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Humans are fast and accurate in categorizing complex natural images. It is, however,

unclear what features of visual information are exploited by brain to perceive the images

with such speed and accuracy. It has been shown that low-level contrast statistics of

natural scenes can explain the variance of amplitude of event-related potentials (ERP) in

response to rapidly presented images. In this study, we investigated the effect of these

statistics on frequency content of ERPs. We recorded ERPs from human subjects, while

they viewed natural images each presented for 70ms. Our results showed that Weibull

contrast statistics, as a biologically plausible model, explained the variance of ERPs the

best, compared to other image statistics that we assessed. Our time-frequency analysis

revealed a significant correlation between these statistics and ERPs’ power within theta

frequency band (∼3–7Hz). This is interesting, as theta band is believed to be involved in

context updating and semantic encoding. This correlation became significant at∼110ms

after stimulus onset, and peaked at 138ms. Our results show that not only the amplitude

but also the frequency of neural responses can be modulated with low-level contrast

statistics of natural images and highlights their potential role in scene perception.

Keywords: visual perception, natural images, image statistics, visual cortex, event-related potentials

INTRODUCTION

Categorization of complex natural images is performed with stupendous speed and with
outstanding accuracy by our visual systems. This happens despite multiple confounding factors
including changes in illumination, contrast, and viewing distance. Early behavioral studies have
revealed that humans are easily able to categorize object images within a fraction of a second with
significantly high accuracy (Potter and Levy, 1969; Potter, 1976; VanRullen, 2007; Fabre-Thorpe,
2011; Mack and Palmeri, 2011). Also, event-related potential (ERP) experiments in humans have
shown that the categorization of rapidly presented animal and non-animal images is achieved
∼150ms after stimulus onset (Thorpe et al., 1996; Vanrullen and Thorpe, 2001). These suggest
that rapid categorization is performed through the feed-forward flow of information across ventral
visual pathway and brain exploits the most relevant visual features at first glance for decision-
making (Thorpe et al., 1996; Vanrullen and Thorpe, 2001; Oliva, 2005; Greene and Oliva, 2009a,b).
Yet, the visual features that are extracted by brain very early after viewing an image are not
well-known.
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Natural images, despite being highly complex, are governed
by statistical regularities and it is thought that sensory processing
has been adapted to these statistical properties in natural
environment (Field, 1987; Simoncelli and Olshausen, 2001;
Yoonessi and Kingdom, 2008). Several studies have investigated
the relationship between these natural image statistics and
visual perception. For example, behavioral studies suggest that
Fourier amplitude and phase spectrum of natural images provide
category-related information, while images are rapidly presented
(Kaping et al., 2007; Loschky et al., 2007; Honey et al., 2008;
Gaspar and Rousselet, 2009; Joubert et al., 2009). Similarly,
modeling studies have successfully employed spatial frequency
content to categorize natural images (Torralba and Oliva, 2003;
Drewes et al., 2005). It has also been shown that human reaction
time and accuracy can be predicated based on natural image
statistics (Groen et al., 2012b; Mirzaei et al., 2013).

Other studies provide evidence that neural responses are
modulated with different statistical properties of natural images.
Several studies have shown that components of early visual
evoked potentials (VEP) in response to natural images are
significantly modulated with different spatial frequencies of the
images (Hansen et al., 2011, 2012). Also, the modulation of
EEG signals in response to images with different global low-
level statistics such as luminance (Martinovic et al., 2011), power
spectrum (Johnson and Olshausen, 2003), and phase information
(Baker et al., 2008; Rousselet et al., 2008; Bieniek et al., 2012)
has been reported. Nevertheless, it is still unclear what statistical
properties of natural images elicit stronger modulations on
neural responses.

Recent studies show that Weibull contrast statistics can be
one of the good candidates for such properties, as they follow
a biologically plausible model and are highly correlated with
the model responses reported for X and Y cells in Lateral
Geniculate Nucleus (LGN) (Ghebreab et al., 2009; Scholte et al.,
2009). Interestingly, it has been demonstrated that ERPs in
response to natural images, presented to human subjects, are
significantly correlated with image statistics calculated based on
contrast distribution of images (Ghebreab et al., 2009; Scholte
et al., 2009; Groen et al., 2012a,b, 2013). These studies showed
that the contrast distribution of natural images follows Weibull
distribution. Moreover, the Weibull contrast statistics are not
only correlated with the amplitude of ERPs (Ghebreab et al.,
2009; Scholte et al., 2009), but also are correlated with human
reaction time and behavioral performance (Groen et al., 2012b,
2013; Mirzaei et al., 2013).

