immune activation in systemic lupus erythematosus.

Lupus 29, 825–835.

52. Yao Mattisson, I., Rattik, S., Björkbacka, H., Ljungcrantz, I., Terrinoni, M.,

Lebens, M., Holmgren, J., Fredrikson, G.N., Gullstrand, B., Bengtsson,

A.A., et al. (2021). Immune responses against oxidized LDL as possible tar-

gets for prevention of atherosclerosis in systemic lupus erythematosus.

Vascul. Pharmacol. 140. 106863.

53. Demirci, F.Y., Wang, X., Kelly, J.A., Morris, D.L., Barmada,M.M., Feingold,

E., Kao, A.H., Sivils, K.L., Bernatsky, S., Pineau, C., et al. (2016). Identifi-

cation of a new susceptibility locus for systemic lupus erythematosus on

chromosome 12 in individuals of European ancestry. Arthritis Rheumatol.

68, 174–183.
14 Cell Reports Medicine 3, 100805, November 15, 2022
54. Barnado, A., Carroll, R.J., Casey, C., Wheless, L., Denny, J.C., and Crof-

ford, L.J. (2018). Phenome-wide association study identifies marked

increased in burden of comorbidities in African Americans with systemic

lupus erythematosus. Arthritis Res. Ther. 20, 69.

55. Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet.

12, 861–874.

56. Hrdlickova, B., de Almeida, R.C., Borek, Z., andWithoff, S. (2014). Genetic

variation in the non-coding genome: involvement of micro-RNAs and long

non-coding RNAs in disease. Biochim. Biophys. Acta 1842, 1910–1922.

57. Staley, J.R., Blackshaw, J., Kamat, M.A., Ellis, S., Surendran, P., Sun,

B.B., Paul, D.S., Freitag, D., Burgess, S., Danesh, J., et al. (2016). Pheno-

Scanner: a database of human genotype-phenotype associations. Bioin-

formatics 32, 3207–3209.

58. Kamat, M.A., Blackshaw, J.A., Young, R., Surendran, P., Burgess, S., Da-

nesh, J., Butterworth, A.S., and Staley, J.R. (2019). PhenoScanner V2: an

expanded tool for searching human genotype-phenotype associations.

Bioinformatics 35, 4851–4853.

59. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.-

R., ReproGen Consortium; Psychiatric Genomics Consortium; Genetic

Consortium for Anorexia Nervosa of the Wellcome Trust Case Control

Consortium 3; Duncan, L., Perry, J.R.B., et al. (2015). An atlas of genetic

correlations across human diseases and traits. Nat. Genet. 47, 1236–

1241.

60. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D.,

Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software

Environment for integrated models of biomolecular interaction networks.

Genome Res. 13, 2498–2504.

61. Morris, J.H., Apeltsin, L., Newman, A.M., Baumbach, J., Wittkop, T., Su,

G., Bader, G.D., and Ferrin, T.E. (2011). clusterMaker: a multi-algorithm

clustering plugin for Cytoscape. BMC Bioinf. 12, 436.

62. Wang, J., Dai, X., Berry, L.D., Cogan, J.D., Liu, Q., and Shyr, Y. (2019).

HACER: an atlas of human active enhancers to interpret regulatory vari-

ants. Nucleic Acids Res. 47, D106–D112.

63. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A.,

Flicek, P., and Cunningham, F. (2016). The Ensembl variant effect predic-

tor. Genome Biol. 17, 122.

64. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S.,

Doncheva, N.T., Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING

database in 2021: customizable protein-protein networks, and functional

characterization of user-uploaded gene/measurement sets. Nucleic Acids

Res. 49, D605–D612.

65. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark,

N.R., andMa’ayan, A. (2013). Enrichr: interactive and collaborative HTML5

gene list enrichment analysis tool. BMC Bioinf. 14, 128.

66. Kuhn, M., Szklarczyk, D., Franceschini, A., Campillos, M., Von Mering, C.,

Jensen, L.J., Beyer, A., and Bork, P. (2010). Stitch 2: an interaction

network database for small molecules and proteins. Nucleic Acids Res.

