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Abstract

Background: Aim of the present study was first to identify genetic variants associated with egg number (EN) in
female broilers, second to describe the mode of their gene action (additive and/or dominant) and third to provide
a list with implicated candidate genes for the trait. A number of 2586 female broilers genotyped with the high
density (~ 600 k) SNP array and with records on EN (mean = 132.4 eggs, SD = 29.8 eggs) were used. Data were
analyzed with application of additive and dominant multi-locus mixed models.

Results: A number of 7 additive, 4 dominant and 6 additive plus dominant marker-trait significant associations
were detected. A total number of 57 positional candidate genes were detected within 50 kb downstream and
upstream flanking regions of the 17 significant markers. Functional enrichment analysis pinpointed two genes
(BHLHE40 and CRTC1) to be involved in the ‘entrainment of circadian clock by photoperiod’ biological process. Gene
prioritization analysis of the positional candidate genes identified 10 top ranked genes (GDF15, BHLHE40, JUND,
GDF3, COMP, ITPR1, ELF3, ELL, CRLF1 and IFI30). Seven prioritized genes (GDF15, BHLHE40, JUND, GDF3, COMP, ELF3,
CRTC1) have documented functional relevance to reproduction, while two more prioritized genes (ITPR1 and ELL)
are reported to be related to egg quality in chickens.

Conclusions: Present results have shown that detailed exploration of phenotype-marker associations can disclose
the mode of action of genetic variants and help in identifying causative genes associated with reproductive traits in
the species.

Keywords: Egg number, Broilers, Additive and dominant effects, Prioritization analysis, Genome-wide association
study

Background
The breeding objective used for selection in broilers is
balanced between reproduction, welfare and production
traits [1]. Modern broiler breeding programs strive to
optimize the overall reproductive efficiency, which is de-
fined as the number of viable chicks per breeder hen

and is determined by the egg production in combination
with fertility and hatchability. Among the different met-
rics to describe egg production, egg number (EN), de-
fined as the number of eggs laid over the duration of the
laying period (from 28 to 54 weeks), is one of the most
commonly used ones for selection purposes in commer-
cial broilers [2, 3].
As a typical reproductive trait, EN presents low to

medium additive heritability estimates. In broiler hens,
pedigree-based additive heritability for the trait has been
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estimated as high as 0.32, while respective estimates are in
the range from 0.13 to 0.36 when using genomic relation-
ship matrices [3, 4]. The contribution of dominance
may also be of importance for the trait, as estimates
of the genomic dominant heritability has been found
as high as 0.06 [3].
High-density SNP (single nucleotide polymorphism)

genotyping arrays have greatly facilitated the detection
of candidate causal variants in genome-wide association
studies (GWAS) for various traits related to egg produc-
tion and egg quality. Most GWAS have, so far, focused
on the detection of additive SNPs for egg production
[5–7] and egg quality traits [5, 7–10]. It is noted that
these studies have been focusing on EN in layer chickens
and not broiler breeders. Moreover, to our knowledge,
there is only one study [7] that aimed at identifying
dominant SNPs for egg production and quality traits in
chickens.
Driven from the scarcity of published reports for

broiler breeders, we elaborated the present study with
the primary aim to detect genetic variants impacting on
EN. Next, we sought to describe the mode of gene action
of the significant genetic variants and finally attempted
to provide a list with most likely candidate genes for the
trait under investigation. Current findings are expected

to contribute to a better understanding of the genetic
mechanism(s) underlying the EN phenotype in the
species.

Results
Significant SNPs and PVE
Additive and dominant genomic heritability estimates
were identical and equal to 0.167 (SE = 0.03) for the trait.
The Q-Q plots (see Supplementary Fig. 1, Add-
itional file 1) of the expected and observed SNP p-values
along with estimates of the genomic inflation factors
(λ = 0.95 and 0.97 for the respective additive and domin-
ant genetic model) were indicative of no systematic bias
due to population structure or analytical approach. Pro-
files of the SNP p-values (expressed as -log10) for the
additive and dominant genetic model are presented in
form of circular Manhattan plots in Fig. 1. No SNP was
found to reach genome-wide significance (p < 2.09E-07)
using the Bonferroni correction method. Nevertheless,
using the same correction method, a total number of 17
SNPs reached chromosome-wide significance across four
autosomes (12, 22, 26 and 28) (Table 1). Specifically, one
marker (rs313298834) was detected on GGA12 (thresh-
old p = 0.05/7475 = 6.68896E-06), one (rs314011910) on
GGA22 (threshold p = 0.05/1870 = 2.6738E-05), one