In this study, we extended these findings by investigating
whether Weibull statistics can explain the frequency modulation
of neural responses to a diverse set of natural images (Torralba
and Oliva, 2003; Serre et al., 2007; Crouzet and Serre, 2011), as
other studies have earlier shown that the frequency content of
brain signals [e.g., local field potentials (LFP) and EEG] can be
modulated by the properties of visual stimulus (Tallon-Baudry
et al., 1998; Kayser and König, 2004; Henrie and Shapley, 2005;
Berens et al., 2008; Freunberger et al., 2008).

To address this question, we recorded ERPs from human
subjects, viewing a variety of natural images. We extracted
different image statistics, including Weibull contrast statistics,

from the image set and investigated their relationship with
human ERPs in time-frequency domain.We showed thatWeibull
statistics show significant correlation between ∼110–185ms
after stimulus onset within the frequency band of ∼3–7 Hz
(theta band), suggesting that brain may exploit such statistical
regularities for rapid scene understating. The modulation in
theta band is thought to be associated with context updating,
episodic, and semantic encoding in different cognitive processes
(Klimesch, 1999; Makeig et al., 2004; Sauseng et al., 2007).
We further supported these results using information theoretic
analysis as a more robust method beyond correlation analysis.

MATERIALS AND METHODS

Stimulus Set
The stimulus dataset included 1000 images, divided into two
groups of animal and non-animal images, each with 500 images.
The animal category contained images of a wide variety of
animals in their natural habitat. Half of the non-animal images
(250) were natural environments (e.g., moor, mountain, forest,
and river), and the other half were images from man-made
environments (e.g., buildings and streets). There were four sub-
categories in each major category including: Head, close-body,
medium-body and far-body (representing the viewing distance
from the camera). Each sub-category contains 125 images. The
size of the images was 256 × 256 pixels. The image database
is publicly available [http://cbcl.mit.edu/software-datasets/serre/
SerreOlivaPoggioPNAS07/index.htm, collected, by Torralba and
Oliva (2003)].

Participants and Image Presentation
EEG signals were recorded from 13 human subjects (aged 26–36;
mean age 30, all male) while viewing images. Subjects had either
a normal or corrected-to-normal vision. Participants sat on a
chair located in a room under dim light condition at a viewing
distance of 57 cm from the computer screen. The stimuli were
presented on a 17′′ CRT monitor (mean luminance 61 cd/m2)
with 1024 × 768 pixels resolution and 85Hz refresh rate using
MATLAB and psychophysics toolbox (Brainard, 1997; Pelli,
1997) (http://psychtoolbox.org).

In each trial, a fixation cross was presented at the center of
the screen for 500ms. Subsequently, an image was randomly
selected from the database and presented for the duration of
∼70ms (6 frames in 85Hz monitor) centrally positioned on the
screen (covering∼11◦∗11◦ of visual angle) against a gray uniform
background. A blank screen was then presented for∼650–700ms
as inter-stimulus interval (ISI). Participants were instructed to
maintain their fixation throughout the trial and see whether the
image contained any animal or not (Figure 1). The next trial was
started immediately after the blank period. Images were drawn
without replacement, meaning that they presented once to each
subject.

All images were converted to grayscale. This was done to
remove any possible color effect. This also allowed us to calculate
image statistics on a single color channel (i.e., gray). Images
were divided into 4 blocks, each containing 250 images from the
dataset with the same number of animals and non-animals in
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FIGURE 1 | The paradigm of stimulus presentation, sample ERPs, and the method for correlation analysis. In each trial, a fixation cross was presented for

500ms; then an image was randomly selected from the image database and presented to subjects for the duration of 70ms (6 frames, monitor refresh rate 85Hz).

Note that we used grayscale images in the actual experiment; here, we showed them in color for the sake of better visualization. Subsequently, a blank screen was

presented for ∼650–700ms. Next trial was started immediately after the end of blank screen. EEG signals were segmented into epochs of 800ms (from 100ms

before stimulus onset to 700ms post-stimulus). ERPs are shown for a sample subject for Oz electrode. Each color shows a single trial ERP in response to an image.

The electrode positions are shown at the top-right corner. We recorded from 42 electrodes, mostly located on occipital and temporal lobe. The correlation between

each image statistic and ERPs was calculated across all time points, subjects, and electrodes.

each block. All images in each block were randomly selected and
presented. Subjects required approximately 6min for completing
each block. After finishing each block, we encouraged them to
take a rest. Each experiment (4 blocks) took around 40min in
total.

All subjects voluntarily participated to the experiments
and gave written informed consent prior to participation. All
experimental protocols were approved by the ethical committee
of the Institute for Cognitive Science Studies (ICSS). Experiments
were carried out in accordance with the guidelines of the
declaration of Helsinki and the ethical committee of the Institute
for Cognitive Science Studies (ICSS).

