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Abstract: Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more
than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny
to evaluate its content of bioactive components that affect human physiology, and has been exploited
for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance,
evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine
for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus
disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of
G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development
of commercial functional foods. This paper provides an extensive overview of the nutraceutical value
of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin
tracing strategies of this mushroom and its products are discussed, a highly important parameter
to ensure product quality and safety. The discussed features will open new avenues and reveal
more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and
nutritional ones, which will positively reflect the global economy.

Keywords: Ganoderma lucidum; prebiotics; functional food; therapeutic properties; antiviral drugs;
COVID-19; health risks; geo-tracing

1. Introduction
1.1. What Does History Say about Ganoderma lucidum?

“Lingzhi is a miraculous king of herbs”—Chinese people (221–206 BC).
Historically, the Romans considered mushrooms in general as the food of their gods

and only served them for great feasts, while the Greeks and the Vikings believed that eating
mushrooms gave them strength and enthusiasm before the war. America’s indigenous
people have often used mushrooms in age-old rituals (e.g., magical hallucinogens) to
cross the body and mental barrier [1]. Considered as one of the main folk medicinal
mushrooms, G. lucidum was used for many centuries and reported under several names in
China (Lingzhi), Japan (Reishi), and Korea (Mannentake). According to bimillennial beliefs,
G. lucidum can promote health and longevity, but it was also considered a combination
of spiritual force and a source of immortality [2–4]. Moreover, the Japanese people have
regarded this mushroom as a “10,000-year” mushroom [5–7].
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Several researchers have pointed out the long history of traditional medicinal uses
of mushrooms, especially G. lucidum, mostly in Far East countries, dating back more than
4000 years [7–14]. This type of mushroom has therapeutic characteristics with medical
claims that can be attributed to a well-respected pharmacopeia from the Qin dynasty
(221–206 BC) called Shen Nong Ben Cao Jing, or The Divine Farmer’s Materia Medica [13,15].
The ethnomedicinal uses of G. lucidum had reflections on culture, such as the artworks
beginning in the Yuan Dynasty (1280–1368 AD) [7,13]. This was not limited to artworks, but
the use of G. lucidum images extended to furniture, carvings, paintings, and even women’s
accessories [2].

For a long time, G. lucidum has been used as a traditional medicine for treating
neurasthenia, debility of prolonged illness, insomnia, anorexia, dizziness, chronic hepatitis,
hypercholesterolemia, mushroom poisoning, coronary heart disease, hypertension, pre-
vention of acute mountain sickness, “deficiency fatigue”, carcinoma, and bronchial cough
in the elderly [16,17]. Studies on medicinal mushrooms began in Western science more
than 30 years ago. These studies have continued until the present via a series of exciting
discoveries related to the biological activities of Ganoderma lucidum, including antitumor
and anti-inflammatory effects, as well as cytotoxicity to hepatoma cells [18,19].

1.2. Ganoderma lucidum through the Glasses of Botanists, Taxonomists, Economists, and
Scientometric Analysis
1.2.1. Through Botanists’ Glasses

Morphologically, lucidum is a word derived from the Latin word lucidus, which means
“shiny” or “brilliant”, and describes the varnished look of the mushroom’s surface. Overall,
G. lucidum is a large, dark mushroom distinctively characterized by a glossy surface (in-
cluding a red-varnished and kidney-shaped cap) and a woody texture (see Figure 1). The
fresh mushroom is soft, corklike, flat, lacks gills on its underside, and releases its spores
via fine pores. The pore color on its underside depends on the age of the mushroom, and
maybe white or brown [6,20]. Chen [21] described the nature of G. lucidum’s growth on the
bases and stumps of a wide variety of deciduous trees, such as oak, maple, elm, willow,
sweetgum, magnolia, and locust, and less frequently found on coniferous trees (e.g., larix,
ptea, pinus) in Europe, Asia, and North and South America, especially in temperate rather
than subtropical regions.

1.2.2. Through Taxonomists’ Glasses

Ganoderma lucidum (Curtis) P.Karst. was first described by Curtis [22] based on ma-
terial from England, and the description was sanctioned by Fries [23]. The first scientific
record of G. lucidum from China was made by Teng [24] when he incorrectly identified a
Lingzhi specimen as G. lucidum. Geographically, the G. lucidum sensu stricto (Curtis) Karst
mushroom is native to Europe and some parts of China [25]. According to the Index Fun-
gorum (2016) (http://www.indexfungorum.org, accessed on 16 February 2022), Ganoderma
lucidum (Curt: Fr.) Karst. belongs to Basidiomycota (phylum), Polyporales (order), and
Ganodermataceae (family), as classified by the taxonomist Nahata [5]:

Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Polyporales
Family: Ganodermataceae
Genus: Ganoderma
Species: G. lucidum

http://www.indexfungorum.org
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1.2.3. Through Economists’ Glasses

Ganoderma-based products attract a great deal of interest in many countries within
Europe and North America, although South Asia (Malaysia, Singapore, China, Japan,
and Korea) are the principal producers/providers of these food products [26]. In the
past, consumption of G. lucidum was restricted to the wealthy only, and therefore there
was no need to expand its cultivation, and what was grown in the wild was sufficient.
Recently, however, the consumption of this mushroom has increased through multiple
societal groups as an effective alternative to modern medicine or alongside it, and this is
what has called for the expansion of its cultivation [27,28]. With over 110,000 ton/year,
China is the biggest producer and exporter of G. lucidum [29]. Therefore, G. lucidum-based
products play a pivotal role in the Chinese economy as a source of foreign-exchange flow
through increasing exports and as promising products at the food and medical levels.