Fig. 1 Circular Manhattan plot displaying the chromosome-wide significant associations for EN. The −log10(p-values) of the additive (inner circle)
and dominant (outer circle) SNPs are shown across the 28 autosomal chromosomes. This plot was constructed with the CMplot package (https://
github.com/YinLiLin/R-CMplot) in R (http://www.r-project.org/)
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(rs313045367) on GGA26 (threshold p = 0.05/3013 =
1.65948E-05) and 14 on GGA28 (threshold p = 0.05/
2268 = 2.20459E-05). As observed in Table 1, 7 SNPs
were associated with additive, 4 SNPs with dominant
and 6 markers with both gene actions. Of the additive
SNPs, one marker (rs313045367) resided on GGA26
while 6 were located on GGA28. One dominant SNP
(rs314011910) was detected on GGA22 while 3 domin-
ant SNPs (rs15250929, rs314052602 and rs318126353)
were located on GGA28. Of markers displaying both
gene actions, one marker (rs313298834) resided on
GGA12 and 5 were located on GGA28 (Table 1). Note
that the 14 significant SNPs residing on GGA28 were
co-localized in a region spanning 240,432 bp (3,818,934-
4,059,366 bp) with high LD (r2) levels. A detailed view of
these SNPs along with LD (r2) levels between markers is
depicted in Fig. 2. As the LD heatmap shows, there are
two haplotype blocks (r2 > 0.70) formed by marker pairs
rs15250929-rs16212041 and rs314418757-rs318126353
(Fig. 2). PVE by significant markers ranged from 0.70%
(rs10724922, rs317783777) to 0.85% (rs314418757) for
the additive markers and from 0.69% (rs314011910) to
0.84% (rs16212031, rs16212040, rs16212041) for the
dominant markers (Table 1). All together, the significant
additive and dominant SNPs explained a considerable
part i.e. 60 and 47% of the additive and dominant

genomic heritability, respectively. Nevertheless, as many
of the significant markers were localized in nearby loca-
tions on GGA28, PVE by markers are biased upwards.

Estimation of degree of dominance
Application of the LASSO method on the 14 co-
localized SNPs on GGA28 resulted in selection of two
markers i.e. rs16212040 and rs318126353 each one resid-
ing per different LD block (Fig. 2). Of these, rs16212040
was associated with both gene actions while
rs318126353 was associated only with dominant gene ac-
tion. Two more SNPs i.e. rs313298834 (GGA12) and
rs314011910 (GGA22) were detected as additive/domin-
ant or dominant markers, respectively. Estimates of a, d
and |d/a| for the four SNPs (rs16212040, rs318126353,
rs313298834 and rs314011910) are shown in Table 2. In
line with a purely dominant model where genotypic
values are solely determined by the presence or absence
of the dominant allele, genotypic means of the minor
homozygous and minor heterozygous were found to sig-
nificantly differ from the major homozygous genotypic
means (Table 2). Degree of dominance for the four SNPs
ranged from 0.42–0.76 (partial dominance, markers:
rs16212040, rs313298834 and rs318126353) to 1.1
(complete dominance, marker: rs314011910). Notably,
no marker was associated with over-dominance. We

Table 1 Chromosome-wide significant SNPs identified by additive (add), dominant (dom) or both additive and dominant (add/dom)
genetic models (MAF: Minor Allele Frequency)

SNP ID GGAa Position
(bp)b

p-value
(add/dom)

-log10(p-
value)
(add/dom)

Minor
allele

MAF PVEc(%) Genetic
modeladd dom

rs313298834 12 18,995,645 5.03832E-06/3.37289E-06 5.298/5.472 B 0.34 0.8 0.83 add/dom

rs314011910 22 1,711,605 2.30566E-05 4.637 A 0.14 – 0.69 dom

rs313045367 26 362,590 8.41209E-06 5.075 B 0.15 0.77 – add

rs15250929 28 3,818,934 1.93573E-05 4.713 B 0.2 – 0.7 dom

rs10724922 28 3,855,714 2.0557E-05 4.687 A 0.21 0.7 – add

rs15251036 28 3,875,127 1.74651E-05 4.758 B 0.21 0.71 – add

rs16212031 28 3,885,458 5.56121E-06/3.19578E-06 5.255/5.495 A 0.2 0.80 0.84 add/dom

rs314228493 28 3,888,943 4.69378E-06/4.46165E-06 5.328/5.351 B 0.2 0.81 0.81 add/dom

rs16212040 28 3,892,786 3.35519E-06/3.06323E-06 5.474/5.514 B 0.2 0.83 0.84 add/dom

rs16212041 28 3,892,872 3.24649E-06/3.06323E-06 5.489/5.514 A 0.2 0.83 0.84 add/dom

rs317783777 28 3,919,505 2.02328E-05 4.694 A 0.14 0.70 – add

rs314418757 28 3,921,905 2.70727E-06/1.62505E-05 5.567/4.789 A 0.21 0.85 0.72 add/dom