Image Statistics
Extracting Weibull Contrast Statistics from Images
It has been suggested that the contrast distribution of natural
images follows Weibull distribution. Weibull distribution has
two free parameters that change the scale (beta) and the shape
(gamma) of the distribution (Simoncelli, 1999; Ghebreab et al.,
2009). The beta parameter varies with the range of contrast
strengths in the image, whereas gamma varies with the degree
of correlation between contrasts (scene fragmentation). We
extracted Weibull contrast statistics using a method similar to

Groen et al. (2012b). First, gray-scale images were filtered with
a set of biologically plausible LGN-like spatial filters (Bonin et al.,
2005). They were second-order derivative of Gaussian filters with
different sizes (Bonin et al., 2005; Ghebreab et al., 2009). It has
been shown that for the estimation of gamma parameter larger
filter sizes are more appropriate, while the beta parameter is
well-estimated using smaller filter sizes (Scholte et al., 2009).
Therefore, for the beta parameter, a bank of filters with 5 octave
scales (4, 8, 16, 32, and 64 standard deviation in pixels) was
used; for the gamma parameter, the filter bank consisted of octave
scales 5, 10, 20, 40, and 80. Following Groen et al. (2012b),
we normalized the output of each filter using a Naka-Rushton
function, consisting of 5 semi-saturation constants (from 0.15 to
1.6) that met the spectrum from linear to non-linear contrast gain
control in the LGN. After applying the filter banks, we selected
the smallest filter with the output higher than what is expected
to be noise for that specific filter for beta and gamma, using
minimum reliable scale selection (Elder and Zucker, 1998). The
noise thresholds were computed using a large pool of natural
images (Groen et al., 2012b). After selecting an appropriate
filter response, the result was a contrast magnitude map with
the size of 256 × 256 pixels. Finally, a Weibull function was
fitted using maximum likelihood estimation (MLE-with 96%
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confidence) to the histogram of the contrast maps, to determine
beta and gamma parameters, whichwere used asWeibull contrast
statistics (Figure 2).

Extracting Fourier Statistics from Images
We also calculated Fourier statistics based on the frequency
content of the images, using an approach similar to Oliva and
Torralba (2001). Each gray-scale image was transformed to
frequency domain using 2-dimentional Fast Fourier Transform.
Then, a 1-dimentional curve was obtained by rotational
averaging on the amplitude spectrum of each image. Finally, a
line was fit to the log-log representation of this curve, providing
us with the two Fourier statistics: Slope and Intercept (Figure 2).

Global Luminance-Contrast Statistics
To make our results comparable to previously reported results
(Scholte et al., 2009), we calculated Michelson and Root Mean
Square (RMS) contrasts as two other standard contrast measures.
Michelson contrast was obtained using: M = Lmax − Lmin/Lmax

+ Lmin, where Lmin is the lowest intensity and Lmax is the

highest intensity in the image. The RMS contrast was calculated
by dividing the standard deviation of the intensity values of all
pixels in the image to the mean intensity. The average Michelson
contrast of the images was 99 ± 4% (mean ± STD; minimum
= 50%, maximum = 100%), while the average RMS contrast of
the images was 0.52 ± 0.17 (mean ± STD; minimum = 0.12,
maximum= 1.62).

Data Acquisition and Pre-processing
EEG signals were recorded using a 64-channel data acquisition
system (Asalab, 64-channel EEGẼRP recording device
manufactured by ANTneuro, Netherland). We used an extended
10–20 standard cap for recording. Signals were recorded at 512
Hz sampling rate. We recorded from 42 channels, mostly located
in occipital and temporal areas (see Figure 1, right inset), since
early recordings and analyses indicated that channels in frontal
part were not strongly modulated with our visual stimulation.
Moreover, previous studies showed that only occipital channels
were strongly correlated with image statistics (Scholte et al.,
2009; Groen et al., 2012a,b, 2013). Offline referencing was

FIGURE 2 | Scatter plot of different image statistics for the database. (A) Fourier amplitude spectrum of several sample images from the image database. Note

that all image statistics were calculated using grayscale images; here, we showed them in color for the sake of better visualization. The amplitude spectrum has a

negative slope for natural images. A line was fit to the amplitude spectrum and the slope and intercept were used as Fourier amplitude statistics. (B) Scatter plot of

slope against intercept for all images. (C) Contrast distributions for several sample images after applying LGN-like filters and filter selection (Materials and Methods).

