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Abstract

For patients surviving serious traumatic brain injury (TBI), families and other stakeholders often desire information on long-

term functional prognosis, but accurate and easy-to-use clinical tools are lacking. We aimed to build utilitarian decision trees

from commonly collected clinical variables to predict Glasgow Outcome Scale (GOS) functional levels at 1, 2, and 5 years after

moderate-to-severe closed TBI. Flexible classification tree statistical modeling was used on prospectively collected data from

the TBI-Model Systems (TBIMS) inception cohort study. Enrollments occurred at 17 designated, or previously designated,

TBIMS inpatient rehabilitation facilities. Analysis included all participants with nonpenetrating TBI injured between January

1997 and January 2017. Sample sizes were 10,125 (year-1), 8,821 (year-2), and 6,165 (year-5) after cross-sectional exclusions

(death, vegetative state, insufficient post-injury time, and unavailable outcome). In our final models, post-traumatic amnesia

(PTA) duration consistently dominated branching hierarchy and was the lone injury characteristic significantly contributing to

GOS predictability. Lower-order variables that added predictability were age, pre-morbid education, productivity, and occu-

pational category. Generally, patient outcomes improved with shorter PTA, younger age, greater pre-morbid productivity, and

higher pre-morbid vocational or educational achievement. Across all prognostic groups, the best and worst good recovery rates

were 65.7% and 10.9%, respectively, and the best and worst severe disability rates were 3.9% and 64.1%. Predictability in test

data sets ranged from C-statistic of 0.691 (year-1; confidence interval [CI], 0.675, 0.711) to 0.731 (year-2; CI, 0.724, 0.738). In

conclusion, we developed a clinically useful tool to provide prognostic information on long-term functional outcomes for adult

survivors of moderate and severe closed TBI. Predictive accuracy for GOS level was demonstrated in an independent test

sample. Length of PTA, a clinical marker of injury severity, was by far the most critical outcome determinant.
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Introduction

Traumatic brain injury (TBI) is a complex condition with

a broad spectrum of injury severity and locations, and highly

variable outcomes. For survivors of moderate-severe TBI, recovery

is often protracted, and functional outcomes over time can range

from total dependence to full recovery. This heterogeneity has un-

doubtedly contributed to disappointing results in intervention tri-

als.1,2 Whereas this prognostic uncertainty may offer hope for more

severely injured individuals, it also provokes anxiety about the future

and hampers setting realistic expectations and plans.3 Unfortunately,

TBI outcomes research has not well informed the accurate prediction

of long-term, meaningful, functional outcomes.4 For TBI severities

greater than mild, the standard clinical prognosis has remained ‘‘time

will tell’’ or ‘‘we honestly don’t know.’’

Limitations of existing prediction models for TBI are quite

profound, even for the most widely used global outcome measures,

Glasgow Outcome Scale (GOS)5 and extended GOS (GOSE).6
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Published models are plagued by deficiencies,7,8 including devel-

opment from small sample sizes and limited discriminative ability

and calibration when applied to independent data.8 Some models

are based on complex mathematical formulas that prohibit efficient

clinical use and/or make assumptions that prohibit flexible mod-

eling. Most are limited to short-term prognostication to 1 year post-

injury or far less, and fail to address long-term functional outcomes.

Classification tree methodology is especially suited for building a

utilitarian prediction model because it relies on simple branching

logic rather than complex mathematical formulas that impede clin-

ical translation. However, a literature review found that classification

trees are rarely used in TBI prognostic modeling.9,10 The single

publication arising from the TBI Model Systems (TBIMS), the epi-

center for studying moderate-to-severe TBI functional outcomes,

used recursive portioning for multiple outcomes and has several

important limitations: 1) Outcomes beyond 1 year were not studied;

2) sample sizes were limited (year-1 models ranged from 1361 to

1817); and 3) modeling was constrained to two-way splitting.11 In

fact, all published prognostic models for TBI outcomes using clas-

sification tree algorithms similarly assume binary splits by continu-

ous and categorical covariates, meaning each branching node (i.e., a

group of homogenous participants) delivers only two branches.7 This

exclusive binary split assumption does not maximize the data use and

may result in an important loss of predictability.8

Using the TBIMS National Database (NDB), this study sought

to address this research gap by developing a clinically useful

prognostic tool for meaningful long-term functional outcomes

through an innovative strategy that permits more than two-way

node splitting based on a data-driven decision rule rather than an

analyst-induced decision rule. Our specific aims were to: 1) build

decision tree models for functional GOS levels at post-injury year

1, 2, and 5 in persons with moderate-to-severe closed TBI and 2)

test their predictability within independent data sets.