rs315316434 28 3,971,928 1.71745E-05 4.765 A 0.22 0.71 – add

rs314052602 28 3,990,564 1.30589E-05 4.884 B 0.21 – 0.73 dom

rs313312915 28 3,999,772 8.56382E-06 5.067 B 0.22 0.76 – add

rs14307369 28 4,003,865 1.37243E-05 4.863 A 0.21 0.73 – add

rs318126353 28 4,059,366 5.35831E-06 5.271 B 0.23 – 0.80 dom
a Chromosome for Gallus gallus
b Positions were based on GRCg6a assembly
c Proportion of variance explained
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furthermore sought to quantify the joint effect of the
combined genotype of the two markers (rs16212040 and
rs318126353) retained by LASSO on GGA28 by estimat-
ing LS means for the combined genotypes (Table 3).
This exercise delivered interesting results as highest EN
values were attained for AABB (μ = 138.8, n = 9) and

ABAA (μ = 138.9, n = 71) that could not be attributed to
additive allelic effects of individual markers. Specifically,
the highest EN estimate for AABB is suggestive of
additive-by-additive (AABB) interaction (epistasis) while
that of ABAA of additive-by-dominance (ABAA) epista-
sis. However, due to limited number of observations,

Table 2 Estimation of genotypic means (μ ± SE) for EN, additive allelic effects (a), dominance deviation (d) and degree of
dominance (|d/a|) for the significant additive/dominant markers

Marker Genotype (coded as) Sample size μ ± SE a ± SE d ± SE |d/a|

rs313298834 (add/dom) AA (0) 1595 129.9b ± 1.0 3.6* ± 0.8 2.6NS ± 2.0 |2.6/3.6| = 0.72

AB (1) 245 136.0a ± 2.0

BB (2) 746 137.1a ± 1.4

rs314011910 (dom) ΒΒ (0) 2167 133.7b ± 1.0 −3.5* ± 1.0 −3.8NS ± 3.2 |3.8/3.5| = 1.1

ΑΒ (1) 91 126.4a ± 3.2

ΑΑ (2) 328 126.7a ± 2.1

rs16212040 (add/dom) AA (0) 1695 135.2b ± 1.0 −5.0* ± 1.3 −2.1NS ± 1.7 |2.1/5.0| = 0.42

AB (1) 758 128.1a ± 1.3

BB (2) 133 125.2a ± 2.6

rs318126353 (dom) AA (0) 1583 135.5b ± 1.0 −4.1* ± 1.2 −3.1* ± 1.6 |3.1/4.1| = 0.76

AB (1) 838 128.3a ± 1.2

BB (2) 165 127.3a ± 2.4
a,b means with different superscripts are statistically different (p < 0.05)
*statistically significant with p < 0.05
NS non statistically significant

Fig. 2 LD heatmap for the 14 SNPs (blue labels) on GGA28. Note the formation of 2 LD blocks (denoted as black lined polygons). LD levels were
estimated using the gaston R package and were graphically displayed with use of LDheatmap [11] package in R (http://www.r-project.org/)

Tarsani et al. BMC Genomics          (2020) 21:512 Page 4 of 12

http://www.r-project.org/


especially for the AABB combined genotype (n = 9),
current results should be treated with caution.

Positional candidate genes
A total number of 57 positional candidate genes (i.e. 43
annotated and 14 LOC genes) were identified within the

searched genomic regions (Supplementary Table 1, Add-
itional file 2). The maximum number of genes (n = 16)
were detected around dominant rs318126353 (GGA28)
while the minimum number of genes (n = 6) were identi-
fied around 5 SNPs (rs317783777, rs314011910,
rs16212040, rs16212041 and rs314418757). Four additive
SNPs (rs313045367, rs10724922, rs317783777 and
rs315316434) were located within genes ARL8A (GGA26),
UPF1 (GGA28), CRTC1 (GGA28) and TMEM59L
(GGA28), while 2 more markers (rs313312915 and
rs14307369) resided in gene ELL (GGA28). Three domin-
ant SNPs (rs15250929, rs314052602 and rs318126353) lied
within genes DDX49, KXD1 PGPEP1 (GGA28). Of addi-
tive/dominant SNPs, 3 co-localized markers (rs314228493,
rs16212040 and rs16212041) were detected within COMP
(GGA28) and one more (rs314418757) within CRTC1
(GGA28). As 14 significant markers resided in nearby lo-
cations on GGA28, 26 out of the 36 positional candidate
genes were associated with more than one marker (Fig. 3).
The maximum number of SNPs (n = 10) were associated
with gene CRTC1.