The contrast distributions follow Weibull distribution. A Weibull function was fit to the contrast distribution and two parameters (i.e., beta and gamma) were extracted

as Weibull contrast statistics. (D) Scatter plot of beta against gamma for all images.
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performed using two earlobe electrodes. Eye movements rarely
affected the signals recorded on occipital electrodes; however,
we recorded from 3 frontal electrodes, and removed the effects
of eye movements on EEGs using thresholding. Offline filtering
was performed using MATLAB filter design. For the amplitude
analyses, signals were first filtered with a high-pass filter with
cut-off frequency of 0.1Hz and then with a low-pass filter with
cut-off frequency of 30Hz. For the frequency analyses, signals
were filtered between 0.1–60Hz (details are provided in the
next section). All signals were segmented from 100ms before
stimulus onset to 700ms after stimulus presentation. We used
−100 to 0ms of each epoch for baseline correction, while 0ms
representing stimulus onset. To have more reliable ERPs, we used
an automatic artifact removal method for removing outliers. For
this purpose, we first calculated a global average for all ERPs
recorded from each channel, separately for each subject. Then,
we measured the distance (Euclidean distance) between each
recorded ERP (related to each stimulus) and the global averaged
ERP (separately for each subject and electrode). Each ERP that
was deviated more than ±3 STD from the mean was removed
from further analysis. The minimum rejection rate was 10%
with the maximum of 21% (median 13%). Other measures, such
as correlation, were also tested but Euclidean distance showed
the most reliable result. Finally, all signals were converted to
Current Source Density (CSD) responses to have more localized
signals (Perrin et al., 1989). Note that although CSD made the
recorded signals more localized around each electrode (Nunez
and Srinivasan, 2006), it did not change the results (i.e., the
strength of correlation; described later). This way allowed us
to find which electrode has the strongest modulation driven
by stimulus. All analyses were performed in MATLAB using
custom-made programs (MathWork, on a 3 GHz CPU, 64 Bits
desktop computer).

Data Analysis
Correlation with ERP Amplitude
To assess whether different image statistics can explain the
modulations in the amplitude of ERPs, we calculated the
Pearson’s correlation between each image statistics and ERPs for
every electrode, time point, and subject, separately (Figure 1).
First, all single trial ERPs in response to images were loaded into
MATLAB with their corresponding image statistics. Then, we
computed the correlation between image statistics (e.g., 1000 beta
parameters) and ERPs’ amplitude at each time point (from −100
to 700ms). This provided us with a correlation coefficient and a
p-value at each time point. To correct for multiple comparisons
(time points, electrodes and parameters), p-values were FDR-
corrected at = 0.05. To test whether the combination of image
statistics can explain higher variance compared to using each
image statistic individually, we ran two other regression analyses:
(1) Using all image statistics as regressors on ERP amplitude.
We called this Full model. (2) Using both Weibull parameters as
regressors. This model was calledWeibull model.

Correlation with ERP Frequency
The main focus of our study was to see whether the differences
in images statistics can explain the modulations in the power of

different frequencies of ERPs. Note that all frequency analyses
were performed on ERPs filtered between 0.1 and 60Hz. Also,
we subtracted the average ERP from the single trials for our
frequency analysis. This way we removed the phase-locked ERP
component from the overall EEG signal. Then, each single
trial ERP was transformed to Fourier space and the power
spectrum of the ERP was computed (for every channel and
subject separately). Having done this, we generated a power
spectrum for each single trial ERP. Subsequently, the correlation
between each image statistic and the power of each frequency
was calculated, providing us a correlation coefficient and a
p-value for that frequency. Note that this stage is similar to
the correlation analysis for ERP amplitude, but here we have
power spectrum instead. To correct for multiple comparisons
(frequencies, electrodes, and parameters), p-values were FDR-
corrected at= 0.05.

In order to investigate the time course of the modulation
of power at each frequency with image statistics, we calculated
the spectrogram of ERPs. First, we generated a spectrogram
for each single trial ERP (e.g., see Figure 7A for the average
spectrogram). After calculating the spectrograms of single trial
ERPs, we obtained the correlation between the image statistics
and the power in the time-frequency domain. This way, we
generated a correlation matrix for each subject in which each row
indicates the correlations with a specific frequency at different
time points (columns are time points: 200ms before stimulus
onset to 800ms after). The reported results are the average
correlation matrix of all subjects (Figure 7B). Spectrograms were
calculated using a sliding window with the size of 150ms and
steps of 20ms.

Mutual Information
We also calculated the mutual information (MI) between the
ERPs and the image statistics using Equation 1.

