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† Dr. Larry Seidman passed away on September 7, 2017 and Dr. Robert McCarley passed away 
on May 27, 2017. Professors Seidman and McCarley were two of the initiators and principal 
investigators of the Shanghai At Risk for Psychosis (SHARP) study.

Abstract

The emergence of prodromal symptoms of schizophrenia and their evolution into overt psychosis 

may stem from an aberrant functional reorganization of the brain during adolescence. To examine 

whether abnormalities in connectome organization precede psychosis onset, we performed a 

functional connectome analysis in a large cohort of medication-naïve youth at risk for psychosis 

from the Shanghai At Risk for Psychosis (SHARP) study. The SHARP program is a longitudinal 

study of adolescents and young adults at Clinical High Risk (CHR) for psychosis, conducted at the 

Shanghai Mental Health Center in collaboration with neuroimaging laboratories at Harvard and 

MIT. Our study involved a total of 251 subjects, including 158 CHRs and 93 age-, sex-, and 

education-matched healthy controls. During one-year follow-up, 23 CHRs developed psychosis. 

CHRs who would go on to develop psychosis were found to show abnormal modular connectome 

organization at baseline, while CHR non-converters did not. In all CHRs, abnormal modular 

connectome organization at baseline was associated with a three-fold conversion rate. A region-

specific analysis showed that brain regions implicated in early-course schizophrenia, including 

superior temporal gyrus and anterior cingulate cortex, were most abnormal in terms of modular 

assignment. Our results show that functional changes in brain network organization precede the 

onset of psychosis and may drive psychosis development in at-risk youth.

Introduction

Schizophrenia is a psychiatric disorder that manifests early in life and derails social, 

cognitive, and academic development. The development of the illness typically follows a 

sequential trajectory that includes a premorbid phase with subtle and nonspecific deviations 

from normative development, 1 a prodromal phase with sub-threshold symptoms and 

declining functioning, 2–4 and a first psychotic episode that marks the formal onset of the 

illness. 5 In recent years, the focus of schizophrenia research shifted from the first episode to 

earlier stages of illness development. Studies of the prodromal phase aim to elucidate the 

biological and environmental factors that guide the trajectory from elevated risk to 

established illness, in order to contribute to the development of early detection and 

intervention strategies for schizophrenia. 6

The prodromal or clinical high risk (CHR) phase of schizophrenia is characterized by 

attenuated or transient psychotic symptoms such as unusual thought content, suspiciousness, 

or mild perceptual abnormalities that typically manifest in adolescence or early adulthood. 
2,4 The CHR syndrome has a large heterogeneity in clinical outcome ranging from complete 

remission to full-blown psychosis. 7,8 It has been suggested that inter-individual differences 

in brain circuitry may underlie the differences in outcome for high-risk individuals. 9 Indeed, 

recent studies suggest that abnormalities in functional brain connectivity and organization 

may differentiate at-risk individuals who will develop psychosis from those who do not 

transition. 9,10 These studies may help to elucidate the neurobiological events that precipitate 

and possibly drive the manifestation of psychotic symptoms.
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The typical timing of the CHR syndrome in middle to late adolescence coincides with a 

crucial phase of brain development during which psychosocial factors interact with 

genetically mediated brain changes to reshape the brain’s functional organization. The brain 

is organized into a collection of functional networks that form identifiable modules in the 

brain’s network. 11 This modular organization is thought to allow specialized circuits to 

focus on specific tasks by limiting the interference of regions processing different types of 

neural information. 12,13 Neuroimaging studies indicate that a considerable reorganization of 

the brain’s functional modules takes place between late childhood and early adulthood. 
11,14,15 We hypothesize that the modular reorganization of the brain during this 

developmental window may go awry in at-risk youth, resulting in aberrant connectivity 

patterns that may contribute to the development of psychotic symptoms. 16

To examine modular brain organization in at-risk youth, we draw from the field of 

connectomics, an emerging branch of neuroscience that uses graph theory to examine the 

brain’s connectivity network known as the connectome. 17 By assessing the modular 

organization of the functional connectome in a large sample of adolescents and young adults 

at risk for psychosis, we aim to determine whether abnormalities in modular connectome 

organization exist before the onset of psychosis and predispose to psychotic convergence.