Table 3 Least squares means (μ ± SE) for EN for combined
genotype of markers rs16212040 and rs318126353 on GGA28. N
is the sample size

Combined Genotype N μ ± SE

AA/AA 1512 135.3 ± 1.0

AA/AB 174 134.3 + 2.3

AA/BB 9 138.8 ± 9.6

AB/AA 71 138.9 ± 3.5

AB/AB 639 126.7 ± 1.3

AB/BB 48 129.9 ± 4.2

BB/AB 25 125.7 ± 5.8

BB/BB 108 125.0 ± 2.9

Fig. 3 Radial network of significant SNPs associated with positional candidate genes on GGA28. Figure was constructed using the data.tree and
networkD3 packages in R (http://www.r-project.org/)
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Functional enrichment analysis
A total number of 50 out of the 57 positional candidate
genes were recognized by the DAVID tool and used for
functional enrichment analysis. The latter analysis re-
vealed the ‘entrainment of circadian clock by photo-
period’ (GO:0043153) as the only significantly (p = 0.028)
enriched BP with two participating genes (CRTC1 and
BHLHE40) (results not shown).

Prioritized genes
Results of PA are displayed on Table 4. A total number
of 10 out of the 43 positional candidate genes were pri-
oritized (overall p-value< 0.05) according to the semantic
annotations imposed. The majority (n = 7) of the priori-
tized genes resided on GGA28, followed by two genes
(BHLHE40 and ITPR1) on GGA12 and one (ELF3) on
GGA26. On GGA28, the first ranked gene was GDF15,
followed by JUND, GDF3, COMP, ELL, CRLF1 and
IFI30. Notably, two highly ranked genes i.e. GDF15 (1st)
and GDF3 (4th) belong to the transforming growth fac-
tor beta (TGF-β) superfamily. The two genes (BHLHE40
and CRTC1) that participated in GO:0043153 ‘entrain-
ment of circadian clock by photoperiod’ were also priori-
tized and ranked 2nd and 13th, respectively.

Discussion
Mode of gene action
This is the first GWAS enlisting a significant number of
animals (n ~ 2600) and reporting on genetic variants im-
plicated in the genetic control of EN in broiler breeders.
Present results have demonstrated the need to thor-
oughly exploring the applicability of all possible genetic
models when conducting a GWAS. This is particularly
important when analyzing quantitative traits such as EN
where not only additive but also non-additive e.g. dom-
inant gene action of the causative loci may be fairly an-
ticipated [3]. In line with this expectation, 4 of the 17
significant variants were dominant while 6 more were
additive and dominant associations. The latter seems to
be a controversial finding, but it can be fairly explained
by examining the genotypic means across the examined
variants of Table 2. A ‘complete dominant’ genetic
model is when |d| = |a| meaning equal genotypic values
for the minor homozygous (μΑΑ) and the minor hetero-
zygous genοtypes (μΑΒ) that both differ from the major
homozygous genotypic mean (μΒΒ). This was exactly the
case for marker rs314011910 that was detected only as
dominant variant. But what happens in the case of par-
tial dominance (0 < |d| < |a|)? In such cases (see markers
rs313298834 and rs16212040 in Table 2) all genotypic
means differ (μΑΑ ≠ μΑΒ, μΑΑ ≠ μBΒ and μΑB ≠ μBΒ)
meaning that apart from the dominant model, a linear
relationship between the genotypic mean values and the
number of copies of the minor allele i.e. the additive

genetic model may also be applicable. For an excellent
interpretation of how least squares regression performs
in GWAS in additive and dominant models we refer to
Huang and Mackay [12]. So far, we have discussed the
applicability of the additive and dominant model, but we
have neglected the case of over-dominance (|d| > |a|). In
the latter case, μΑB > μΑA and μΑB > μBB implying the
need of using a different model parameterization by cod-
ing the heterozygous genotypes as 1 and the two homo-
zygous genotypes as 0. Due to model parameterization
difficulties we could not explore the validity of an over-
dominant genetic model here and this may be the reason
why no marker has been associated with over-
dominance in the current study.
While estimates of genetic effects (additive and/or

dominant) are expected unbiased for a few, independent
variants, this may not be the case for multiple, highly
correlated variants residing on the same haplotype
block(s) since the effect(s) may be ‘shared’ by many
SNPs. For this reason, it is important to have a parsimo-
nious model involving limited number of regressors
(SNPs). To this end, application of the LASSO technique
has proved particularly helpful as it has selected only
two markers, each one residing in the two LD blocks on
GGA28. Then, the next step was to explore whether the
two variants interact and, if yes, to portray the exact type
of interaction. This exploration has delivered interesting
results since non-additive genetic interaction(s) between
the two variants could also be detected. Although these
findings are based on limited number of observations,
they are indicative of potential importance of epistasis in
the inheritance of the trait.