MI(S,R) =
∑

s∈S

p(s)
∑

r∈R

p(r|s)log2

(

p(r|s)

p(r)

)

(1)

Where R is the amplitude of ERPs in a sliding time window, S is
the image statistics (e.g., beta parameter), p(s) is the probability
of presenting stimulus s with corresponding statistics, p(r) is
the probability of observing response r evoked by stimulus,
p(r|s) is the conditional probability of observing response r given
stimulus swas presented. To calculateMI, we considered a sliding
time window on ERPs with the size of 20ms and step of 10ms.
We then binned the ERPs amplitude as well as image statistics
into 100 bins. The bin number and the size of sliding window
were found by testing different values for these parameters. The
MI was then calculated from 100ms before stimulus onset to
700 ms after. To find the time points where MI was significant,
we used a shuffling test and found the time points when MI
significantly deviated from the shuffled MI (Wilcoxon rank-sum
test). The shuffling test was performed by calculating MI between
image statistics and shuffled ERPs. This was repeated for 50 times
and 95% confidence interval of the resulting distribution was
calculated at each time point.

Frontiers in Human Neuroscience | www.frontiersin.org 5 December 2016 | Volume 10 | Article 630

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ghodrati et al. Image Statistics Explain ERP Modulations

RESULTS

To show signal modulation across all recorded electrodes,
we generated the topographical representations for the ERPs.
Figure 3 shows this representation for one subject and illustrates
how signals were modulated across 42 electrodes (also see
Video S1). It can be seen that the strongest modulations were
present mostly on occipital electrodes with the highest for Oz

electrode (located at occipital midline). Earlier, we showed the
ERPs for this subject (Oz electrode) in Figure 1. It can be seen that
for this subject, the modulation of the responses began >110ms
after stimulus onset (with a negative peak) and continued until
∼250 ms after stimulus onset (positive peak). Similarly, for all
other subjects Oz electrode showed the strongest modulation
started at 130± 25ms after stimulus onset.

Weibull Statistics Explain the Variance of
ERPs Amplitude in Response to Natural
Images
We correlated individual image statistics with the amplitude of
ERPs across time for every subject (see Materials and Methods).
The results showed that there is a significant correlation between
the image statistics and ERPs amplitude in a time window 125
± 5ms after stimulus onset. The maximum correlation between
beta parameter of Weibull statistics and the ERPs across subjects
was r2 = 0.18 (Figure 4A; minimum r2 = 0.012; mean r2 =

0.075 across all subjects at 138 ms post-stimulus onset, p-value
< 0.0001, FDR-corrected). For gamma parameter of Weibull
statistics, the maximum correlation was r2 = 0.15 (Figure 4B;
minimum r2 = 0.011, mean r2 = 0.05 across all subjects at
140 ms post-stimulus onset, p-value < 0.0001). The maximum
correlation between ERPs and Weibull statistics was observed
at 138 ms after stimulus onset for beta (Figure 4A) and 140
ms after stimulus onset for gamma (Figure 4B) parameters.
The correlations were measured at electrode Oz similar to

previous studies (Scholte et al., 2009; Groen et al., 2012a,b,
2013). The average correlation between beta statistics and
the ERPs amplitude across subjects and electrodes also shows
that electrode Oz had the highest correlation (Figure S1 and
Video S2).

We also assessed the correlation between Fourier statistics,
i.e., slope and intercept, and the amplitude of the ERPs. Figure 4
shows the correlation between ERPs and slope (Figure 4C) as
well as intercept (Figure 4D) across time forOz electrode. Similar
to the results of Weibull statistics, the electrode Oz showed the
highest correlation with the maximum of r2 = 0.072 for slope
(minimum r2 = 0.008, mean r2 = 0.03 at 138 ms after stimulus
onset, p-value < 0.001) and r2 = 0.075 for intercept (minimum
r2 = 0.006; mean r2 = 0.025 at 138 ms after stimulus onset, p-
value < 0.05). These results replicate the findings of previous
studies that reported a stronger mean correlation with slope
compared to intercept (Groen et al., 2012a,b, 2013), although
the correlations reported here are relatively weaker. We also
calculated the correlations between ERPs and two other standard
contrast measurements: Michelson contrast (Figure 4E) and
Root Mean Square (RMS) contrast (Figure 4F). As expected,
these two image statistics were not significantly correlated with
the ERPs. This shows that global luminance-contrast cannot
explain the variance of modulations of ERPs in our experiment.
Taken together, the Weibull statistics explained the modulation
of the responses better than the other single statistics examined,
with beta parameter being a better predictor compared to
gamma.