Methods

Participants

Participants were all consented and enrolled in the National
Institute on Disability, Independent Living, and Rehabilitation
Research (NIDILRR) funded TBIMS NDB, a collaborative, multi-
center clinical research effort in the United States initiated in 1987.12

All 16 currently enrolling plus one formerly enrolling centers had
institutional review board approval. TBIMS eligibility criteria were:
1) sustained TBI with at least one of the following characteristics:
Glasgow Coma Scale (GCS) score <13 on emergency admission
(not attributed to intubation, sedation, or intoxication), loss of
consciousness >30 min (not attributed to sedation or intoxication),
post-traumatic amnesia (PTA) >24 h, or trauma-related intracranial
abnormality on neuroimaging; 2) 16 years or older; 3) presented to
a designated TBIMS acute care hospital within 72 h of injury; and
4) received acute rehabilitation care within the TBIMS.

Exclusion criteria for our analyses included injury dates before
January 1997 because outcome predictors differ in the earlier years
of the TBIMS,13 and penetrating TBI as previously operationally
defined,14 because of its rarity and unique outcome patterns.14 In-
dividuals were excluded from a given analysis year, and future
years, if they had not reached that time point post-injury or if they
had withdrawn. Those whose GOS score was otherwise unavailable
at an outcome time point were removed from that year’s analysis.
Given the rehabilitation setting for enrollment, focus on functional
outcomes, and rarity of these outcomes, individuals were also ex-
cluded from a given analysis year if they had died beforehand and
were removed from that year’s analysis if vegetative. To maximize
sample sizes and minimize sampling bias, individuals may have been

included in one cross-sectional analysis but not in other year(s).
Figure 1 displays the participant flow into the final analysis data sets.
Exclusions are labeled as ‘‘excluded’’ versus ‘‘removed’’ depending
on viability of collecting future GOS. The excluded categories were
death, withdrew consent, or insufficient time elapsed post-injury (i.e.,
premature). The removed categories were vegetative state, refused,
incarcerated, enrollment site lost funding, lost (unable to contact),
missing predictor (test data set only), or incomplete (assessment
conducted but missing GOS). Almost all incomplete classifications
were from the optional use of the mail-in version of the TBIMS
follow-up assessment, which lacks the GOS interview. The final data
sets for the 1-, 2-, and 5-year GOS had 10,125, 8821, and 6165
participants, respectively.

Outcomes

The GOS,15 a 5-point ordinal scale, is long considered the
gold-standard measure of global outcome after TBI.5 It has broad
applicability and clear, concise, and functionally meaningful
categories.15,16 The GOSE is administered in the TBIMS NDB
and was designed to increase responsiveness of the GOS for research
applications and bifurcates the three functional GOS categories, se-
vere disability (SD), moderate disability (MD), and good recovery
(GR). We collapsed the GOSE into the original GOS to enhance
comparisons with past research and provide distinct and more un-
derstandable categorizations for clinicians, patients, and families (see
Table 1 for descriptors).

Predictors

To avoid the potential for an overly cumbersome tool, we par-
simoniously selected independent variables that had demonstrated
predictive value in past research and were readily accessible to
clinicians. Patient demographic variables included age at injury,
sex, and education level (less than high school, high school/GED
[General Educational Development], or more than high school).17,18

Race was not included because findings on its additive predictive
value beyond other socioeconomic factors have been mixed,19,20 and
because the increasing diversity of racial identification would impede
clinical classification of many persons.