Materials and methods

Participants

This study involved a total of 251 participants, including 158 Clinical High Risk (CHR) 

subjects and 93 Healthy Controls (HC) matched to CHRs based on age, sex, and education 

in years. The large majority of CHRs was naïve to psychotropic medication at baseline 

clinical assessment (>95%) and neuroimaging (>80%). Participants were recruited at the 

Shanghai Mental Health Center (SMHC), as part of the Shanghai At Risk for Psychosis 

(SHARP) program. 18 This NIMH-funded study is a collaboration between SMHC, Harvard 

Medical School at Beth Israel Deaconess Medical Center (BIDMC) and Brigham and 

Women’s Hospital, and Massachusetts Institute of Technology (study details including 

power analysis and in/exclusion criteria in Supplementary Information 1.1). The study was 

approved by Institutional Review Boards of BIDMC and SMHC. All subjects or their legal 

guardians gave written informed consent. Table 1 provides demographic and clinical 

characteristics of all participants.

Clinical and cognitive assessment

Prodromal symptoms were assessed using a validated Chinese version 19 of the Structured 

Interview for Prodromal Symptoms (SIPS). 20 Total IQ was estimated using the Wechsler 

Abbreviated Scale of Intelligence (WASI). 21

Conversion criteria

During a mean (sd) follow-up of 392 (77) days, 23 CHRs developed psychosis (CHR+), 

while 135 did not (CHR-). Conversion to psychosis was determined using the SIPS 

operational definition of psychosis onset, 22 with at least one psychotic level symptom (rated 

“6” on the SIPS positive scale) with either sufficient frequency or duration. For CHR+, the 
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date of conversion was recorded and time to psychosis computed as the number of days 

between study inclusion and psychosis onset.

Image acquisition

Magnetic Resonance Imaging (MRI) scans were acquired on a 3T Siemens MR B17 (Verio) 

system, 32-channel head coil at the SMHC and included an anatomical T1-weighted MRI 

scan (MP-RAGE; TR=2300 ms, TE=2.96 ms, FA=9 degree, FOV=256mm, voxel size: 

1×1×1mm, 192 contiguous sagittal slices, duration 9’14’’) and resting-state fMRI (rs-fMRI) 

scan (149 functional volumes; TR=2500 ms, TE=30 ms, FA=90 degree, FOV=224mm, voxel 

size: 3.5×3.5×3.5mm, 37 contiguous axial slices, duration 6’19’’).

Image preprocessing

Figure 1 provides an overview of all analysis steps. As connectivity and connectome metrics 

are sensitive to methodological factors including image preprocessing and node selection, 
23,24 two processing streams were used to process our data to ensure that results were not 

specific to any one methodology (Figure 1A): a surface-based method, the results of which 

are presented as primary findings, and an MNI-based method used to verify primary 

findings.

Image processing is described in detail in Supplementary Information 1.2. Briefly, 

FreeSurfer (v6.0) 25 and CONN (v17d) 26 software were used to preprocess T1 and rs-fMRI 

data. For surface-based processing, a total of 162 subject-specific ROIs derived from 

FreeSurfer were used as nodes, including 148 regions comprising the Destrieux Atlas and 14 

subcortical structures (bilateral thalamus, hippocampus, amygdala, nucleus accumbens, 

caudate nucleus, putamen and global pallidus). For MNI-based processing, T1 and rs-fMRI 

scans were normalized to MNI space and the Harvard-Oxford Atlas was used to divide the 

cerebrum into a total of 105 brain regions, 27 including 91 cortical brain regions and the 

same 14 subcortical structures. Rigorous motion correction and artifact removal were 

performed to deal with spurious correlations. 26 There were no significant group-differences 

in motion parameters or the number of rejected fMRI volumes (Supplementary Information 

1.2).

Functional connectome reconstruction

A functional connectome was constructed for each participant, consisting of 162 subject-

specific (or 105 atlas-based) nodes representing the aforementioned brain regions. The level 

of functional connectivity between each node pair was computed as the normalized z-score 

of the Pearson’s correlation between the noise-corrected timeseries of each pair of brain 

regions and stored in a functional connectivity matrix (Figure 1B).

Modular organization of the functional connectome

Various methods exist to examine the modular organization of complex networks. 13 Here, 

we use the Louvain community detection method (https://sites.google.com/site/bctnet/), 

which partitions a network so as to maximize metric Q, representing the strength of edges 

inside communities relative to edges between communities. 28 The method is suitable for 

functional connectome analysis as it can take both positive and negative edge weights (i.e., 
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connectivity estimates) into account without requiring an arbitrary connectivity threshold. 
13,28,29

Group-networks.