To address whether the combination of image statistics
can explain higher variance of ERPs amplitude compared
to individual statistics, we performed two additional linear
regression analyses. First, we used all the statistics as regressors
on ERPs’ amplitude (Full model). Then, we used both Weibull
statistics (Weibull model) together as regressors. The results
showed that the performance of Full model was very similar to

FIGURE 3 | The modulation of EEG signals in response to natural images across different electrodes and time points. Each topographic map shows ERPs

modulation across different electrodes, from 100ms before stimulus onset to 500 ms post stimulation (for a sample subject). The color-coded topographic plots

demonstrate the amplitude of signals specified with a color bar at the right end. The timing for stimulus presentation is specified with a thick black line at top row (from

0 to ∼70ms). Modulations start from >110ms after stimulus presentation and end at ∼250ms. Note that the timing is not evenly spaced between 100 and 200ms

since we aimed to show the maximum modulation time that is ∼125–130ms.
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FIGURE 4 | Correlation (r2) between ERPs recorded from Oz electrode and different image statistics across different time points. (A) The correlation

between beta parameter and the amplitude of ERPs, recorded from Oz electrode, across different time points. Colors show different subjects and the average

correlation across subjects is depicted using a thick black line. The significant correlation is illustrated using blue horizontal dots at the top of each plot for different

times (FDR-corrected). The vertical, transparent band in each plot shows the timing for stimulus presentation. (B–F) Correlation between the amplitude of ERPs and

gamma, slope, intercept, Michelson contrast, and RMS contrast, respectively.

Weibull model (see Figure S2). Also, Weibull contrast statistics
individually explained the variance in the responses the best,
compared to any other model, supporting single parameter
modeling and the corresponding explained variance.

Next, we separately calculated the correlation between the
ERPs and the image statistics of the two categories of images
in our dataset, i.e., animal and non-animal images, as these two
categories have different statistical properties. The correlation
was calculated between beta parameter of Weibull statistics, as
the best predictor, and the ERPs. Interestingly, the maximum
correlation for the animal category (r2 = 0.17) was lower

than the non-animal category (r2 = 0.275). However, the
correlations were not significantly different from each other
for the two categories (Figure 5A; p > 0.05 Wilcoxon rank-
sum test). The difference in maximum correlation can be due
to different statistical properties between animal and non-
animal images (e.g., Johnson and Olshausen, 2003; Gaspar
and Rousselet, 2009). As can be seen from visual inspection,
the correlation in the animal category (Figure 5A) had lower
between-subject variability compared to non-animal category
(Figure 5A), suggesting that animal images shared similar
features that induced similar effects on the ERPs.
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FIGURE 5 | Correlation (r2) between ERPs of animal and non-animal

images and beta statistic across different time points and

Frequencies. (A) The average r2 over subjects between ERPs amplitude and

beta parameter for animal (blue curve) and non-animal (red curve) images

(recorded from Oz electrode). The shaded area is standard error of the mean

(S.E.M). (B) The average r2 between beta parameter and power in different

frequencies in ERPs for animal and non-animal images.

Is Frequency of ERPs Modulated by Image
Statistics?
We then investigated the relationship between the modulation
of ERPs’ frequency and the image statistics. We calculated
the correlation of image statistics with the power of different
frequencies of ERPs. The results represented that there
is a significant correlation between some image statistics
and power at some frequencies in ERP signals (Figure 6).
Similar to the results of correlation for ERPs amplitude, the
beta and gamma of Weibull statistics showed the highest
correlation with the power of ERPs, compared to the other
statistics, being significant for frequencies between ∼3 and
7Hz which correspond to theta band (see Discussion).
The maximum correlation observed for beta parameter of
Weibull statistics was r2 = 0.08 at ERP frequency of 5Hz
(mean r2 = 0.022) and for gamma parameter of Weibull
statistics was r2 = 0.078 at frequency of 7Hz (mean r2 =

0.019). We observed a significant correlation for Intercept for
frequencies between 5 and 7Hz (Figure 6D). No significant

correlation was observed for slope, Michelson, and RMS
contrasts (Figures 6C,E,F).

Regression analysis for Full model and Weibull model
again confirmed that the variance was explained the best by
Weibull statistics compared to all other models (Figure S2). The
topographic representations of correlation across electrodes and
frequencies for different image statistics showed that electrodeOz

had the highest correlation (see Figure S3 for beta parameter of
Weibull statistics).

Next, by dividing ERPs into responses to animal and non-
animal images, we calculated the correlation between beta
parameter of Weibull statistics and the power of ERPs at
different frequencies for each category of images separately.
The maximum correlation was lower for the animal category
(r2 = 0.08) compared to the non-animal category (r2 = 0.1),
consistent with the results shown in Figure 5A for amplitude.
However, the correlations, calculated for the two categories,
were not significantly different from each other (Figure 5B; p >

0.05, Wilcoxon rank-sum text). Here again, the correlation was
significant for frequencies between ∼3 and 7Hz for individual
categories.