Pre-injury health and socioeconomic characteristics included
were past TBI from the OSU TBI-ID interview (binary present/
absent and number of TBIs),21,22 productivity (yes/no with yes
identified as competitive employment, full-time student, or running
a household), occupational category (professional, skilled, manual,
or unemployed),23 and problem alcohol and illicit drug use history
(both yes/no). Problem alcohol use was measured on the Beha-
vioral Risk Factors Surveillance System Questionnaire from Oc-
tober 1999 to present,24 and preceding this date was extrapolated
from the Quantity-Frequency-Variability Index.25

Clinical measures of brain injury severity included were initial
Glasgow Coma Scale (GCS) motor score26 and post-traumatic
amnesia (PTA) duration,13 measured continuously. A binary PTA
variable also indicated status at discharge from inpatient rehabili-
tation (yes/no still in PTA), with total length of stay (LOS) from
injury through inpatient rehabilitation serving as the continuous
measure of PTA if yes; this permitted maximum inclusiveness and
avoided nonvalidated PTA duration imputations. TBI complica-
tions included were elevated intracranial pressure (ICP; none,
<24 h, >24 h, >24 h, and sustained, not monitored), whether a cra-
niectomy or craniotomy was performed, and computerized to-
mography (CT) evidence of focal intracranial injury defined as
subdural or epidural hematoma, or intraparenchymal hemorrhage
classified as contusion (as opposed to petechial hemorrhage con-
sistent with diffuse axonal injury). Finally, acute care hospital LOS
was included as an easily retrievable surrogate marker for associ-
ated injury or other comorbidities.
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Statistical analysis

For each follow-up period, the data were randomly split with
85% placed into a training set and 15% placed into a test set. We
used the training sets to build the predictive models and the test sets
to assess the generalizability of each one.

Predictive models were built using classification tree method-
ology, which are intuitive predictors based on branching logic that
can provide flexible predictive qualities. Within this paradigm, a
node is defined as a group of homogenous participants and a ter-
minal node is a group of homogenous participants that do not split
into subgroups. The algorithm searches for splits to maximize the
difference in the outcome, thus all variables captured in the clas-
sification tree are considered related to the outcome. Variables
appearing higher in the tree are more strongly related to the out-
come than variables appearing distally. Predictions can be made
using outcome distributions in each node.

A tree was created using the Classification Rule with Unbiased
Interaction Selection and Estimation (CRUISE) algorithm sepa-

rately at each follow-up time point.27 This algorithm allows for
splits in two or more directions and accommodates continuous and
categorical predictors. Within this algorithm, we used the following
options: univariate splits, two-dimensional method, splitting by
discriminant analysis, equal priors and equal costs of misclassifi-
cation, a standard error limit of 0.5 for pruning, and node-wise
imputation and fit. To achieve a parsimonious model, nodes con-
taining under 200 observations were not permitted to split.

Two approaches were considered for model building: step-wise
restriction of primary branching to PTA duration versus entering
all predictor candidates simultaneously. We opted for the less-
restrained modeling because PTA duration was consistently the
primary branching in test runs. We also incorporated ‘‘manual
pruning,’’ the removal of nodes with questionable value along with
subsequent nodes, under unanimous consent of a nationally known
expert panel.

After the tree was created using the CRUISE algorithm, the
percentage of observations in each terminal node were calculated
and used to calculate an M statistic and c-index to measure the

FIG. 1. Participant flow diagram showing samples for the 1-, 2-, and 5-year post-injury models.
aSubjects excluded from the test-set only because of missing values for days in PTA, discharged in PTA, occupational group/
employment, education level, or productivity.
GOS, Glasgow Outcome Scale; LOS, length of stay; PTA, post-traumatic amnesia.
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predictability of each tree.28 This statistic is calculated by aver-
aging the c-statistics from each of the ordinal comparisons and
ranges from 0.5 (random predictability) to 1.0 (perfect prediction).
Confidence intervals (CIs) for the c-index were computed using a
nonparametric bootstrap based on 500 bootstrap samples. The
predictability of each classification tree was then assessed within
the independent test set.