38, D552–D556.

67. Keenan, A.B., Jenkins, S.L., Jagodnik, K.M., Koplev, S., He, E., Torre, D.,

Wang, Z., Dohlman, A.B., Silverstein, M.C., Lachmann, A., et al. (2018).

The library of integrated network-based cellular signatures NIH program:

system-level cataloging of human cells response to perturbations. Cell

Syst. 6, 13–24.

68. The GTEx Consortium (2013). The genotype-tissue expression (GTEx)

project. Nat. Gen. 45, 580–585.

69. Labonte, A.C., Kegerreis, B., Geraci, N.S., Bachali, P., Madamanchi, S.,

Robl, R., Catalina, M.D., Lipsky, P.E., and Grammer, A.C. (2018). Identifi-

cation of alterations in macrophage activation associated with disease ac-

tivity in systemic lupus erythematosus. PLoS One 13. e0208132.

70. Catalina, M.D., Bachali, P., Geraci, N.S., Grammer, A.C., and Lipsky, P.E.

(2019). Gene expression analysis delineates the potential roles of multiple

interferons in systemic lupus erythematosus. Commun. Biol. 2, 140.

http://refhub.elsevier.com/S2666-3791(22)00364-0/sref39
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref39
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref39
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref39
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref40
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref40
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref40
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref40
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref40
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref41
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref41
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref41
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref41
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref42
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref42
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref42
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref42
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref43
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref43
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref43
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref43
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref43
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref44
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref44
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref44
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref45
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref45
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref45
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref45
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref46
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref46
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref46
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref47
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref47
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref47
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref47
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref48
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref48
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref48
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref48
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref48
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref49
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref49
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref49
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref49
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref50
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref50
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref50
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref51
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref51
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref51
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref51
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref52
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref52
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref52
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref52
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref52
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref86
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref86
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref86
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref86
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref86
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref53
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref53
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref53
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref53
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref54
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref54
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref55
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref55
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref55
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref82
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref82
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref82
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref82
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref83
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref83
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref83
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref83
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref87
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref60
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref60
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref60
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref60
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref61
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref61
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref61
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref57
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref57
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref57
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref58
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref58
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref58
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref59
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref59
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref59
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref59
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref59
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref66
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref66
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref66
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref85
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref85
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref85
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref85
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref84
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref84
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref84
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref84
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref84
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref56
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref56
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref62
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref62
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref62
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref62
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref63
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref63
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref63


Article
ll

OPEN ACCESS
71. Catalina, M.D., Owen, K.A., Labonte, A.C., Grammer, A.C., and Lipsky,

P.E. (2020). The pathogenesis of systemic lupus erythematosus: harness-

ing big data to understand the molecular basis of lupus. J. Autoimmun.

110. 102359.

72. Ren, J., Catalina, M.D., Eden, K., Liao, X., Read, K.A., Luo, X., McMillan,

R.P., Hulver, M.W., Jarpe, M., Bachali, P., et al. (2019). Selective histone

deacetylase 6 inhibition normalizes b cell activation and germinal center

formation in a model of systemic lupus erythematosus. Front. Immunol.

10, 2512.

73. Yang, W., Shen, N., Ye, D.Q., Liu, Q., Zhang, Y., Qian, X.X., Hirankarn, N.,

Ying, D., Pan, H.-F., Mok, C.C., et al. (2010). Genome-wide association

study in Asian populations identifies variants in ETS1 and WDFY4 associ-

ated with systemic lupus erythematosus. PLoS Genet. 6. e1000841.

74. Chung, S.A., Taylor, K.E., Graham, R.R., Nititham, J., Lee, A.T., Ortmann,

W.A., Jacob, C.O., Alarcón-Riquelme, M.E., Tsao, B.P., Harley, J.B., et al.