Generally, the mushroom’s ingredients possess a wide variety of biological properties,
including pharmaceutical, nutraceutical, and cosmetic, as shown in Figure 2 [8,30,31].
As such, regarding the G. lucidum mushroom, there are three types of products that are
produced from it: nutraceuticals, pharmaceuticals, and cosmetics [31]. Different parts
of G. lucidum are commercially available, including mycelia, spores, and fruit body [6],
and are sold as many different products, including powders, dietary supplements, and
herbal tea [6,13]. Table 1 illustrates some of the commercial cosmetic products produced
from G. lucidum mushrooms worldwide. Nowadays, the number of Ganoderma-based
products well known commercially is estimated at over 100 brands [32]. The world trade
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market value of G. lucidum and its derivative products has reached approximately USD
4 billion [33].

Table 1. Some of the cosmetic products are produced commercially from the G. lucidum mushroom
worldwide *.

Commercial Product Name/Producing Country Uses

CV Skinlabs Body Repair Lotion, USA Wound healing and anti-inflammatory

Dr. Andrew Weil for Origins Mega-Mushroom Skin Relief Face
Mask, USA Anti-inflammatory properties

Moon Juice Spirit Dust, USA Immune system

Estée Lauder Re-Nutriv Sun Supreme Rescue Serum sun care
product, USA

Triple-action repair technology to enhance the skin’s own
natural defenses against the visible effects of sun exposure and

sun-stressed skin

Four Sigma Foods Instant Reishi Herbal Mushroom Tea, UK Immunity boost

Kat Burki Form Control Marine Collagen Gel, UK Boosting collagen, improving elasticity, and providing
hydration

Tela Beauty Organics Encore Styling Cream, UK Providing hair with sun protection and preventing color fading

Menard Embellir Refresh Massage, France Skin antiaging

Yves Saint Laurent Temps Majeur Elixir De
Nuit, France Antiaging

Pureology NanoWorks Shineluxe, France Antiaging and antifading

Hankook Sansim Firming Cream (Tan Ryuk
SANG), Korea Making skin tight and vitalized

La Bella Figura Gentle Enzyme Cleanser, Italy Antioxidants and vitamin D

DXNGanozhi Moisturizing Micro Emulsion, Malaysia Hydrating and nourishing the skin

Guangzhou Bocaly Bio-Tec. Ganoderma Cell-Repairing
Antiaging Face Mask, China

Antiwrinkle, firming, lightening, moisturizer, and nourishing,
pigmentation corrector; pore cleaning and whitening

Nanjing Zhongke Pharmaceuticals Ganoderma Face Cream Set
(day/night cream and eye gel set), China Immunity boost and antifatigue

Shenzhen Hai Li Xuan Technology HailiCare Skin Whitening
Cream, China Removing freckles and whitening

Menard Embellir Night Cream, Japan Eliminating toxins and helping repair skin damage associated
with overexposure to UV radiation and free radicals

MAVEX Rejuvenating Treatment, Hong Kong Antioxidant action and deep cellular renewal; fight
degenerative processes and the negative action of free radicals

* Sources: Wu et al. [31], Taofiq et al. [34], Hapuarachchi et al. [35], www.vegamebeljepara.com, www.
dazzlinggroup.com, www.dxnmalaysia.com, and www.vegamebeljepara.com (accessed on 16 February 2022)
Adapted from Wu et al. [31]. Licensed under CC BY 4.0. Adapted with permission from Taofiq et al. [34].
2022, Elsevier.

www.vegamebeljepara.com
www.dazzlinggroup.com
www.dazzlinggroup.com
www.dxnmalaysia.com
www.vegamebeljepara.com
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1.2.4. Scientometric Analysis

During the last decade, the G. lucidum mushroom has attracted multiple research
fields, including biochemistry, genetics and molecular biology, agricultural and biological
sciences, pharmacology, toxicology, pharmaceutics, and medicine. Figure 3 illustrates the
increasing interest in multidisciplinary utilization of G. lucidum based on the number of
research articles in the past 10 years.
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1.3. Why Should Mushrooms, including Ganoderma lucidum, Be Considered Functional Foods?
1.3.1. How to Define Functional Food?

In the early 1980s, the idiom “functional food” first appeared in Japan. Functional
food is a broad term that includes several concepts [36]; for example, the definition of
functional food provided by the Food and Agriculture Organization (FAO) states that “the
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functional food is the source that provides the human body with the necessary quantities
of nutrients, i.e., proteins, carbohydrates, fats, vitamins, minerals, and others to keep it
healthy. In addition, functional food can be cooked or prepared using ‘artificial intelligence
technology’ [37]. In addition, the European Food Safety Authority (EFSA) defined func-
tional food as “a food, which beneficially affects one or more target functions in the body,
beyond adequate nutritional effects, in a way that is relevant to either an improved state
of health and well-being and/or reduction of risk of disease” [38]. As described by the
Functional Food Center (FFC) in the United States, functional foods are “real or processed
foods that contain known or unknown biologically active compounds that, efficient, in de-
fined and non-toxic quantities, recorded health benefit or provide a scientifically validated
using unique biomarkers for the prevention, treatment or control of chronic disease or its
symbiotic diseases” [39]. According to the definition of the Institute of Food Technologists
(IFT), functional foods are those with ingredients that have health benefits in addition
to basic nutrition, which is similar to the definition published by the International Life
Sciences Institute (ILSI) [40,41].