Results

Independent variables

Table 2 summarizes relevant characteristics of all participants

eligible for the year-1 GOS analyses (i.e., lacking any of these ex-

clusions: penetrating TBI, death, withdrew, or under 1-year post-

injury), showing overall statistics for the entire sample as well as the

divided training and testing sets. Unsurprisingly, the characteristics

mirror past publications from the TBIMS.29,30 The sample was

predominately male (72.9%) with a median (IQR) age at injury

of 39.0 (24.0–55.5) years. Although not predictor candidates, 9.9%

were of Hispanic ethnicity and 29.6% were minority races (nonwhite).

Table 1. Description of Glasgow Outcome Scale Levels

Glasgow Coma
Scale level Brief description

Dead N/A
Vegetative

state
Condition of unawareness with only reflex

responses but with periods of spontaneous
eye opening

Severe
disability

Dependent for daily support for mental
and/or physical disability

Moderate
disability

Some disability but able to look after
themselves; independent at home but
dependent outside

Good recovery Resumption of normal life with the capacity
to work even if pre-injury status has not
been achieved; may have minor neurological
or psychological deficits

N/A, not applicable.

Table 2. Predictor Candidate Variables on Those Eligible at 1 Year Post-Injury (N = 12,813)

Characteristic Level Overall Training set Test set

Age at injury 39 (24–56) 39 (24–56) 38 (24–55)
Sex Female 3470 (27.1%) 2968 (27.2%) 502 (26.2%)

Male 9341 (72.9%) 7930 (72.8%) 1411 (73.8%)
Prior TBI Yes 1797 (14.0%) 1489 (13.7%) 308 (16.1%)

No 11,016 (86.0%) 9411 (86.3%) 1605 (83.9%)
Number of past TBI 0 (0–0) 0 (0–0) 0 (0–0)
Education <HS/GED 2766 (23.9%) 2381 (24.3%) 385 (22.2%)

HS/GED 4122 (35.7%) 3476 (35.4%) 646 (37.2%)
>HS/GED 4670 (40.4%) 3962 (40.4%) 708 (40.1%)

Productivity Yes 7684 (69.3%) 6529 (69.2%) 1155 (69.7%)
No 3403 (30.7%) 2900 (30.8%) 503 (30.3%)

Occupational category Professional 1691 (13.9%) 1454 (14.1%) 237 (13.1%)
Skilled 4166 (34.3%) 3521 (34.1%) 645 (35.6%)
Manual labor 1946 (16.0%) 1666 (16.1%) 280 (15.4%)
None 4334 (35.7%) 3683 (35.7%) 651 (35.9%)

Problem alcohol use Yes 1783 (15.3%) 1518 (15.3%) 265 (15.3%)
No 9899 (84.7%) 8429 (84.7%) 1470 (84.7%)

Illicit drug use Yes 2446 (19.5%) 2056 (19.3%) 390 (21.0%)
No 10,074 (80.5%) 8604 (80.7%) 1470 (79.0%)

PTA duration 22 (9–41) 23 (9–41) 21 (8–40)
Discharged in PTA Yes 2343 (18.3%) 2001 (18.4%) 342 (17.9%)

No 10,470 (81.7%) 8899 (81.6%) 1571 (82.1%)
Initial motor GCS 6 (4–6) 6 (4–6) 6 (4–6)
Elevated ICP None 3384 (26.7%) 2902 (26.9%) 482 (25.5%)

<24 h 1175 (9.3%) 1021 (9.5%) 154 (8.1%)
>24 h 1316 (10.4%) 1134 (10.5%) 182 (9.6%)
>24 h sustained 290 (2.3%) 243 (2.3%) 47 (2.5%)
Not monitored 6500 (51.3%) 5474 (50.8) 1026 (54.3%)

Craniotomy Yes 1544 (12.1%) 1319 (12.1%) 225 (11.8%)
No 11,269 (87.9%) 9581 (87.9%) 1688 (88.2%)

Craniectomy Yes 1000 (7.8%) 872 (8.0%) 128 (6.7%)
No 11,813 (92.2) 10,028 (92.0%) 1785 (93.3%)

CT focal hemorrhage Yes 10,015 (80.8) 8529 (80.9%) 1486 (80.0%)
No 2387 (19.2) 2015 (19.1%) 372 (20.0%)

Acute hospital LOS 16 (9–26) 17 (9–26) 16 (9–26)

Continuous variables shown as median (IQR); categorical variables shown as N (%).
TBI, traumatic brain injury; PTA, post-traumatic amnesia; GCS, Glasgow Coma Scale; ICP, intracranial pressure; CT, computed tomography; LOS,

length of stay; HS, high school; GED, General Educational Development.
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Median PTA duration for the entire sample, including the 18.3% still

in PTA at last hospital observation, was 22.0 days.