As a first step to assess the modular organization of the functional connectome, one group-

averaged functional network was constructed for HC, CHR-, and CHR+ groups. Each group-

network’s modular organization was assessed using the Louvain method. As the algorithm 

searches for high modularity partitions in a heuristic fashion, resulting partitions differ 

slightly from run to run. 13,29,30 Therefore, the algorithm was run 10,000 times for each 

group-network and the partition associated with the highest level of Q selected (Figure 1C). 

A consensus similarity method 31 was used as an alternative method to select modular 

partitions for both group and individual networks (Supplementary Information 1.3).

Individual subjects.

Second, the Louvain algorithm was applied to individual connectome reconstructions. To 

assess how similar the modular organization of each individual network was to an average 

healthy network, network partitions of individual subjects were compared to the group-

averaged HC network using the Rand similarity coefficient (SR), 32 providing an intuitive 

measure (between 0 and 1) of the similarity between two partitions (details in 

Supplementary Information 1.3). Network resolution parameter γ was set to 1.5, in order to 

identify more fine-grained modules while not overinflating the total number of modules, as 

this would hamper comparisons of network partitions. 32 In addition, modular organization 

was examined across a range of γ (Supplementary Information 1.3).

Region-specific alterations in modular connectome organization

As an exploratory analysis to assess which brain regions are most abnormal in terms of 

module assignment in CHR+ versus CHR-, individual networks were again compared to the 

HC network, now determining for each node i in the network the fraction of neighboring 

nodes with equal module assignment (details in Supplementary Information 1.3).

Code availability

All image processing and graph analyses were performed using freely available software. 

Version and access details are provided in Supplementary Information 1.2 and 1.3.

Statistical analysis

Group analysis.—Analysis of Covariance (ANCOVA) was used to compare SR among 

subject groups. Assumptions of normality and homogeneity of variance were met 

(Supplementary Information 1.4). Age, sex, and the number of rejected fMRI volumes were 

included in the model as covariates, and group-covariate interactions were assessed. 

Medication status was included as a covariate of non-interest as a minority of CHRs (<20%) 

were on psychotropic medication by the time of scanning. Region-specific metrics were 

analyzed using the same ANCOVA model, applying FDR-correction (q = .05) to account for 

multiple comparisons.
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Psychosis-free survival analysis.—To determine whether abnormal modular 

connectome organization at baseline predicted conversion to psychosis, CHRs were divided 

by median split into two groups with above and below-average SR, reflecting normal and 

abnormal modular organization respectively. Kaplan Meier analysis was used to assess 

psychosis-free survival for each group. Survival functions were compared using log-rank 

tests. Cox regression analysis was used to assess how baseline modular organization and 

clinical characteristics (i.e., age, sex, IQ, SIPS symptoms, and GAF functioning) predicted 

time to conversion.

Results

Modular connectome organization – group-networks

Figure 2A shows the modular organization of group-averaged functional networks. 

Community detection in the HC network yielded five modules, largely reflecting known 

functional networks. Modular organization of the CHR- network was similar to HCs. The 

CHR+ network showed a number of qualitative differences, including a separation of 

orbitofrontal regions from the (para)limbic module, and with bilateral superior temporal 

gyrus changing assignment from the sensorimotor to the (para)limbic module. Moreover, a 

sixth cingulo-opercular module was observed in the CHR+ network. This module was not 

present in HC and CHR- group-networks at this resolution but did show up at higher levels 

of network resolution (Supplementary Figure 2). Using consensus similarity to identify 

modular partitions produced highly similar partitions (Supplementary Information 1.3).

Modular connectome organization – individual subjects

The Rand similarity coefficient, reflecting how similar the modular organization of 

individual networks was to the averaged healthy network, showed a significant main effect 

of group (F(2, 245) = 4.08, p = .018). Post-hoc bivariate comparison indicated that modular 

partitions of CHR+ subjects were significantly less similar to the average healthy network 

than both HCs (F(1, 110) = 4.32, p = .039) and CHR- (F(1, 152) = 7.87, p = .006) (Figure 2B). 

There was no significant difference between HCs and CHR- F(1, 222) = 0.02, p = .898). An 

additional analysis to ensure that HC results were not biased by the fact that individual HCs 

contributed to the group-averaged HC network confirmed our findings (Supplementary 

Information 1.3). Repeating the analyses using the MNI-based processing method largely 

corroborated our findings (details in Supplementary Information 1.3 and Supplementary 

Figure 3 and 4). Consensus partitions were very similar to the original partitions and 

reanalysis of our main finding using consensus partitions produced a trend-level effect but 

did not change the nature of our findings (Supplementary Information 1.3). Assessing group-

effects across different levels of resolution parameter γ showed that the main effect holds for 

a range of γ (see Supplementary Information 1.3 and Supplementary Figure 1 and 2). Of 

note, there were no significant group-differences in the overall level of modularity Q 
(F(2,250) = 1.08, p = .340) or overall connectivity strength (F(2,250) = 1.7, p = .185).