Comprehensively, functional food can be defined as “a whole ingredient or a part of
food that is used as food. It is part of a standard diet and is consumed on a regular basis,
in normal quantities. It has proven health benefits that reduce the risk of specific chronic
diseases or beneficially affect target functions beyond its basic nutritional functions” [42,43].

1.3.2. What Do the Definitions of Functional Foods Conclude?

The use of the term “ingredient” means that functional food is not only conventional
food but also could be a part of other food or food ingredients. In addition, the above-
mentioned definitions of functional foods allow for adaptation to cultural differences,
including widely differing “standards” among cultures and countries. Moreover, the use of
the term “health benefits” is not restrictive. It refers to physiological, psychological, and
biological advantages [43,44].

1.3.3. Functional Foods and Their Relation with Gut Health

Among the important health effects of foods including the functional ones are those
associated with gut health, a major determinant of an individual’s overall health. Several
diseases are related in this context; e.g., gluten-therapy-resistant celiac, Crohn’s disease,
ulcerative colitis, and irritable bowel syndrome. These adverse effects are caused by
overgrowth and imbalance of intestinal bacteria linked to an individual’s food system [45].
The question that comes to mind is, what are the roles of the human gut in the body? These
can be summarized as follows [45]:

• It converts food to nutrients;
• The human gut, via epithelial cell walls, assists in the absorption process of nutrients

into the blood;
• The human gut inhibits toxic and strange particles from entering the bloodstream.

Consequently, and directly, any gut malfunction has adverse effects on human health.
In this regard, functional foods, including pre- and probiotics, have become increasingly
important due to their positive role in human gut health.

1.3.4. Ganoderma lucidum as a Functional Food: How?

Historically, mushrooms, including Ganoderma lucidum, were traditionally consumed
due to their nutritional and culinary values, and for their medical benefits when used
in folk medicine. This historical heritage has recently been translated through molecular
research to explore the present bioactive components and unlock mushrooms’ nutrition and
therapeutic values [46,47]. Among these health benefits, mushrooms could help prevent
diseases; e.g., hypertension, diabetes, hypercholesterolemia, and cancer, as mentioned in
many reports. Hence, mushrooms can be considered a curative food [8,48]. Mushrooms
are still untapped sources of bioactive substances such as glycoproteins, polysaccharides,
mainly β-glucans, and secondary metabolites; i.e., nucleotide analogs, metal-chelating
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agents, terpenoids, polyphenols, alkaloids, lactones, and sterols. These biologically ac-
tive components possess several therapeutic implications, such as antiviral, anticancer,
hepatoprotective, immunopotentiating, and hypocholesterolemic agents [47–51].

The present paper critically discusses the benefits of G. lucidum, from nutritional
value to medicinal impacts, and sheds light on its potential as a source of nutraceuticals
and functional food. Moreover, this review provides answers with a critical vision to
many questions, such as why the bioactive compounds of G. lucidum need to be further
studied in vitro and in vivo, and what secrets are still behind them. Is it important to
ensure G. lucidum’s quality and safety, as well as the best method to achieve that? With the
potential of G. lucidum, will the future carry us to the possibility of commercial widescale
use of G. lucidum and its products as new functional foods and medicines?

Despite that Ganoderma lucidum is not edible in its raw state due to its higher content
of bitter compounds, its palatability can be increased by turning it into manufactured
products such as powders, supplements, and tea [52]. The nutritional value of G. lucidum
will be tackled in-depth in the following section.

2. The Nutritional Profile of Ganoderma lucidum

“Medicines and food have a common origin”—Kaul [53].
For thousands of years, mushrooms have been valued throughout the world as food

and medicine [8]. Nevertheless, mushrooms are still largely untapped resources in pro-
ducing effective pharmaceutical products, nutrients, and cosmetics. Indeed, only approxi-
mately 150,224 species have been described [54] out of the estimated 2.2–3.8 million fungal
species worldwide [55]. About 3000 species that belong to Macrofungi are safe for human
consumption, such as edible mushrooms [56].

From the nutritionist’s point of view, generally, fresh mushrooms contain both soluble
and insoluble fibers; the soluble fiber is mainly β-glucanpolysaccharides and chitosans [57].
However, a question comes to mind: does G. lucidum that is grown naturally or wild differ
from that grown artificially in its nutritional components? According to the research in this
regard, the answer is yes, as it was found that the quantities of crude protein, carbohydrates,
and crude fiber were greater in the artificially grown variety [58]. Few studies have revealed
the nutritional profile of G. lucidum. Roy and others [59] reported the nutritional value and
mineral composition of G. lucidum. Through an analytical view of the nutritional profile of
the G. lucidum mushroom (Table 2), several important conclusions can be reached.