Functional candidate genes
Another intriguing problem that needed to be addressed
in the present study was as how to narrow down the list
with the 43 positional candidate genes. This post-GWAS
step presents an important problem, because the experi-
mental validation of the true causal genetic variants re-
quires considerable costs, effort and time. To address
this issue, we performed in silico prioritization analysis
(PA) using explicitly two semantic annotations: GO: BP
and co-expression. This approach was based on the
assumption that co-expressed genes tend to be involved
in the same biological process and that expression of
functionally related genes should vary concordantly
across the various tissues. Typically, gene co-expression
networks do not provide information about causality,
but they can serve as first proof of their involvement in
a particular biological process [13] and can be effectively
used for the identification of regulatory genes underlying
phenotypes [14]. Following this approach, 10 prioritized
genes (GDF15, BHLHE40, JUND, GDF3, COMP, ITPR1,
ELF3, ELL, CRLF1 and IFI30) with interesting biological
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Table 4 List of prioritized genes

Rank Gene ID Description GGA Overall

p-value

1 GDF15 growth differentiation factor 15 28 0.019

2 BHLHE40 basic helix-loop-helix family member e40 12 0.027

3 JUND JunD proto-oncogene, AP-1 transcription factor subunit 28 0.029

4 GDF3 growth differentiation factor 3 28 0.030

5 COMP cartilage oligomeric matrix protein 28 0.037

6 ITPR1 inositol 1,4,5-trisphosphate receptor type 1 12 0.039

7 ELF3 E74 like ETS transcription factor 3 26 0.040

8 ELL elongation factor for RNA polymerase II 28 0.044

9 CRLF1 cytokine receptor like factor 1 28 0.047

10 IFI30 IFI30, lysosomal thiol reductase 28 0.048

11 ISYNA1 inositol-3-phosphate synthase 1 28 0.050

12 RAB3A RAB3A, member RAS oncogene family 28 0.051

13 CRTC1 CREB regulated transcription coactivator 1 28 0.057

14 GPR37L1 G protein-coupled receptor 37 like 1 26 0.057

15 PIK3R2 phosphoinositide-3-kinase regulatory subunit 2 28 0.060

16 GFRA2 GDNF family receptor alpha 2 22 0.061

17 EDEM1 ER degradation enhancing alpha-mannosidase like protein 1 12 0.069

18 FKBP8 FK506 binding protein 8 28 0.069

19 PDE4C phosphodiesterase 4C 28 0.083

20 LGR6 leucine rich repeat containing G protein-coupled receptor 6 26 0.086

21 HOMER3 homer scaffolding protein 3 28 0.112

22 LSM4 LSM4 homolog, U6 small nuclear RNA and mRNA degradation associated 28 0.114

23 COPE coatomer protein complex subunit epsilon 28 0.149

24 ARL8B ADP ribosylation factor like GTPase 8B 12 0.150

25 PTPN7 protein tyrosine phosphatase, non-receptor type 7 26 0.152

26 PGPEP1 pyroglutamyl-peptidase I 28 0.156

27 C19orf60 (also known as REX1BD) chromosome 19 open reading frame 60 28 0.172

28 SSBP4 single stranded DNA binding protein 4 28 0.192

29 UBA52 ubiquitin A-52 residue ribosomal protein fusion product 1 28 0.192

30 UPF1 UPF1, RNA helicase and ATPase 28 0.192

31 CERS1 ceramide synthase 1 28 0.198

32 MPV17L2 MPV17 mitochondrial inner membrane protein like 2 28 0.228

33 DOK2 docking protein 2 22 0.262

34 XPO7 exportin 7 22 0.292

35 ARL8A ADP ribosylation factor like GTPase 8A 26 0.340

36 DDX49 DEAD-box helicase 49 28 0.345

37 SUGP2 SURP and G-patch domain containing 2 28 0.345

38 KLHL26 kelch like family member 26 28 0.345

39 KIF21B kinesin family member 21B 26 0.351

40 KXD1 KxDL motif containing 1 28 0.351

41 LRRC25 leucine rich repeat containing 25 28 0.588

42 TMEM59L transmembrane protein 59 like 28 0.588

43 PTPRVP protein tyrosine phosphatase, receptor type, V, pseudogene 26 1.000
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properties were highlighted. Genes GDF15 (growth dif-
ferentiation factor 15, placed 1st) and GDF3 (growth dif-
ferentiation factor 3, placed 4th) serve as good examples
here since they both belong to the TGF-β superfamily
genes. In rodents and humans, many factors belonging
to the TGF-β superfamily are expressed by ovarian som-
atic cells and oocytes in a developmental manner and
function as intraovarian regulators of folliculogenesis
[15]. In humans, GDF15 is involved in placentation [16],
while GDF3 might affect folliculogenesis by inhibiting
the bone morphogenetic protein cytokines [17]. In
chickens, GDF3 (also known as cVg1) is expressed at the
early blastoderm stages of embryonic development [18]
while another TGF-β member i.e. GDF9 is expressed in
the ovary and functions on hen granulosa cell prolifera-