Region-specific alterations in modular organization

Using surface-based data, no regional effects survived FDR-correction. Using MNI-based 
data, the right superior temporal gyrus (STG) was the only region surviving FDR-correction 
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(F(1, 152) = 9.20, p < .001). As exploratory results, regional effects at uncorrected p < .05 

from the surface-based and MNI-based analysis are summarized in Figure 3A and 3B 

respectively. Regions with (marginal) effects in both atlases included bilateral STG and 

temporal plane, and right anterior cingulate gyrus, fusiform cortex, and amygdala.

Psychosis-free survival analysis

Kaplan-Meier analysis indicated significantly different (z = 2.41, p = .016) psychosis-free 

survival functions for CHRs with typical versus atypical modular connectome organization 

(Figure 4), with a hazard ratio of 3.1 indicating a three-fold relative event rate (i.e. 

conversion to psychosis) in CHRs with atypical modular organization at baseline. 

Combining baseline SR with baseline clinical characteristics in one cox regression model 

indicated that abnormal baseline connectome organization (z = −2.37, p = .018), lower IQ (z 
= −2.48, p = .013) and male sex (z = 1.92, p = .036) predicted shorter time to conversion. 

These findings were confirmed using MNI-processed data (Supplementary Information 1.5 

and Supplementary Figure 4).

Discussion

This study examined functional connectome organization in a large cohort of adolescents 

and young adults at clinical high-risk for psychosis. Our findings suggest that abnormalities 

in the modular organization of the functional connectome precede the first psychotic 

episode. We find that baseline modular connectome organization is abnormal in CHRs who 

go on to develop psychosis, but not in CHRs who do not convert. Moreover, conversion to 

psychosis was over three times more likely in CHRs with abnormal connectome 

organization at baseline as compared to CHRs with typical baseline connectome 

organization. Functional changes in brain network organization that precede the formal onset 

of psychosis may be involved in the manifestation of (prodromal) psychotic symptoms.

Our findings of abnormal modular organization of the functional connectome in youth at 

risk for schizophrenia are supported by three previous graph analytical studies of functional 

connectivity data in schizophrenia patients and at-risk youth. Two studies in schizophrenia 

patients demonstrated a reorganization of modular brain network topology in patients with 

established illness. 33,34 In addition, a recent study in 88 at-risk individuals, including 12 

who later developed psychosis, identified changes in the modular organization of the 

functional connectome in at-risk subjects who transitioned to psychosis. 9 Our current study 

confirms and extends these previous results by showing that abnormal functional 

organization of the connectome precedes the first psychotic episode and develops in the 

absence of psychotropic medication.

Two competing hypotheses have been developed on modular brain network organization in 

schizophrenia. The first is that the connectome is more modular in schizophrenia. An early 

version of this theory was proposed by Hoffman and McGlashan, who modeled the effects 

of excessive pruning in neural network simulations. They concluded that the resulting 

fragmentation of the brain network gives rise to functionally autonomous modules that act as 

‘parasitic foci’ that repeatedly introduce the same output into the brain’s information flow, 

which may underlie auditory hallucinations or delusions of control. 35–37 The second 
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hypothesis, first articulated in a critique of Hoffman and McGlashan’s work, argues that the 

brain’s network is less modular in schizophrenia. 38 A less modular network could result in 

reduced information encapsulation and “overflow” of neural information from e.g., language 

into perceptual systems, and thereby invoke symptoms such as thought insertion and 

auditory hallucinations. Empirical evidence appears to favor the first theory, with a 

functional connectivity study showing more and smaller modules in schizophrenia patients 
39 and two structural connectome studies showing higher modularity in schizophrenia and 

CHR. 40,41 In contrast, a study showing reduced modularity of functional brain networks in 

childhood-onset schizophrenia is more in line with the second theory. 42 Our current 

findings and previous results 33,34 add a third possibility. Namely, that the brain is not just 

more or less modular, but that there is a qualitative reorganization of the brain’s modular 

organization in schizophrenia, resulting in abnormal functional interaction patterns between 

a range of brain regions, which may contribute to psychotic and cognitive symptom 

development.