Table 2. Physicochemical properties and chemical composition of Ganoderma lucidum mushroom.

Constitute

Content

DRIs * (g/day)
Value in 100 g

Mushroom/
DRIs × 100Value g/100 g Mushroom

(Wet-Weight Basis)
g/100 g Mushroom
(Dry-Weight Basis)

Moisture % 47
Total solids (TS) % 53

pH value 5.6

Energy (kcal) 238.98 **
Men: 2215 *** 10.79
Women: 2025 11.80

Water-soluble proteins % 19.5 36.80
Men (total proteins)

****: 56 34.82

Women (total
proteins): 46 42.39

Total lipids % 3.00 5.66 44–77 ***** 3.90–6.82
Total ash % 6.3

Reducing sugars % 4.39 8.28
Nonreducing sugars % 1.02 1.92

Total sugars % 5.41 10.21 130 4.16

Crude fibers % 3.5
Men: 38 9.21

Women: 25 14.00
Polyphenols “as gallic acid” 0.04 0.08 1 ****** 7.5
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Table 2. Cont.

Constitute

Content

DRIs * (g/day)
Value in 100 g

Mushroom/
DRIs × 100Value g/100 g Mushroom

(Wet-Weight Basis)
g/100 g Mushroom
(Dry-Weight Basis)

Mineral Mineral content (mg/100 g mushroom) DRIs (mg/day) Value in 100 g
mushroom/DRIs × 100

Major minerals

Potassium 432 4700 9.19
Phosphorus 225 700 32.14

Sulfur 129 200–1500 8.60–64.50
Magnesium 7.95 Men: 400 2.00

Women: 310 2.60
Sodium 2.82 1500 0.20
Calcium 1.88 1000 0.20

Trace minerals

Copper 26 0.9 2889
Manganese 22 Men: 2.3 956.52

Women: 1.8 1222.22
Iron 2.22 Men: 8 27.75

Women: 18 12.33
Zinc 0.7 Men: 11 6.40

Women: 8 8.75

Vitamin Vitamin content (mg/100 g mushroom) DRIs (mg/day) Value in 100 g
mushroom/DRIs × 100

Thiamine (B1) 3.49
Men: 1.2 290.83

Women: 1.1 317.27

Riboflavin (B2) 17.10
Men: 1.3 1315.38

Women: 1.1 1554.54

Niacin (B3) 61.9
Men: 16 386.87

Women: 14 442.14

Pyridoxine (B6) 0.71
Men: 1.4 50.71

Women: 1.2 59.16

Ascorbic acid 32.2
Men: 90 35.77

Women: 75 42.93

* DRIs: dietary recommended intakes for adults [60,61]; ** the total energy of 100 g of mushroom samples was
calculated according to the equations of Manzi et al. [62]; *** based on 1.3 kcal/kg body weight/hour for the
reference body weight; **** based on 0.8 g/kg body weight/day for the reference body weight; ***** Casselbury [63];
****** Duthie et al. [64]. Sources: Roy et al. [59], Rahman et al. [65], and http://www.medicinabiomolecular.com.
br/biblioteca/pdfs/Biomolecular/mb-0223.pdf. (accessed on 16 February 2022). Adapted from Rahman et al. [65].
Licensed under CC-BY.

• G. lucidum contains a considerable amount of water-soluble proteins (19.5 g/100 g
mushroom (w/w)). Moreover, 18 kinds of amino acids have been found in G. lucidum,
and the most abundant amino acid was leucine, which possessed strong hypoglycemic
and antioxidant activities [66,67].

• G. lucidum contains 3.5 g of dietary fiber per 100 g of mushroom (d/w).
• G. lucidum contains significant amounts of major minerals (e.g., phosphorus, sulfur)

and other trace mineral contents; i.e., Cu, Mg, and Fe.
• As also mentioned in Table 2, G. lucidum is a highly rich source of vitamins such

as riboflavin, niacin, thiamin, etc. Additionally, Ahmad [68] reported that several
vitamins have been found in G. lucidum, such as vitamins B1, B2, B6, β-carotene, C, D,
and E.

• Based on the nutritional profile of G. lucidum, this mushroom possesses a high nutrient
potential that reflects positively on its health benefits.

Through this vision, the G. lucidum mushroom is increasingly becoming one of the
natural and untapped medicine resources, which should be of interest to pharmaceutical,
nutraceutical, and cosmetics manufacturers and consumers worldwide [69]. Ganoderma
lucidum contains myriad biologically active compounds (over 400 compounds), including
polysaccharides, triterpenoids, steroids, fatty acids, amino acids, nucleosides, proteins, and

http://www.medicinabiomolecular.com.br/biblioteca/pdfs/Biomolecular/mb-0223.pdf
http://www.medicinabiomolecular.com.br/biblioteca/pdfs/Biomolecular/mb-0223.pdf
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alkaloids [70]. Still, how do these bioactive compounds reflect their medical properties?
The following section will discuss the therapeutic impacts of these bioactive compounds.