tion as in mammals [19]. Expression of BHLHE40 (basic
helix-loop-helix family member e40) in the mouse ovary
leads to a circadian gating of cellular processes in the
ovary as well as in the hypothalamus during ovulation
[20]. JUND (JunD proto-oncogene, AP-1 transcription
factor subunit) is important for maturation of human
ovarian cells [21]. COMP (cartilage oligomeric matrix
protein) is involved in ovarian follicle development in
mice [22] while mutations of COMP gene affect chon-
drogenesis in chickens [23]. ITPR1 (inositol 1,4,5-tris-
phosphate receptor type 1) is involved in the Ca2+

transport for supplying eggshell mineral precursors in
chicken uterus [24, 25] while ELF3 (E74 like ETS tran-
scription factor 3) has been related to the development
of chicken oviducts [26] and ELL (elongation factor for
RNA polymerase II) has been associated with yolk weight
[27] in chickens. Notably, the final two nominated candi-
dates i.e. CRLF1 (cytokine receptor like factor 1) and
IFI30 (IFI30, lysosomal thiol reductase) had no docu-
mented involvement in reproduction. Such a finding un-
derscores the limitations of in silico PA. In almost every
guilt-by-association (GBA)-based prioritization tool,
functional annotations of genes refer mainly to human
and mouse PPINs (protein-protein interaction networks)
[28] neglecting relevant information on livestock species
[29] such as that examined here. One more limitation of
GBA-based networks relates to their degraded predictive
performance for genes with unknown or multiple func-
tions [28].
Of particular interest in this study were genes

BHLHE40 and CRTC1 (CREB regulated transcription co-
activator 1). Both genes were enriched in the BP of ‘en-
trainment of circadian clock by photoperiod’ raising the
intriguing question as what might be the exact mechan-
ism of their implication in egg production. To answer
the question, first we have to provide a short description
of the molecular mechanism underlying circadian
rhythms (CR). CR are controlled by a pacemaker located
within the suprachiasmatic nucleus of the hypothalamus

that is entrained to the external light–dark cycle via light
input from the retina conveyed via the retinohypothala-
mic tract [30]. In hens, as in many avian species, expos-
ure to photoperiods of longer than 11.5 h/day causes
development and growth of testes and ovarian follicles
via rapid induction of the hypothalamo-hypophysial-
gonad axis [31]. At the intracellular level, four clock-
gene families are reported to be involved in a transcrip-
tion–translation feedback loop that generates the CR.
Gene products of Clock and Bmal1 act as positive com-
ponents, whereas those of the Per and Cry genes act as
negative ones [32]. With regard to our candidate genes,
BHLHE40 (also known as BHLHB2) acts as a suppressor
of Clock and Bmal1 genes [33] while an entrainment
stimulus causes CRTC1 to induce expression of Per1
and Sik1 [34]. As the molecular bases for circadian
clocks are highly conserved across species, it is very
likely that the avian molecular mechanisms are similar
to those expressed in mammals, including humans [31].
In total, 7 (GDF15, BHLHE40, JUND, GDF3, COMP,

ELF3 and CRTC1) of the prioritized genes were associ-
ated with reproductive traits while 2 (ITPR1 and ELL)
were related to egg quality traits. From the above, only 3
genes i.e. COMP, ELL and CRTC1 included significant
SNPs. We finally, compared our candidate genes list
(Supplementary Table 1, Additional file 2) to a compiled
gene list including 271 genes (Supplementary Table 2,
Additional file 3) identified in previous GWASs for
chicken egg and reproductive traits. This comparison
highlighted two common genes i.e. ELL and ARL8A.
Note that the first is among the prioritized candidates
(ranked 8th) while the second ARL8A (ADP ribosylation
factor like GTPase 8A) has been associated with eggshell
thickness and eggshell formation [5] in chickens.

Conclusions
Current results have shown that apart from the additive
also the dominant genetic model was of importance for
EN in broilers. These results underline the need to thor-
oughly exploring the applicability of all possible genetic
models when performing GWAS for a trait such as that
examined here. Detailed follow-up studies are warranted
to verify whether the identified genomic markers and the
associated candidate genes present true causal genetic en-
tities impacting on the trait. Such studies would entail tar-
geted re-sequencing and molecular characterization of the
candidate variants to facilitate the identification of true
causal variants.