Finding abnormalities in modular connectome organization before the onset of psychosis 

suggests that a maladaptive reorganization in the modular topology of the functional 

connectome may take place in the months to years preceding the first psychotic episode. In 

typical brain development, the maturation of different functional systems occurs at different 

times in the course of development, with e.g., sensorimotor networks maturing before those 

mediating higher cognitive functions. 43 Adolescent behaviors such as impulsivity and risk 

taking have been attributed to the asynchronous maturation of limbic and prefrontal systems, 

giving rise to heightened sensitivity to motivational cues in the context of immature 

cognitive control. 44 This critical window of limbic and cognitive system development and 

high sensitivity to socio-environmental inputs may represent a window of vulnerability for 

youth at risk for psychosis. Any deviation from the process of modular reorganization during 

this developmental window could give rise to complex patterns of hypo- and hyper-

connectivity between brain regions, as have been observed in schizophrenia patients. 45–47 

These aberrant functional connectivity patterns could have a particularly profound and 

lasting impact on the brain’s functional organization and may contribute to psychotic 

symptom development.

While the global modular organization of the brain was the main focus of our study, we note 

that the brain regions showing region-wise changes in modular assignment were regions that 

are commonly associated with schizophrenia. Examining two distinct brain atlases, 

overlapping regions in terms of (marginal) group-effects included STG and temporal plane, 

anterior cingulate cortex, fusiform gyrus, and amygdala. These regions are among the most 

consistently implicated brain regions in early-course schizophrenia. 48–52 Examining 

modular network organization across levels of network resolution also indicated a change in 

modular assignment of STG from the sensorimotor to the limbic module. Intriguingly, a 

separation of STG from the larger somatosensory community was recently reported in a 

study of modular brain organization in schizophrenia. 33 Other consistent abnormalities 

across resolutions included changes in the modular assignment of orbitofrontal cortex, 

striatum, and insula, in line with recent findings of salience module abnormalities in at-risk 

individuals. 9 Moreover, the latter study reported visual areas to extend into the limbic 

module. 9 Both our current and previous investigations in at-risk youth thus find primary 
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sensory regions to become embedded in the limbic system in prodromal psychosis. These 

findings may fit in with theoretical models attributing psychotic symptoms to aberrant 

memory activations or the attribution of erroneous salience to the internal representation of a 

percept or memory. 53 Moreover, findings in schizophrenia patients indicate that the most 

prominent break-up of functional modules involves sensory, auditory, and visual areas. 33 

Together, these previous and our current findings suggest that an initial separation of 

primary auditory and visual regions followed by a more generalized fragmentation of 

sensory processing may underlie disease progression in prodromal psychosis.

A number of issues should, however, be taken into account when interpreting our findings. 

First, physiological and head motion artifacts are known to influence fMRI-derived 

measures of functional connectivity. 54,55 To deal with these issues, we used the anatomical 

CompCor (aCompCor) method 56 for physiological noise reduction and the Artifact 

Detection Tool (art) for efficient rejection of motion and artefactual time points. 26 Second, a 

much-debated issue in the context of functional connectivity is the biological validity of 

negative, or anti-correlations. 57 A recent study indicates that when physiological and other 

noise sources are effectively removed, anti-correlations are present in the absence of global 

signal regression, suggesting a biological origin. 58 We therefore chose to include both 

positively and negatively weighted connectome edges. A third and related issue is the 

application of thresholds in functional network analyses. In graph theoretical studies, 

thresholds are commonly applied to obtain a more sparsely connected representation of the 

functional connectome. Even when the network is examined over a range of different 

thresholds, the impact of imposing a threshold on the resulting graph metrics is non-trivial. 

Moreover, thresholding typically removes negative correlations, thereby discarding 

neurobiologically relevant information. 13 To avoid these limitations, we used a community 

detection method equipped to deal with fully weighted networks including both positive and 

negative edge weights. 28 Lastly, the changes in functional connectome organization 

observed in our study may indicate abnormalities in synchronous neural activity and 

modular interactions. However, given the indirect and correlational nature of functional 

connectivity measurements derived from resting-state fMRI, we cannot rule out the 

possibility that non-neural factors including hemodynamic response function variability 59,60 

may have influenced our results.