2.1. Ganoderma lucidum Is a Factory of Biologically Active Useful Compounds

“Mushroom of immortality & symbol of traditional Chinese medicine”—Chen et al. [71].
The biologically active molecules of G. lucidum rely on their chemical composition,

with polysaccharides, peptidoglycans, and triterpenes being the three major bioactive
compounds [58,68,70–73]. Additionally, this mushroom contains other constituents with
distinct biological functions, such as minerals (e.g., germanium), proteins, lectins, crude
fibers, phenols, enzymes, sterols, and long-chain fatty acids [6,74–77]. Table 3 shows
the major bioactive compounds and their biological effects. Snapshots of these bioactive
compounds could be found as follows.

Table 3. The major bioactive compounds of G. lucidum and their biological effects.

Bioactive Compounds Biological Effects References

Triterpenoids

Ganoderic acids, lucidumol, lucialdehyde,
lucidenic acids, ganodermic, ganolucidic

acids, ganoderals, ganoderiols
Anticancer Wachtel-Galor et al. [6], El Mansy [75]

Triterpenoids Antidiabetic Ahmad [68], Ma et al. [78]

Ganoderic acids T-Q and lucideinic acids A,
D2, E2, and P Anti-inflammatory El Mansy [75]

Triterpenes Antioxidant El Mansy [75]

Ganoderic acids, ganodermin, ganoderic acid
A, ganodermadiol, ganodermanondiol,

lucidumol B, ganodermanontriol, ganoderic
acid B, ganolucidic acid B

Antimicrobial Cör et al. [70], Sudheer et al. [73]

Triterpenoids, ganoderic acid, ganoderiol F,
ganodermanontriol Antiviral Bishop et al. [13], Zhang et al. [79], Zhu et al. [80]

Polysaccharides

1→3, 1→4, and 1→6-linked β and α-D (or
L)-glucans, GLP-2B Anticancer Wachtel-Galor et al. [6], Ferreira et al. [81]

Polysaccharides Antidiabetic Ahmad [68], Ma et al. [78]

Polysaccharides Antioxidant El Mansy [75]

Polysaccharides Antimicrobial Cör et al. [70]

Polysaccharides (ganopoly) Cardiovascular problems Chan et al. [82]

Proteins, Glycoproteins, and Peptidoglycans

Glycopeptides and peptidoglycans Anticancer Wachtel-Galor et al. [6], Sudheer et al. [73],
Ferreira et al. [81],

Protein Ling Zhi-8 (LZ-8), lectin,
ribosome-inactivating proteins, antimicrobial

proteins, glycopeptides/glycoproteins,
peptidoglycans/proteoglycans, ganodermin

A, ribonucleases, proteinases,
metalloproteases, laccases

Immunomodulatory,
anticancer, and antitumor Wachtel-Galor et al. [6], El Mansy [75]
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Table 3. Cont.

Bioactive Compounds Biological Effects References

Proteoglycans, proteins (LZ-8) Antidiabetic Ahmad [68], Ma et al. [78]

Polysaccharide–peptide complex Antioxidant Mehta [83]

Phenolic compounds

Phenolic components, phenolic extracts Antioxidant Mehta [83]

Saponins Anticancer and antioxidant Lee et al. [84]

Sterols; e.g., ergosterol Provitamin D2 Wachtel-Galor et al. [6]

Long-chain fatty acids Antitumor Gao et al. [85]

2.2. Polysaccharides and Peptidoglycans

Polysaccharides, such as ganoderans, represent diverse biological macromolecules
with a broad range of biological properties [58]. Additionally, G. lucidum is a source of
polysaccharides, glycopeptides, and polysaccharide crude extracts, as indicated by sev-
eral studies [86]. In addition, these components of G. lucidum mushroom showed strong
biological activities, including, for example, antioxidant, anti-tumor, and antibacterial
activities due to its content of sugars, glycoproteins, and polysaccharide extracts obtained
from the fruiting bodies [81,87–89]. Anti-inflammatory, hypoglycemic, antitumorigenic,
and immunostimulating activities are among the multiple biological roles of polysaccha-
rides extracted from G. lucidum [90–95]. Free radical scavenging abilities, reducing power,
and chelating on ferrous ions are among the reported antioxidant properties [96,97]. Os-
pina et al. [98] reported that the isolated chitosan from G. lucidum has promising and
desirable characteristics in specialized sectors such as biomedicine, pharmaceutics, and
cosmetics, beyond the food industry. Regarding the peptidoglycans, G. lucidum contains a
proteoglucan (GLPG) that has antiviral activity [99].

2.3. Triterpenes

Several triterpenes extracted from G. lucidum have been reported (around 100 types of
triterpenes), with half of these types being novel and unique to G. lucidum [18]. Ganoderic
and lucidenic acids are the major triterpenes produced by G. lucidum, while other triterpenes
have been identified; e.g., ganodermic, ganoderiols, and ganoderal acids [58,100–107].

2.4. Other Bioactive Compounds
2.4.1. Germanium

The element germanium has brought some attention to G. lucidum. Germanium is one
of the most prevalent elements in wild G. lucidum. With 489 µg/g, germanium occupied the
fifth-highest rank among the other detected minerals in terms of concentration [108]. This
element possesses significant biological activities; i.e., antimutagenic, antitumor, immune-
potentiating, and antioxidant [109]. There is no rigorous proof linking germanium with the
specific health benefits of G. lucidum.