Methods
Data
Genotypic and phenotypic records for 2992 female
broiler breeders from a purebred line were provided by
Aviagen Ltd. EN records (28 to 50 weeks of age) ranged
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from 26 to 196 eggs per hen with an average of 132.4
(SD = 29.8). The 600 k Affymetrix® Axiom® high density
genotyping array [35] was employed for animal genotyp-
ing with a total number of 544,927 SNPs available, dis-
persed in 29 autosomes (GGA1–28 and GGA33).
Quality control (QC) assessment was performed at both
sample and marker level. At a sample level, 406 animals
were excluded when they had a call rate lower than 0.99
and an autosomal heterozygosity outside the 1.5 inter-
quartile range (IQR: 0.013). At a marker level, a number
of 305,660 SNPs were removed, based on: call rate
(lower than 0.95), minor allele frequency MAF (lower
than 0.05) and linkage disequilibrium (LD) pruning (r2

values greater than 0.99 within windows of 1Mb inter-
marker distances). Finally, a total of 2586 samples and
239,267 SNPs across 28 autosomes (GGA1–28) were
retained for further analyses. QC was performed using
the SNP & Variation Suite software (version 8.8.3).

Marker-trait association analysis
Stepwise regression with forward inclusion and back-
ward elimination of multiple markers (SNPs) [36] was
applied to identify SNPs associated with the trait, assum-
ing first an additive and second a dominant gene action
for the SNP effects.
Specifically, the following mixed model was used for

EN data:

y ¼ Xβþ wαþ Ζuþ e

where y is the n × 1 vector of phenotypic values of EN
for n female broilers, X is the n × 53 matrix of fixed ef-
fects: hatch (36 classes) and mating group (17 classes), β
is the 53 × 1 vector of corresponding coefficients of fixed
effects, a is the fixed effect for the minor allele of the
candidate SNP to be tested for association, w is the inci-
dence vector relating observations to SNP effects with
elements coded as 0 for the major homozygous geno-
type, 1 for the heterozygote genotype and 2 for the
minor homozygous genotype (additive genetic model)
and 0 for the major homozygous genotype and 1 for the
heterozygous and minor homozygous genotypes (domin-
ant genetic model). Z is the incidence matrix relating
observations to the polygenic random effects, u is the
vector of polygenic random effects and e is the vector of
random residuals.
The random effects were assumed to be normally dis-

tributed with zero means and the following (co)variance
structure:

Var
u
e

� �
¼ Gσ2u 0

0 Iσ2e

� �

where σ2
u and σ2e are the polygenic and error variance

components, I is the n x n identity matrix, and G is the

n x n genomic relationship matrix (GRM [37]) with ele-
ments of pairwise relationship coefficient using the
239,267 SNPs. Τhe genomic relationship coefficient be-
tween two individuals j and k, was estimated as follows:

1
239; 267

X239;267
i¼1

xij − 2pi
� �

xik − 2pið Þ
2pi 1 − 2pið Þ

where xij and xik represent the number (0, 1, 2 in the
additive model and 0, 1, 1 in the dominant model) of the
minor allele of the ith SNP of the jth and kth individuals,
and pi is the frequency of the minor allele [37].
Statistically significant SNPs per genetic model were se-

lected at the optimal step of the stepwise regression according
to the extended Bayesian Information Criterion (eBIC [38]).
SNP p-values were subsequently corrected for multiple com-
parisons using the Bonferroni correction method. A SNP was
considered as significant at the genome-wide level when its p-
value was lower than the threshold value 2.09E-07 (0.05/239,
267) while a chromosome-wide significant SNP had a p-value
lower than 0.05/N, where N is the number of SNPs on a
given chromosome. All analyses were performed using the
SNP & Variation Suite software (version 8.8.3). SNP positions
were based on GRCg6a assembly (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000002315.6 [39], https://www.ncbi.nlm.
nih.gov/genome/annotation_euk/Gallus_gallus/104/ [40]).

Quantile-quantile plots and genomic inflation factors
To characterize the extent to which the observed distri-
bution of the test statistic followed the expected (null)
distribution, quantile-quantile (Q-Q) plots were used.
These plots in combination with estimates of the gen-
omic inflation factor (λ) were used to assess potential
systematic bias arising from population structure or the
analytical approach [41]. Estimation of λ was performed
using the SNP & Variation Suite (version 8.8.3).