This study finds that the modular organization of the functional connectome is abnormal in 

CHR youth that go on to develop a psychotic episode, but not in CHRs that do not develop 

psychosis. In addition, we show that abnormal modular connectome organization precedes 

overt psychosis and is predictive of psychotic development. Our results provide new insights 

into functional mechanisms on the connectome level that may underlie the development of 

psychotic symptoms and are of key interest to efforts to identify biomarkers for transition to 

psychosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Image preprocessing and connectome analysis steps

Overview of image preprocessing (A), connectome reconstruction (B), and modular 

community detection analysis (C). Of note, the colors of the modules shown in the 

connectivity matrices in panel C correspond to the modules as shown in Figure 2A.
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Figure 2. 
Modular organization of the functional connectome

A) Modular partitions of group-networks, plotted on cortical surface from superior, lateral, 

medial, and inferior angle, and subcortical structures (top to bottom row respectively). 

Colors indicate separate modules, with the prefrontal central-executive (CE) module in dark 

blue, the central sensorimotor (SM) module in green, the posterior visual (VIS) module in 

red, the (para)limbic (LIM) module in orange, the medial default mode (DM) module in 

light blue, and the cingulo-opercular (CO) module in yellow. B) Degree of similarity to 

average healthy network (SR) for individual subjects. Jittered data are plotted for each group, 

with mean (sd) values represented by the box behind the raw data. * indicates significant 

group-difference.
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Figure 3. 
Regional findings of abnormal module assignment

Surface plots showing exploratory regional findings (SRnode) at uncorrected p < .05 for 

surface-based (A) and MNI-based (B) processing methods respectively. * FDR-corrected 

significant effect for right superior temporal gyrus, anterior division.
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Figure 4. 
Psychosis-free survival for typical vs. atypical baseline connectome organization

Kaplan-Meier plot showing psychosis-free survival functions for CHRs with above-average 

(red) and below-average (blue) levels of SR (reflecting typical and atypical connectome 

organization respectively) as a functional of time since baseline (days).
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Table 1.

Demographic and clinical characteristics

Statistical comparison was performed using analysis of variance (ANOVA) tests for continuous, and chi-

squared tests for categorical variables.

CHR+N = 23 CHR-N = 135 ControlsN = 93 Statistics

Age, mean (sd) [range] 19.2 (5.2)[14 – 34] 18.7 (4.9)[13 – 32] 18.7 (4.6)[12 – 35] F = 0.10, p = .905

Sex, male/female 16 / 7 64 / 71 49 / 44 χ2 = 3.96, p = .138

Education in years, mean (sd) [range] 10.3 (2.2)[7 – 16] 10.5 (2.9)[4 – 19] 10.8 (2.3)[6 – 17] F = 0.52, p = 0597

IQ, mean (sd) [range] 92.1 (19.0)[52 – 112] 99.9 (11.2)[67 – 128] 104.2 (11.1)[75 – 133] F = 8.53, p < .001
1

Baseline SIPS scores

    Positive, mean (sd) [range] 10.0 (3.3)[4 – 17] 10.1 (3.7)[0 – 21] F = 0.03, p = .871

    Negative, mean (sd) [range] 12.1 (6.4)[3 – 26] 11.6 (6.1)[1 – 27] F = 0.16, p = .687

    Disorganized, mean (sd) [range] 6.5 (3.0)[2 – 13] 6.6 (3.3)[1 – 19] F = 0.02, p = .891

    General, mean (sd) [range] 9.0 (2.9)[3 – 14] 9.1 (3.3)[1 – 17] F = 0.01, p = .902

    Total, mean (sd) [range] 37.6 (10.7)[16 – 65] 37.3 (10.9)[13 – 79] F = 0.01, p = .922

Psychotropic medication

    At inclusion, N (%) 1 (4.3) 6 (4.4) χ2 < 0.01, p = .983

    At baseline MRI, N (%) 7 (30.4) 22 (16.3) χ2 = 2.62, p = .105

    Antipsychotics, N (%) 6 (26.1) 18 (13.3) χ2 = 2.48, p = .115

    Antidepressants, N (%) 2 (8.7) 5 (3.7) χ2 = 1.57, p = .282

    Other, N (%) 1 (4.3) 1 (0.7) χ2 = 2.05, p = .153

GAF highest, mean (sd) [range] 77.6 (2.6)[73 – 83] 77.3 (4.9)[47 – 85] F = 0.08, p = .776

GAF current, mean (sd) [range] 52.7 (7.7)[43 – 78] 54.1 (8.4)[21 – 76] F = 0.58, p = .449

1
post-hoc analysis (Tukey-Kramer) indicates a significant IQ difference between each pair of subject groups (HC vs. CHR+, p = .002; HC vs. 

CHR-, p = .022; CHR- vs CHR+, p = .039).
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