2.4.2. Proteins

Some bioactive proteins purified from G. lucidum have been found to contribute to the
medicinal properties of this mushroom; for example:

• LZ-8, an immunosuppressive protein [110];
• GLP, which possesses both antioxidant and hepatoprotective activities [111,112];
• Ganodermin, an antifungal protein [113].

Many other bioactive compounds have been isolated from G. lucidum, including:

• Enzymes; e.g., a metalloprotease that delays clotting time [6].
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3. Ganoderma lucidum as a Functional Food

For several hundred years, G. lucidum has been used to promote human health as
a functional food through traditional treatment strategies. Nowadays, many published
studies have established the multiple health benefits of G. lucidum in preventing or fight-
ing multiple gastrointestinal and extraintestinal diseases, from constipation and gastri-
tis, to anorexia, arthritis, asthma, bronchitis, and diabetes [35,75,95]. Additional stud-
ies have reported on the anticancer [6,31,52,114,115], preventing cardiovascular disease,
and tumorigenesis [116–119], antioxidant [6,120,121], cardioprotective [122], antidiabetic
potency [6,123,124], and antimicrobial activity [6,35,125] of this mushroom. Altogether,
Figure 4 demonstrates the nutritional and health benefits of G. lucidum, which will be
spotlighted individually as follows.
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3.1. Antimicrobial Activity

G. lucidum has been reported as a promising source of antimicrobial molecules (mainly
polysaccharides) against various viral, bacterial, and fungal pathogens [79,83,125–130].
Table 4 summarizes the antimicrobial activities of the G. lucidum mushroom and its products.

Table 4. Antimicrobial activities of Ganoderma lucidum parts, products, and compounds.

Parts/Products/Compounds Tested Microorganism References

Antibacterial activity

Fruiting bodies Helicobacter pylori ATCC 43504, Staphylococcus aureus
ATCC 26003 Liu et al. [131], Shang et al. [132]

Mycelia extract

Bacillus cereus (clinical isolate), Micrococcus flavus
ATCC 10240, S. aureus ATCC 6538, Listeria

monocytogenes NCTC 7973, Escherichia coli ATCC
35218, Enterobacter cloacae (human isolate),

Pseudomonas aeruginosa ATCC 27853, Salmonella
typhimurium ATCC 13311

Ćilerdžić et al. [133]
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Table 4. Cont.

Parts/Products/Compounds Tested Microorganism References

Fruiting bodies S. aureus (MTCC 96), B. cereus (MTCC 430), P.
aeruginosa (MTCC 424) Karwa and Rai [134]

Fruiting bodies S. aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) Ćilerdžić et al. [135]

Ergosta-5,7,22-trien-3β-yl acetate,
ergosta-7,22-dien-3β-yl acetate,

ergosta-7,22-dien-3-one,
ergosta-7,22-dien-3β-ol,

ergosta-5,7,22-trien-3β-ol,
ganodermadiol

S. aureus (ATCC 6538), B. subtilis (ATCC 6633) Ćilerdžić et al. [135]

Carpophores

Bacillus anthracis ATCC 6603, B. cereus ATCC 27348,
B. subtilis ATCC 6633, Micrococcus luteus ATCC 9341,
S. aureus ATCC 25923, E. coil ATCC 259 22, Klebsiella
oxytoca ATCC 8724, Klebsiella pneumonia ATCC 10031,

Proteus vulgaris ATCC 27853, S. typhi ATCC 6229

Yoon et al. [136]

Basidiocarps

B. cereus (clinical isolate), M. flavus ATCC 10240, S.
aureus ATCC 6538, L. monocytogenes NCTC 7973, E.

coli ATCC 35218, E. cloacae (human isolate), P.
aeruginosa ATCC 27853, S. typhimurium ATCC 13311

Vazirian et al. [137]

12b-acetoxy-3β,7 β -dihydroxy-
11,15,23-trioxolanost-8-en-26-oic

acid butyl ester
S. aureus (ATCC 6538), B. subtilis (ATCC 6633) Yang et al. [138]

Mycelia (Protein extract) Staphylococcus epidermidis, B. subtilis, B. cereus, E. coli,
P. aeruginosa Sa-Ard et al. [139]

Fruiting bodies (Protein extract) S. epidermidis, S. aureus, B. subtilis, B. cereus, E. coli,
P. aeruginosa Sa-Ard et al. [139]

NG *

S. aureus (ATCC 6538), B. cereus (clinical isolate), L.
monocytogenes (NCTC 7973), M. flavus (ATCC 10240),
P. aeruginosa (ATCC 27853), E. coli (ATCC 35210), S.

typhimurium (ATCC 13311), E. cloacae (human isolate)

Heleno et al. [140]

Antifungal activity

Fruiting bodies

Acremonium strictum BEOFB10m, Aspergillus glaucus
BEOFB21m, Aspergillus flavus BEOFB22m, Aspergillus

fumigatus BEOFB23m, Aspergillus nidulans
BEOFB24m, Aspergillus niger BEOFB25m, Aspergillus

terreus BEOFB26m, Trichoderma viride BEOFB61m

Vazirian et al. [137]