To further assess the modulations at different times and
frequencies, we performed a time-frequency analysis (see
Materials and Methods). Spectrograms of ERPs, calculated
200ms before to 800ms after stimulus onset, showed an
increase in power after stimulus onset between ∼0 and 9Hz
(Figure 7A), consistent with the results of the frequency
correlation analyses reported earlier. The power in this band
peaked between ∼60 and 200ms post stimulation (see the
contours plot in Figure 7A—note that the spectrograms and
all frequency analyses were calculated on filtered signals
between 0.1 and 60Hz). Figure 7B represents the correlation
in time-frequency domain for the beta parameter of Weibull
statistics. For theta frequency band of ERPs, which showed
the highest correlation, this correlation increased ∼170ms after
stimulus onset and peaked at 200ms (note the peak correlation
between 0 and 12Hz). There is also a significant increase in
correlation just after stimulus onset between ERP frequencies
18–22Hz that lasts throughout stimulus presentation. The area
inside the red contour in Figure 7B shows the significant
correlations.

Significant Mutual Information between
Weibull Statistics and ERPs
We also calculated the mutual information between image
statistics and the ERPs, as a more robust measure, to assess
the relationship between image statistics and brain signals
compared to Pearson correlation. Here, we only report the
mutual information (MI) between beta parameter of Weibull
statistics and ERPs, as previously, beta parameter showed the
highest correlation with amplitude and frequency. Figure 7C
shows the results for amplitude analyses. As can be seen,
the average MI across subjects significantly increased 110 ms
after stimulus onset and maximized at 138 ms, consistent
with the results of our correlation analyses reported earlier.
Figure 7D illustrates the results for frequency analyses. The
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FIGURE 6 | Correlation between image statistics and the power in different frequencies of ERPs. (A) Correlation between beta parameter and power in

different frequencies in ERPs, recorded from Oz electrode. Colors show different subjects. The average correlation across subjects is depicted using a thick black line.

Significant correlation is illustrated using a blue horizontal line at the top of each plot for different time points (FDR-corrected). (B–F). Correlation between the power in

different frequencies of ERPs and gamma, slope, intercept, Michelson contrast, and RMS contrast, respectively.

MI calculated for the power of different frequencies of ERPs
was again the highest for theta frequency band. However, this
increase did not reach significance for any of the frequencies
examined.

DISCUSSION

Categorization of complex natural images is performed quickly
and accurately by humans and non-human primates (Thorpe
et al., 1996; Fabre-Thorpe et al., 1998; Vanrullen and Thorpe,
2001; Rousselet et al., 2002; Kirchner and Thorpe, 2006). The

visual features that facilitate the rapid categorization are hotly-
debated. Recently, Weibull contrast statistics have shown to
be correlated with behavioral performance and the amplitude
of ERPs in response to natural images in humans (Ghebreab
et al., 2009; Scholte et al., 2009; Groen et al., 2012a,b, 2013;
Mirzaei et al., 2013). It has also been shown that Weibull
statistics can provide useful diagnostic information about global
scene properties, such as naturalness (Groen et al., 2013). In
this study we investigated the modulation of the frequency
content of the ERPs in response to these statistics in order
to extend these studies. We found a significant correlation
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FIGURE 7 | Time-frequency and mutual information analyses. (A)

Normalized power spectrogram from 200ms before to 800ms after stimulus

presentation. The dashed rectangular shows stimulus presentation and the

contours indicates the area of maximum power. (B) Correlation in

time-frequency domain for beta parameter. The area that is surrounded by the

red contour indicates significant correlation. (C) MI between beta parameter

and ERPs amplitude in different time points (Oz electrode). The average MI

across subjects is depicted using a thick pink line. The shaded gray area is

standard deviation (STD). (D) MI between beta statistic and power in different

frequencies of ERPs, averaged across subjects.

between the modulation of theta frequency band of ERPs and
Weibull statistics in the human subjects who were presented
with natural images. Theta frequency band is believed to be
involved in encoding new information, episodic, and semantic
encoding (Klimesch, 1999; Yordanova et al., 2002; Makeig et al.,
2004; Sauseng et al., 2007), although this type of modulation
was mostly reported for cognitive processes (Basar et al., 2001)
and not visual perception. Also, we found a significant but
relatively weaker correlation in the frequency band of 18–22Hz
during stimulus presentation that falls within beta band on
ERPs, which is thought to be related to visual attention (Mundy-
Castle, 1951; Wróbel, 2000; Kaminski et al., 2012; Gola et al.,
2013).

In this study, we also found a significant correlation between
the amplitude of ERPs and Weibull contrast statistics, consistent
with the findings of another group (Scholte et al., 2009; Groen
et al., 2012a,b, 2013). The correlation in our study was not as
strong as what reported by this group. This is potentially due
to the differences in image dataset, experimental paradigm, and
subject variability.