(2011). Differential genetic associations for systemic lupus erythematosus

based on anti-dsDNA autoantibody production. PLoS Genet. 7.

e1001323.

75. Yang, J., Yang, W., Hirankarn, N., Ye, D.Q., Zhang, Y., Pan, H.F., Mok,

C.C., Chan, T.M., Wong, R.W.S., Mok, M.Y., et al. (2011). ELF1 is associ-

ated with systemic lupus erythematosus in Asian populations. Hum. Mol.

Genet. 20, 601–607.

76. Lee, Y.H., Bae, S.C., Choi, S.J., Ji, J.D., and Song, G.G. (2012). Genome-

wide pathway analysis of genome-wide association studies on systemic

lupus erythematosus and rheumatoid arthritis. Mol. Biol. Rep. 39,

10627–10635.

77. Okada, Y., Shimane, K., Kochi, Y., Tahira, T., Suzuki, A., Higasa, K., Taka-

hashi, A., Horita, T., Atsumi, T., Ishii, T., et al. (2012). A genome-wide as-

sociation study identified AFF1 as a susceptibility locus for systemic lupus

eyrthematosus in Japanese. PLoS Genet. 8. e1002455.

78. Yang, W., Tang, H., Zhang, Y., Tang, X., Zhang, J., Sun, L., Yang, J., Cui,

Y., Zhang, L., Hirankarn, N., et al. (2013). Meta-analysis followed by repli-

cation identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and

ARID5B as associated with systemic lupus erythematosus in Asians.

Am. J. Hum. Genet. 92, 41–51.

79. Armstrong, D.L., Zidovetzki, R., Alarcón-Riquelme, M.E., Tsao, B.P., Cris-

well, L.A., Kimberly, R.P., Harley, J.B., Sivils, K.L., Vyse, T.J., Gaffney,

P.M., et al. (2014). GWAS identifies novel SLE susceptibility genes and ex-

plains the association of the HLA region. Genes Immun. 15, 347–354.
80. Alarcón-Riquelme, M.E., Ziegler, J.T., Molineros, J., Howard, T.D., Mor-

eno-Estrada, A., Sánchez-Rodrı́guez, E., Ainsworth, H.C., Ortiz-Tello, P.,

Comeau, M.E., Rasmussen, A., et al. (2016). Genome-wide association

study in an amerindian ancestry population reveals novel systemic lupus

erythematosus risk loci and the role of European admixture. Arthritis Rheu-

matol. 68, 932–943.

81. Hom,G., Graham, R.R., Modrek, B., Taylor, K.E., Ortmann,W., Garnier, S.,

Lee, A.T., Chung, S.A., Ferreira, R.C., Pant, P.V.K., et al. (2008). Associa-

tion of systemic lupus erythematosus with C8orf13-BLK and ITGAM-

ITGAX. N. Engl. J. Med. 358, 900–909.

82. Graham, R.R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C.J., Leon,

J.M., Burtt, N.P., Guiducci, C., Parkin, M., Gates, C., et al. (2008). Genetic

variants near TNFAIP3 on 6q23 are associatedwith systemic lupus erythe-

matosus. Nat. Genet. 40, 1059–1061.

83. International Consortium for Systemic Lupus Erythematosus Genetics

SLEGEN; Harley, J.B., Alarcón-Riquelme, M.E., Criswell, L.A., Jacob,

C.O., Kimberly, R.P., Moser, K.L., Tsao, B.P., Vyse, T.J., Langefeld,

C.D., et al. (2008). Genome-wide association scan in womenwith systemic

lupus erythematosus identifies susceptibility variants in ITGAM, PXK,

KIAA1542 and other loci. Nat. Genet. 40, 204–210.

84. Kozyrev, S.V., Abelson, A.K., Wojcik, J., Zaghlool, A., Linga Reddy,

M.V.P., Sanchez, E., Gunnarsson, I., Svenungsson, E., Sturfelt, G., Jön-

sen, A., et al. (2008). Functional variants in the B-cell gene BANK1 are

associated with systemic lupus erythematosus. Nat. Genet. 40, 211–216.

85. Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida,

K., Tsuchiya, K., Saito, S., Ohnisi, Y., et al. (2008). A functional SNP in the

NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to

systemic lupus erythematosus in Japanese population. J. Hum. Genet. 53,

151–162.

86. Gateva, V., Sandling, J.K., Hom, G., Taylor, K.E., Chung, S.A., Sun, X., Ort-

mann, W., Kosoy, R., Ferreira, R.C., Nordmark, G., et al. (2009). A large-

scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1

and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41,

1228–1233.

87. Han, J.W., Zheng, H.F., Cui, Y., Sun, L.D., Ye, D.Q., Hu, Z., Xu, J.-H., Cai,

Z.-M., Huang, W., Zhao, G.-P., et al. (2009). Genome-wide association

study in a Chinese Han population identifies nine new susceptibility loci

for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237.
Cell Reports Medicine 3, 100805, November 15, 2022 15

http://refhub.elsevier.com/S2666-3791(22)00364-0/sref64
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref64
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref64
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref64
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref65
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref65
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref65
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref65
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref65
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref67
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref67
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref67
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref67
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref68
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref68
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref68
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref68
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref68
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref69
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref69
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref69
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref69
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref70
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref70
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref70
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref70
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref71
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref71
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref71
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref71
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref72
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref72
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref72
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref72
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref72
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref73
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref73
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref73
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref73
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref74
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref75
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref75
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref75
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref75
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref76
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref76
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref76
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref76
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref77
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref78
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref78
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref78
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref78
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref79
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref79
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref79
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref79
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref79
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref80
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref80
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref80
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref80
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref80
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref81
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref81
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref81
http://refhub.elsevier.com/S2666-3791(22)00364-0/sref81


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GTEX v.6.8 The Geno-type-Tissue

Expression (GTEx) Project

GTEXportal.org

Pre-processed summary statistics The Broad Institute https://alkesgroup.broadinstitute.org/

LDSCORE/all_sumstats/

UK Biobank Biobank UK https://www.ukbiobank.ac.uk/

Cardiomyopathy GWAS FinnGen Biobank Finn-a-I9_CARDMYO; https://www.finngen.fi/fi

MR-Base Hemani et al., 201845 https://www.mrbase.org

Phenoscanner Staley et al., 201657; Kamat

et al., 201958
www.phenoscanner.medschl.cam.ac.uk

Software and algorithms

Bioconductor (R) Open source https://www.bioconductor.org

Ingenuity pathway analysis (IPA) Qiagen https://www.qiagenbioinformatics.com

S-LDSC Finucane et al., 201533 https://github.com/bulik/ldsc

LDSC Bulik-Sullivan et al., 201559 https://github.com/bulik/ldsc

Cytoscape v.3.9.1 Shannon et al., 200360 https://cytoscape.org

Clustermaker2 v.1.2.1 Morris et al., 201161 https://apps.cytoscape.org

TwoSample MR Hemani et al., 201845 https://github.com/MRCIEU/TwoSampleMR

PPI-based MR This manuscript https://doi.org/10.6084/Lm9.figshare.21225251

Other

Human Active Enhancers to interpret

Regulatory variants (HACER)

Wang et al., 201962 http://bioinfo.vanderbilt.edu/AE/HACER

Variant Effect Predictor (VEP) McLaren et al., 201663 ensembl.org/info/docs/tools/vep

Search Tool for the Retrieval of Interacting

Genes/proteins (STRING) v. 11.0b

Szklarczyk et al., 202164 https://string-db.org

EnrichR Chen et al., 201365 https://maayanlab.cloud/Enrichr/

Search Tool for Interacting Chemicals (STITCH) Kuhn et al., 200966 http://stitch.embl.de