Fruiting bodies

A. fumigatus (human isolate), Aspergillus versicolor
(ATCC 11730), Aspergillus ochraceus (ATCC 12066), A.
niger (ATCC 6275), T. viride (IAMz5061), Penicillium
funiculosum (ATCC 36839), Penicillium ochrochloron
(ATCC 9112), Penicillium verrucosum var. cyclopium

(food isolate)

Heleno et al. [140]

Rare Earth-Carboxymethylated
Ganoderma applanatum

Polysaccharide

Valsa mali, Fusarium oxysporum, Gaeumannomyces
graminis, Colletotrichum gloeosporioides,

Alternaria brassicae
Sun et al. [141]

Ganodermin Botrytis cinerea, F. oxysporum, Physalo sporapiricola Wang and Ng [113]

Mycelia Acremonium strictum, A. glaucus, A. flavus, A.
fumigatus, A. nidulans, A. niger, A. terreus, T. viride Ćilerdžić et al. [133]

Antiviral activity

Ganoderiol F & Ganodermanontriol HIV 1(HIV-1 protease) El-Mekkawy et al. [142]
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Table 4. Cont.

Parts/Products/Compounds Tested Microorganism References

Carpophores
Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2),
influenza A virus (Flu A), and vesicular stomatitis

virus (VSV) Indiana and New Jersey strains
El-Mekkawy et al. [142]

Acidic protein-bound
polysaccharide HSV-1 and HSV-2 Eo et al. [143]

Fruiting bodies Oral human papillomavirus (HPV) Donatini [144]

NG Newcastle disease virus (anti-neuraminidase) Zhu et al. [80], Shamaki et al. [145]

Fruiting bodies Epstein-Barr Virus Iwatsuki et al. [146]

Mycelia Hepatitis B virus Li et al. [147]

Mycelia (Ganoderic acid) Hepatitis B Li and Wang [148]

Lanosta-7,9(11),24-trien-3-
one,15;26-dihydroxy (GLTA),

Ganoderic acid Y
Enterovirus 71 Zhang et al. [79]

* NG: data not given.

3.2. Antiviral Potential

There have been few scientific studies (particularly on animals) that examined the
antiviral effects of G. lucidum (Lingzhi); however, Zhu et al. [149] examined the anti-
influenza effects of a hot water extract of Lingzhi on infected mice through intranasal and
oral administration. The authors of this study concluded that short-term oral consumption
of Lingzhi hot water extract had a limited effect in fighting influenza. Therefore, the authors
recommended further study on the long-term anti-influenza effects that could improve the
functional uses of this mushroom against influenza.

3.2.1. Ganoderma lucidum against Enterovirus 71 (EV71)

Since 1969, “the same year in which the infection of human enterovirus 71 (EV71)
infection was identified for the first time”, the infection mechanism has not been fully
understood [150]. However, this viral infection was associated with several clinical dis-
eases, ranging from neurological disorders to hand–foot–mouth disease (HFMD), and is
considered a serious threat to children under six years old [151]. Currently, there are no
certified prophylactic or therapeutic treatments for EV71 infection [152,153]. Outbreaks
of EV71 infection have been periodically reported worldwide [154–156]. For instance,
China has recently seen increased deaths linked to EV71 infection and HFMD among the
young population [131,138,157,158]. As mentioned above, there are no approved drugs for
preventing or treating EV71 infection, but currently, antiviral drugs with a broad spectrum
(e.g., acyclovir, ganciclovir, and ribavirin) are used to partially relieve infection symptoms,
although they have high cytotoxic side effects [159]. Therefore, investigation of novel and
efficient medicines is urgently needed to control this severe viral infection. The adoption
of natural medicinal compounds and Chinese herbal medicines has been observed across
Asian countries for centuries, and recently in Western medicine [160,161]. G. lucidum is
widely used as a folk medicine for a variety of ailments [162]. Zhang et al. [79] suggested
that Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA), and ganoderic acid Y (GLTB),
which are triterpenoid compounds of G. lucidum, could prevent EV71 infection by interfer-
ing with the viral particle and limiting the viral adsorption to the host cells. Additionally,
the interaction dynamics of GTLA and GLTA with the EV71 virion, predicted by molecular
docking, showed potent molecular binding to the viral capsid protein at a hydrophobic
pocket (F site), and hence a block uncoating of EV71 (Figure 5). Furthermore, it has been
shown that GLTA and GLTB notably prohibited the viral RNA (vRNA) replication of EV71
by blocking EV71 uncoating. Therefore, both GLTA and GLTB may represent two promising
curative agents to control and treat EV71 infection.
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3.2.2. Ganoderma lucidum against Dengue Virus (DENV)

The dengue virus (DENV), classified within the Flaviviridae family, is a fatal microbe
transmitted to humans through mosquitoes (Aedes albopictus and Aedes aegypti) [163–165],
causing both hemorrhagic fever [166,167], and shock syndrome [168,169]. A total of five
different serotypes of DENV have been reported to induce both dengue fever types while
potentially causing fatal infections [170,171]. Proteome analysis revealed that the trans-
lated DENV polyprotein complex comprises three structural and seven nonstructural
proteins [171,172]. Of particular interest, the cofactor NS2B is required to fully activate
the viral NS3 protease (NS3pro) domain that encodes a serine protease (S7 family). The
NS2B–NS3pro complex of the dengue virus has been recently identified as an ideal target
for developing novel anti-DENV drugs [173–175]. As one of the bioactive compounds
extracted from G. lucidum, triterpenoids have been proposed and tested as antiviral agents
against different viral pathogens; e.g., the human immunodeficiency virus. Ganodermanon-
triol, as a potent bioactive triterpenoid, was suggested to inhibit the DENV NS3pro protein
based on in vitro studies. Thus, ganodermanontriol could act as a drug against DENV
infection [176].