Glasgow Outcome Scale category distribution
across outcome years

The distribution of GOS categories improved over time. In the

larger training set, SD sequentially declined from 31.8% at 1-year,

to 26.9% at 2-year, to 21.8% at 5-year post-injury, whereas GR

increased from 35.9%, to 39.5%, to 42.0% (node 0; Figs. 2–4). A

cross-year analysis in the test and training sets comparing sample

characteristics suggested the GOS change over time was from pa-

tients improving rather than biased dropout (see Supplementary

Tables 1 and 2). (see online supplementary material at http://www.

liebertpub.com)

Classification trees developed in training set

Each preliminary decision tree was inspected for pruning decisions.

No pruning was implemented in the year-1 or year-5 model, but we

pruned off two overly cumbersome later-stage branches that appeared

spurious in the year-2 model; neither involved a unique predictor. Even

after pruning, the year-2 model had the greatest branching complexity.

The full unpruned year-2 tree is shown in the supplementary tables

(see online supplementary material at http://www.liebertpub.com)

The final prognostic models are displayed in Figures 2–4 for the

year-1, -2, and -5 GOS, respectively, with terminal nodes denoted by

solid lined boxes. As the figures show, PTA duration was uniformly

the most important splitting variable in our final GOS prediction

models and relatively few other candidate variables contributed.

Besides PTA duration and the dichotomous discharge PTA status

variable, no injury-related variable (initial motor GCS, focal hem-

orrhage on CT, elevated ICP, cranial surgery, and acute hospital

LOS) appeared in any model. For non-injury-related variables, age at

injury, pre-morbid education level, occupational category, and pro-

ductivity each contributed to at least one model, whereas past TBI,

pre-morbid problem alcohol use, and illicit drug use did not. Age

tended to occupy the upper hierarchal position compared with edu-

cation, occupation, or productivity. Generally, patients who spent

fewer days in PTA, were younger at injury, employed, or productive

pre-injury, and had more education pre-injury had better outcomes.

Supplementary Tables 3–8 contain additional details on the ter-

minal nodes of the final classification tree models, including CIs for

the GR/MD/SD distribution, and complete eight-category GOSE

breakdown (i.e., upper and lower subdivisions of GR, MD, and

SD, as well as vegetative state and death). (see online supple-

mentary material at http://www.liebertpub.com)

Prediction model performance

As measured by the C-statistic, the 2-year GOS classification

tree showed highest predictability (training, c = 0.731; 95% CI,

0.724, 0.738; test, c = 0.730 [0.711, 0.749]). Predictability values

for year-1 were training: c = 0.700 (0.693, 0.707) and test: c = 0.691

(0.675, 0.711) and for year-5 were training: c = 0.712 (0.702, 0.722)

and test: c = 0.698 (0.675, 0.720). These values indicate reasonable

predictability for all the models.31

Discussion

Reinforcing past research, the current study demonstrates the

unique potential for late improvement after moderate-to-severe

TBI, with GOS distribution improving from year-1 to year-2, as

well as the less studied year-2 to year-5 interval.32 This late im-

provement suggests that long-term prognostic models need to be

time-point specific, which this study sought to build.

Throughout our decision trees, PTA duration consistently

dominated branching hierarchy, with longer PTA portending

worse GOS prognosis. PTA duration, the interval from injury until

return of full orientation or new memory carryover, is easily

measured clinically and is a proven TBI severity indicator and

outcome predictor.11,13,33 Figures 2–4 show PTA’s influence

quantitatively across years by way of specific location of branch-

ing cutpoints and GOS distribution predictions. In addition to

being the main predictor, PTA duration was the only injury-related

variable influencing GOS prediction. Failing to contribute were

initial motor GCS, focal hemorrhagic mass lesion on head CT,

elevated ICP, cranial surgery, and acute hospital LOS. The su-

premacy of PTA duration may stem from these other severity

markers being precursors for PTA and/or because PTA duration

incorporates more rate of recovery information.33 Regardless, our

findings corroborate PTA duration as a robust, and single best

predictor of long-term functional outcome after moderate-to-

severe closed TBI.