Regarding differences in databases, our image database was
selected from a well-studied natural image dataset (Torralba
and Oliva, 2003; Serre et al., 2007; Crouzet and Serre, 2011)
that contained different animal images, man-made, and natural
scenes. The first paper of this group (Scholte et al., 2009) used a
subset of images derived from the Corel database, which has been

reported to be biased (Wichmann et al., 2010). Subsequently,
they generated a set of naturalistic images using highly controlled
manipulations that resulted in several categories in terms of
statistical properties (Groen et al., 2012b), which consequently
resulted in a high correlation value. The correlation they
reported later when they used natural images (from natural
and man-made environments) (Groen et al., 2013) was lower
compared to their previous studies. The database used in this
last study (Groen et al., 2013) was the most similar to ours.
They used a new stimulus set obtained by combining a number
of different databases, but their database was not as balanced
as the one used in our study (e.g., lacked close views of
animals, etc.).

Another contributing factor to different correlations reported
could be the difference between the tasks used in these two groups
of studies, e.g., a shorter presentation time in our experiments.
However, the most contributing factor, in our view, is that the
ERPs in previous studies (Scholte et al., 2009; Groen et al.,
2012a,b, 2013) were usually based on 2–4 averages of trials,
whereas we used single trial ERPs for each image. Nevertheless,
despite all these differences, our amplitude analysis results,
showed that the significant correlation between ERP amplitude
and Weibull contrast statistics also exists when images are from
a more diverse set of images and are presented for a relatively
shorter time.

In this study, we used several image statistics to quantify
their effects on ERPs modulation of rapidly presented natural
images. We found that Weibull contrast statistics, that is
more biologically plausible, explained the variance of ERPs
frequency and amplitude better compared to other statistics
such as Fourier statistics of images. These findings support
previous modeling studies (Ghebreab et al., 2009) that found
a better performance for Weibull statistics in comparison
to Fourier statistics (Ghebreab et al., 2009; Scholte et al.,
2009).

Our analysis shed light on the correlation betweenmodulation
of frequency power in ERPs with low-level image statistics in
humans. This correlation was significant, but it was not very
strong and had a rapid time-course (it became significant at
∼110 ms after stimulus onset, and peaked at 138 ms). So,
these results may need further investigation in order to reveal
the other contributing factors affecting the modulation of the
frequency content of neural responses with image statistics.
Nonetheless, our findings show that not only the amplitude of
signals is modulated by these statistics, but also the frequency
of signals is affected in response to Weibull contrast statistics.
This emphasizes the significance of Weibull statistics in studying
scene perception. Also, our results provide evidence for using
the frequency content of signals, as a diagnostic feature, in
future modeling studies. The phase of ERPs is another important
property in which its relationship with image statistics can be
investigated in future studies.
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Figure S1 | Topographic representations for average correlation (r2),

across electrodes and subjects, between beta parameter and ERPs

amplitude for different time points. Each topographic map shows the

correlation between beta parameter and ERPs amplitude across time points and

all channels. r2 were calculated for every channel and subject and then averaged

out to generate topographic maps. The thick, horizontal, black line represents the

stimulus presentation time. Note that the timing is not evenly spaced between 100

and 200 ms in order to highlight the maximum correlation time point.

Figure S2 | Regression analysis on ERPs. Explained variance of ERP

amplitude at channel Oz over time for Full model (A) and Weibull model (B). Each

individual subject is shown using thin lines and the mean across subjects is

depicted using dark blue thick line. The significant correlation is illustrated using

blue horizontal dots at the top of each plot for different times (FDR-corrected). The

vertical, transparent band in each plot shows the timing for stimulus presentation.

The shaded blue area is standard deviation (STD). Explained variance of ERP

frequency at channel Oz for Full model (C) and Weibull model (D).

Figure S3 | Topographic representations for average correlation (r2),

across electrodes and subjects, between beta parameter and the power

in different frequencies of ERPs. Each topographic map shows the correlation

between beta parameter and power in a specific frequency of ERP signals. The

correlation values (r2) were calculated for every channel and subjects and then

averaged out to generate topographic maps.

Video S1 | The modulation of EEG signals in response to natural images

across different electrodes and time points. The topographic representations

show ERP modulations across different electrodes starting from 100 ms before

stimulus onset to 600 ms after stimulus presentation. The color-coded

topographic maps demonstrate the amplitude of signals specified with a color bar

at the right end (the color bar shows positive and negative modulations in arbitrary

units). The stimulus was presented at 0 ms and continued to ∼70 ms.

Video S2 | Topographic representations for average correlation (r2) across

electrodes and subjects for different time points. The topographic

representations show the correlation between beta parameter and ERPs

amplitude for different time points starting from 100 ms before stimulus onset to

600 ms after stimulus presentation. The correlation values (r2) were calculated

separately for every electrode and subject and then averaged out to generate

topographic maps.
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