Estimation of genomic heritability and proportion of
variance explained
Estimation of the genomic heritability was implemented
via the realized GRM of 2586 animals derived from the
239,267 SNPs.
The proportion of variance explained by a SNP k

(PVEk) was also calculated as follows:

PVEk ¼ mrssh0 −mrssk
mrssh0

where mrssh0 is the Mahalonobis root sum of squares
(mrss) for the null hypothesis and mrssk is the same for
marker k. All above estimations were performed using
the SNP & Variation Suite software (version 8.8.3).
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Identification of significant SNPs under multicollinearity
conditions
When multiple markers were present in a specific gen-
omic region, a variable selection method i.e. the Least
Absolute Shrinkage and Selection Operator (LASSO)
[42] as implemented in procedure GLMSELECT in SAS
9.3 (2012) was applied to identify the most representa-
tive markers in the area.

Estimation of the degree of dominance
Significant SNPs associated with dominant or dominant
and additive gene action(s) were further analysed toward
estimation of additive allelic effects, dominance deviation
and degree of dominance. This analysis was based on es-
timates of genotype least squares (LS) means by applica-
tion of a mixed model to the EN data fitting hatch,
mating group and the marker as fixed effects and the
animal as a random effect. Degrees of freedom were esti-
mated using the Satterthwaite method while the Tukey-
Kramer method was used to adjust the p-values because
of multiple means comparisons. Results of the mixed
model analysis are presented as LS means (μ) with
standard errors (SE). Additive allelic effect (a) was de-
fined as half the difference between LS means of the two
homozygous genotypes, using the minor homozygous
genotypes as reference. Dominance deviation (d) was the
heterozygous genotype LS mean minus the average of
the two homozygous genotype LS means. Finally, degree
of dominance was determined as |d/a|, where additive =
0–0.20, partial dominance = 0.21–0.80, complete domin-
ance = 0.81–1.20 and over-dominance> 1.20 [43, 44].
This analysis was performed by the MIXED procedure
in SAS 9.3 (2012).

Detection, functional characterization and prioritization of
positional candidate genes
We searched within 50 kb downstream and upstream flank-
ing regions of each significant marker for positional candidate
genes using the NCBI database (https://www.ncbi.nlm.nih.
gov/gene/ [45]) and the GRCg6a assembly (https://www.ncbi.
nlm.nih.gov/assembly/GCF_000002315.6 [39], https://www.
ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/104/
[40]). Subsequently, the total number of positional candidate
genes was subjected to the following analyses: Gene Ontology
(GO) Biological Process (BP) enrichment analysis and gene
prioritization analysis (PA).
GO enrichment analysis for BP was carried out using

the DAVID functional annotation tool (https://david.
ncifcrf.gov/, version 6.8) [46] and the Gallus gallus spe-
cies for the input gene list and as genome background.
During enrichment analysis, the following settings were
used: EASE score (modified Fisher’s exact p-value [47])
cutoff = 0.05 and minimum number of genes per GO BP

term = 2. GO BPs with p-values lower than 0.05 were
considered as significantly enriched.
Gene prioritization analysis (PA) of the positional can-

didate genes followed, using the ToppGene portal
(https://toppgene.cchmc.org/prioritization.jsp [48]). PA
was based on the functional similarity of the positional
candidate genes (test genes) to a training gene list in-
cluding a total number of 31 genes (Supplementary
Table 3, Additional file 4). The latter genes were re-
trieved from the NCBI database (https://www.ncbi.nlm.
nih.gov/gene/ [45]) using the search terms ‘reproduction’
and ‘egg production’ in Gallus gallus. Candidate gene
prioritization is based on fuzzy functional similarity
measures between any two genes and specific semantic
annotations imposed. In our study two semantic annota-
tions: ‘GO: Biological Process’ and ‘Coexpression’ were
used. A p-value for each annotation of a test gene was
derived by random sampling of 5000 genes from the
whole genome. The partial p-values were finally com-
bined into an overall p-value using the probability dens-
ity function. For gene prioritization, there were 30
training genes (ZNF764L was omitted) and 43 test genes
(positional candidate genes). Not all of the 57 positional
candidate genes were included in the analysis because
the human homologs could not be found for all of them,
especially for LOC genes (n = 14). Genes with an overall
p-value lower than 0.05 were considered as prioritized.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06915-1.

Additional file 1: Supplementary Fig. 1. Quantile- quantile (Q-Q)
plots of the additive (top) and dominant (bottom) SNP effects for EN.
Blue dots denote the −log10(p-value) obtained from the additive (λ =
0.95) and dominant (λ = 0.97) genetic models and the red lines represent
the expected values for the null hypothesis under no association. Q-Q
plots were constructed with the qqman package [49] in R (http://www.r-
project.org/).

Additional file 2: Supplementary Table 1. Positional candidate genes
for EN.

Additional file 3: Supplementary Table 2. Genes obtained by
previous GWASs for egg and reproductive traits in Gallus gallus.

Additional file 4: Supplementary Table 3. List of training genes
retrieved by the NCBI database for the ‘reproduction’ and ‘egg
production’ queried terms in Gallus gallus.
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