Library of Integrated Network-based Cellular

Signatures (LINCS)

Keenan et al., 201867 http://www.lincs.hms.harvard.edu/db/
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to the lead contact, Katherine A. Owen (kate.owen@ampelbiosolutions.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. All GWAS and Immunochip studies are referenced.

d Original software code and documentation to conduct PPI-based MR analyses have been deposited on figshare (www.

figshare.com; https://doi.org/10.6084/m9.figshare.21225251) and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this report is available from the lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

This study did not use any experimental models or enroll human subjects.
e1 Cell Reports Medicine 3, 100805, November 15, 2022

mailto:kate.owen@ampelbiosolutions.com
http://www.figshare.com/
http://www.figshare.com/
https://doi.org/10.6084/m9.figshare.21225251
http://GTEXportal.org
https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/
https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/
https://www.ukbiobank.ac.uk/
https://www.finngen.fi/fi
https://www.mrbase.org
http://www.phenoscanner.medschl.cam.ac.uk
https://www.bioconductor.org
https://www.qiagenbioinformatics.com
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://cytoscape.org
https://apps.cytoscape.org
https://github.com/MRCIEU/TwoSampleMR
https://doi.org/10.6084/Lm9.figshare.21225251
http://bioinfo.vanderbilt.edu/AE/HACER
http://ensembl.org/info/docs/tools/vep
https://string-db.org
https://maayanlab.cloud/Enrichr/
http://stitch.embl.de
http://www.lincs.hms.harvard.edu/db/


Article
ll

OPEN ACCESS
METHOD DETAILS

Identification of SLE- and CAD-associated SNPs and overlap
SNPs associated with each disease were obtained from previous GWAS and Immunochip studies. For CAD, we used a comprehen-

sive multi-ancestral meta-analysis of GWAS.32 For SLE, we included results of multiple GWAS and Immunochip studies to account

for as many ancestries as possible.27–31 In total, 7,222 and 16,163 unique SNPs were significantly (p < 10�6) associated with SLE and

CAD, respectively, and were employed in these studies. A full list of the SNPs, chromosome locations, positions and sources used

are detailed in Table S9.

Identification of SNP-predicted genes
Expression quantitative trait loci (eQTLs) were identified using GTEx68 version 6.8 (GTEXportal.org) and mapped to their associated

eQTL expression genes (E-Genes). To find SNPs in enhancers and promoters, and their associated transcription factors and down-

stream target genes (T- Genes), we queried the atlas of Human Active Enhancers to interpret Regulatory variants62 (HACER, http://

bioinfo.vanderbilt.edu/AE/HACER). To find SNPs in exons of protein-coding genes (C-Genes) and include proximal genes (P-Genes,

within 5kb), we queried the human Ensembl genome browser’s variant effect predictor63 (VEP, ensembl.org/info/docs/tools/vep,

GRCh38.p12).

Network analysis and visualization
Protein-protein interaction (PPI) networks of SNP-predicted protein-coding genes were generated by STRING64 (https://string-db.

org, version 11.0b), and resulting networks were imported into Cytoscape60 (version 3.6.1) for visualization and partitioned with

MCODE via the clusterMaker261 (version 1.2.1) plugin. Metastructures are based on PPI networks. For all metastructures, node

gradient shading is proportional to intra-cluster connectivity, cluster size indicates number of genes per cluster and edge weight in-

dicates inter-cluster connections.

Functional gene set analysis
Predicted genes were examined using Biologically InformedGeneClustering (BIG-C; version 4.4.). BIG-C is a custom functional clus-

tering tool developed to annotate the biological meaning of large lists of genes and has been previously described.69–71 I-Scope is a

custom clustering tool used to identify immune cell types in large gene datasets.72 The Ingenuity Pathway Analysis (IPA; https://www.

qiagenbioinformatics.com) platform and EnrichR65 (https://maayanlab.cloud/Enrichr/) web server provided additional molecular

pathway enrichment analysis.