Although few secondary predictors contributed to our final trees,

their variation between PTA branches indicates that the degree of

their influence depends on the severity of TBI as measured by PTA

duration. Age was the leading secondary predictor in our trees,

generally occupying the upper hierarchical position when multiple

secondary predictors appeared. This finding is consistent with ex-

isting TBI outcomes research, with age almost always being found

an important predictor.17,18 Other contributory variables were pre-

morbid education, productivity, and occupation. Some researchers

have opined that these socioeconomic variables may indirectly

influence outcome by marking innate intelligence, personality or

psychological characteristics, brain reserve capacity, and/or social

support systems.34,35 Neither sex nor pre-morbid alcohol/drug

misuse contributed at any year despite some past research showing

poorer outcomes in males or substance misusers.17,36 Possibly,

their influence was over-ridden by the other socioeconomic vari-

ables included. Past TBI may not have contributed because it

generally captured injuries much milder than the current incident

of moderate-to-severe TBI.

In comparing the best prognostic group for each model year

(shortest PTA duration branch), the upper cutpoint for PTA in-

creased from 16 days at year-1, to 18 days at year-2, to 20 days at

year-5. Despite this elongation of PTA duration, GOS improved

sequentially within this branch. At year-2 and year-5, but not year-

1, age provided further prognostic separation, with better GOS for

younger ages. This delayed influence of age suggests a recovery

plateau for older patients relative to younger patients between year-

1 and year-2 for shorter PTA durations. Taken together, emerging

from PTA in under 3 weeks portends a relatively favorable long-

term functional prognosis, especially for younger ages with a ho-

rizon beyond 1 year. Pre-morbid productivity offers additional

predictability at year-2 and year-5, as does education at year-2. As

a cautionary note, the highest GR rate in any prognostic group is

65.7%, indicating the seriousness of moderate-to-severe TBI.

Further, achieving GR on GOS does not stipulate full brain re-

covery, given that persisting cognitive decrements relative to pre-

injury are ubiquitous after severe TBI.37

In the worst prognostic group (longest PTA duration branch), the

lower cutpoint for PTA also varied across outcome years, but the

pattern did not mirror the best prognostic group upper cutpoint.

After increasing from 47 days at year-1 to 58 days at year-2, the

lower cutpoint dropped to >44 days at year-5 within this branch.
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FIG. 2. Prognostic model for 1-year post-injury GOS.
Nodes with solid lines represent terminal nodes. Sample sizes correspond to the training set and may not sum to higher-order nodes due
to missing values.
GOS, Glasgow Outcome Scale; PTA, post-traumatic amnesia; SD, severe disability; MD, mild disability; GR, good recovery.
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FIG. 4. Prognostic model for 5-year post-injury GOS.
Nodes with solid lines represent terminal nodes. Sample sizes correspond to the training set and may not sum to higher-order nodes
because of missing values.
GOS, Glasgow Outcome Scale; PTA, post-traumatic amnesia; SD, severe disability; MD, mild disability; GR, good recovery.

FIG. 3. Prognostic model for 2-year post-injury GOS.
Nodes with solid lines represent terminal nodes. Sample sizes correspond to the training set and may not sum to higher-order nodes
because of missing values.
GOS, Glasgow Outcome Scale; PTA, post-traumatic amnesia; SD, severe disability; MD, mild disability; GR, good recovery.
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This drop may be an artifact of truncated still-in-PTA measure-

ments being overweighed in these branches. Supporting this, the

binary still-in-PTA variable was the sole secondary predictor for

the 52–58 days PTA branch at year-2, implying the purer lower

cutpoint here is 52 days or longer. Regardless, group GOS im-

provement occurred sequentially from year-1, to year-2, to year-5.

Interestingly, no secondary branching existed for any year in the

longest PTA branches. This finding suggests a PTA duration

threshold beyond which the TBI is so severe that it negates any

secondary predictor influences, at least within the constraints of our

modeling technique and sample sizes. Our data indicate that this

threshold is around 7 weeks.

This study’s strengths were flexible modeling methods, inherent

clinical applicability of findings, large multi-center cohort size, and

verification of predictably within a separate data set. The TBIMS

NDB participants are enrolled from 16 inpatient rehabilitation fa-

cilities (IRFs) geographically dispersed throughout the continental

United States and have similar acute care length of stay and similar

functional deficits as those admitted to non-TBIMS IRFs in the

United States; 38,39 thus, our findings should generalize to patients

from non-TBIMS IRFs. However, several limitations are notewor-

thy. Like any TBIMS analysis, findings may not extend to patients

with TBI not qualifying for inpatient rehabilitation because they

either did not have significant self-care deficits (i.e., injury too mild),

were unable to participate (i.e., injury overly severe), or were not

referred or deemed eligible for other reason(s). Retention rate was

high for a comprehensive longitudinal study, but the analysis sam-

ples may have been biased by missing data, particularly the lack of

GOS interview data for retained participants who chose the mail-in

assessment. Relatedly, nonrandom dropout may have impacted

findings on the influence of predictor variables, especially substance

abuse history given past research showing that substance abusers

miss follow-up visits more often than those without substance abuse

issues.38 Our decision-tree modeling may have limited predictive

power compared to regression or other mathematical modeling.8

However, ours permitted greater than two-way splitting of nodes, an

advancement in decision-tree methods from previous TBI outcomes

research. Using the more distinct and easier-to-interpret main GOS

categories,40 versus the finer-grained GOSE subcategories, may have

masked predictive information. Limited statistical power as node

sizes diminished may have prevented more secondary branches of

potential clinical importance. The C-statistic results were not ideal,

underscoring the importance of interpretive flexibility and avoiding

absolutism in forecasting functional outcome. Whether additional

significant variance could be explained by other clinically available

premorbid or injury variables not available in TBIMS database is

unknown. Of likely greater influence are downstream factors un-

known at baseline, such as post-injury development of depression or

changes in alcohol use or social support over time.

Another limitation was the focus on functional outcomes, so our

models may not apply to individuals who are dead or vegetative

at given follow-up points. However, less than 1% of total TBIMS

participants suffered these outcomes, and the majority would appear

in our final model’s terminal nodes with the poorest outcomes (i.e.,

highest percent of SD, node 5 at year-1; node 6 at year-2; and node

4 at year-5). This is demonstrated in the supplementary online Ap-

pendix tables containing the full GOSE breakdown of each terminal

node. Thus, the addition of these subjects into the analysis would not

have added much significant information. We recommend that, when

these models are used in practice, an honest discussion be had with

the patient and/or caregiver about the incidences of vegetative

state or death post-injury, particularly for the groups of patients

represented by the nodes with the most SD outcomes. (see online

supplementary material at http://www.liebertpub.com)

Last, one injury variable we intentionally excluded was length of

coma (LOC), which is measured as time until following motor

commands in the TBIMS NDB. Our rationale was that LOC can be

more difficult for clinicians to extract from chart review, and it is

strongly correlated with PTA duration but offers less predictabili-

ty.41,42 Further, within the TBIMS NDB, the distribution of LOC is

highly skewed with major clumping at zero to 1 day, and LOC has

more missing observations than PTA duration. Nonetheless, LOC as

an alternative to PTA duration offers the potential to provide prog-

nosis at an earlier time post-injury (i.e., when still in PTA). Our

models can be applied to some individuals still in PTA, but only upon

or after rehabilitation discharge. Thus, we plan future study of our

classification-tree modeling that replaces PTA duration with LOC.

Conclusion

This study developed decision trees for gaining prognostic

information on meaningful long-term functional outcomes after

moderate-severe closed TBI and demonstrated reasonable predict-

ability in a separate test sample. There are many potential benefits of

this easy-to-use tool: helping providers set expectations and plan

rehabilitation treatments; patient selection and stratification in future

clinical trials; assisting patients and families with resource planning;

and addressing their emotional burden of future uncertainty. Future

research is needed to assess external validity in separate cohorts.
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