Drug candidate identification
Drug candidates were identified using LINCS,67 STITCH66 (v5.0), IPA and literature mining. Each of the database tools includes either

a programmatic method of matching existing therapeutics to their targets or else is a list of drugs and targets for achieving the same

end.

QUANTIFICATION AND STATISTICAL ANAYSIS

Linkage disequilibrium score regression (LDSC) genetic correlations
LDSC59 was used to estimate genome-wide genetic correlations between traits using GWAS summary statistics. Pre-processed

summary statistics from SLE, CAD and CVD GWAS were obtained from the Broad webpage (https://alkesgroup.broadinstitute.

org/LDSCORE/all_sumstats/). Using the LDSC software provided on github (https://github.com/bulik/ldsc) and reference data

on the Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), including European LD scores ’eur_w_ld_chr’ or

’weights_hm3_no_hla’ as weights for analyses excluding the HLA region. Using standard parameters, the "ldsc.py" (with the "–rg"

flag) script was used to generate genome-wide genetic correlation estimates between SLE and CVD or CAD.

Stratified linkage disequilibrium score regression (S-LDSC)
S-LDSC33 was used to obtain gene-set specific disease-heritability estimates using GWAS summary statistics. Pre-processed sum-

mary statistics from SLE, CAD and CVD GWAS were obtained from Broad webpage (https://alkesgroup.broadinstitute.org/

LDSCORE/all_sumstats/). Using the S-LDSC software provided on github (https://github.com/bulik/ldsc) and reference data on

the Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), annotation and LD score files were generated for each

SNP-predicted gene- and protein-set, separately. Using standard parameters, the ‘‘make_annot.py’’ and ‘‘ldsc.py’’ (with the ‘‘–l2’’

flag) scripts were first used to generate the gene-set-specific annotation and LD files, then the ‘‘ldsc.py’’ (with the ‘‘--h2-cts’’ flag)

script was used to generate stratified heritability scores for each GWAS.

Selection of valid, independent instrumental variables for traditional MR analysis
Traditional MR methods, such as MR-IVW, operate under three strict assumptions for instrumental variable (IV) validity: 1) the rele-

vance assumption, 2) the exclusion restriction criteria assumption, and 3) the independence assumption. To satisfy the relevance
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assumption, SNPs significantly (genome-wide significance p value < 53 10�8) associated with SLE27–29,73–87 were obtained from the

Phenoscanner database (www.phenoscanner.medschl.cam.ac.uk)(82,83) (Table S9). To satisfy the exclusion restriction criteria and

independence assumptions, 89,336 SNPs weakly associated (p value < 13 10�5) with CVD and confounders including cholesterol,

obesity, blood pressure, insulin resistance, smoking, age-related diseases, and many more, were excluded from being IVs for SLE-

exposure (see Table S2 for the full list of excluded traits). HLA-region SNPs were conservatively removed from MR analyses by

excluding the short-arm of chromosome 6. Stringent LD clumping37 was employed using the clump data (R2 = 0.001, 100kb window,

1000G EA reference population) function to generate an independent set of 60 SLE-IVs harmonized for each GWAS.

Mendelian randomization (MR)
MR was used to test for causal relationships between SLE and CAD using the MR-Base45 (https://www.mrbase.org) Two

SampleMR45 package in R (https://github.com/MRCIEU/TwoSampleMR). Various sets of SLE-associated genetic variants used

as instrumental variables (IVs) and summary statistics for SLE-exposure were manually imported into R and summary statistics

were carried out for MR-base compatibility using the ‘format data’ command. All effect sizes and standard errors were obtained

from the exposure summary statistics used in each analysis, regardless of the study in which each IV was associated with the expo-

sure. Given the availability of well-powered CAD/MI GWAS on MR-Base, IVs for CAD andMI were directly obtained from each expo-

sure GWAS using the ‘extract instruments’ command for the bidirectional analyses. Data from the SLE and all CVD-related GWAS

studies used in our MR analyses are publicly available and also accessible through theMR-Base software, which was used to obtain

the outcome summary statistics via the ‘extract outcome data’ command. The ‘allele harmonization’ command was used to ensure

the effect estimates of the exposure and outcome are based on matching alleles, excluding SNPs with completely mismatching al-

leles from the MR analysis or reversing the effect and non-effect alleles along with the effect estimates when applicable. Because of

the allele harmonization step and because some SNPs are absent from the available summary statistics, a small proportion of SNPs

used as IVs are absent from the final MR calculations. Up to sixteen individual MR methods were carried out through the

TwoSampleMRpackage, including inverse varianceweighted (IVW), simplemode, weightedmode, simplemedian, weightedmedian

(WMedian), MR-Egger, MR-PRESSO (raw and outlier-corrected), MR-RAPS, and two sample maximum likelihood (ML). The ‘MR

report’ function was used to generate a summary containing heterogeneity and directional pleiotropy tests and scatterplots (Fig-

ure S2). MR-IVW and MR-Egger heterogeneity test results (Q-value) indicate whether significant heterogeneity was detected, which

does not necessarily indicate biased causal estimates. MR-Egger intercept indicate whether significant directional horizontal pleiot-

ropy was detected, which usually indicates biased causal estimates. For single-SNPMR, the ‘MR single-SNP’ function was also car-

ried out using theWald Ratio method. Full details of all MR results are included in Table S2 and a summary of all the main findings are

included in Table S10.

PPI-based MR
SLE-associated variants from the Immunochip31 and Phenoscanner database57,58 were linked to their most likely genes, and the

genes used to generate PPI-informed gene clusters. The SLE-associated SNPs mapping to genes in each of PPI-based clusters

were then extracted to ‘‘reverse engineer’’ subsets of SNPs that could be used separately as SLE-IVs for MR to independently es-

timate the causal effects of each PPI-informed SNP-to-Gene module on CAD. Up to sixteen MR methods were carried out for each

SNP-to-gene module through the TwoSampleMR package.

In additional analyses (related to Figure 6) using the combined Immunochip and Phenoscanner SNP dataset, filtering eliminated

SNPs weakly associated (p value < 13 10-5) with CVD and confounders including cholesterol, obesity, blood pressure, insulin resis-

tance, smoking, age-related diseases, andmanymore (Table S2). HLA-region SNPs were conservatively removed fromMR analyses

by excluding the short-arm of chromosome 6. Stringent LD clumping37 was employed using the clump_data (R2 = 0.001, 100kb win-

dow, 1000G EA reference population) function to generate an independent set of SLE-IVs. Various analyses were performed using

independent, valid IVs derived from ‘All SNPs’, SNPsmapping to ‘Insignificant’ clusters, ‘Positive Tier 1’ clusters, ‘Positive Tier 1 and

Tier 2’ clusters, ‘Positive MR-IVWp value<0.00075’ clusters, ‘NegativeMR-IVW p value<0.00075’ clusters, ‘Negative Tier 1’ clusters,

and ‘Negative Tier 1 and Tier 2’ clusters.

Monte Carlo simulations for expected MR results using random sets of Immunochip-derived SNP-to-gene modules
Monte Carlo simulations were implemented and performed to estimate the false discovery rate with respect to significant PPI-based

MR causal estimates. 120,026 Immunochip SNPs included in the SLE summary statistics were mapped to putative genes using the

VEP, including regulatory effects, to generate an Immunochip SNP-to-Gene library with 67,211 unique SNPs mapping to 7,602

STRINGdb proteins. In each simulation, a random set of 3–152 SNP-predicted proteins were selected from the 7,602 proteins

and used to extract up to 400 Immunochip SNPs. MR-IVW was then performed for SLE on CAD using harmonized, non-HLA

SNPs (via removal of the entire short-arm of chromosome 6) from the simulated set of Immunochip SNPs as IVs. By using our

Immunochip derived SNP-to-Gene dictionary for random selection of protein clusters and associated SNPs to generate random

sets of IVs, our simulations account for both a high degree of LD and pleiotropy, especially considering the major influence of loci

associated with diabetes in development of the Immunochip.
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