3.2.3. Ganoderma lucidum against the 2019 Novel Coronavirus (SARS-CoV-2)

December 2019 marked in Wuhan (Hobby Province, China) the beginning of a myste-
rious pneumonia outbreak [177]. A month later, the infectious agent was revealed to be
a new kind of coronavirus named SARS-CoV-2 (formerly 2019-nCOV) [178]. The World
Health Organization (WHO) declared the pneumonia outbreak that appeared in Wuhan
a major public health crisis on 11 February 2020 and gave it the official name of Coron-
avirus Disease-2019 (COVID-19) [179]. Multiple symptoms were reported in the COVID-19
patients, including cough, lung damage, fever, fatigue, muscle pain, diarrhea, myalgia,
and respiratory symptoms [180,181]. As of 27 April 2021, 147,539,302 cases of SARS-CoV-
2 infected pneumonia and 3,116,444 deaths had been reported in China and 223 other
countries, areas, or territories, of which 103,503 cases were found in China [182]. Natural
products are among the most important sources for modern medication industry tech-
nology, if not the most important, due to their advantages such as abundant clinical use,
and their unique diversity of chemical structures and biological activities [183,184]. In this
context, traditional Chinese medicine (TCM) is one of the gold mines rich in untapped
natural resources [185,186] that can be employed to treat many diseases that represent a
challenge for humankind, including COVID-19. The previous studies on SARS-CoV and its



Foods 2022, 11, 1030 15 of 29

homology with SARS-CoV-2 may provide avenues to natural compounds that inhibit SARS-
CoV-2 [187]. For instance, the helicase domain is being investigated as a possible drug
target. Yu et al. [188] reported that scutellarein and myricetin potently prevented nsP13, a
SARS-CoV helicase protein, in vitro by altering its ATPase activity. The RNA-dependent
RNA polymerase is another potential target for developing antiviral compounds, being an
essential enzyme for RNA synthesis. Indeed, dose-dependent inhibition of this SARS-CoV
enzyme was reported for the extracts of G. lucidum (IC50:41.9 µg/mL), Coriolus versicolor
(IC50:108.4 µg/mL), Sinomenium acutum (IC50:198.6 µg/mL), and Kang Du Bu Fei Tang
(IC50:471.3 µg/mL) [189]. Therefore, G. lucidum could serve as a novel and promising
source of bioactive natural compounds with anticoronavirus activity [187].

3.3. Antioxidant and Antiaging Activity

Multiple research studies reported a close relationship between the richness of G. lu-
cidum in “phenolic compounds, triterpenes, polysaccharides, polysaccharide peptide” and
its antioxidant biological activity [83,97,190–192]. Clinical nutritionists have demonstrated
that consuming antioxidant-rich plant-based foods may protect from cancer and many other
chronic diseases [193,194]; however, this causality is still not proven yet for the antioxidants
of G. lucidum [195]. Hence, one of the research priorities for the G. lucidum mushroom is to
conduct more studies to close the gap in the interplay between antioxidants and the host
immune system [191].

The long-term presence of free radicals and reactive oxygen species (ROS) accelerates
aging and numerous age-associated illnesses [13]. Therefore, studies on scavenging free rad-
icals and ROS are particularly important in antiaging research. G. lucidum polysaccharides
(GLPs) can inhibit ROS production in fibroblasts following UVB treatment [196].

3.4. Anticancer Activity

Cancer is still one of the most fatal diseases worldwide and poses a major clinical
challenge despite the notable boom in early diagnostic techniques and evolution in its
treatment techniques [197]. Hundreds of plant species have been investigated as sources
for new therapeutics (chemopreventive or chemotherapeutic) [198]. In this regard, mush-
rooms; e.g., Ganoderma species, are rich sources of many biologically active components,
including antitumoral agents [199,200]. For example, polysaccharides and triterpenes are
two major groups of compounds extracted from G. lucidum that were reported to possess
chemopreventive and/or tumoricidal activities [6,31,52,114,115,201–203]. In addition, the
antitumor activity exhibited by G. lucidum is achieved via induction of programmed cell
death, as reported by many studies [81,204,205]. Moreover, the isolated compounds from
G. lucidum have been previously described as modulators of autophagy in numerous hu-
man tumor cell lines [206–209]. In the same context, a methanolic extract (extraction at
room temperature) of G. lucidum fruiting bodies prevented the growth of a human gastric
tumor cell line via a mechanism that involved cellular autophagy [209]. Still, it is unknown
if the extract is an inducer of autophagy or an autophagic flux inhibitor. More recently,
Reis et al. [210] demonstrated that a methanolic extract of G. lucidum caused autophagy
induction, rather than reducing the autophagic flux in AGS cells.

3.5. Antidiabetic Activity

G. lucidum has been proved to possess compounds responsible for hypoglycemic
effects, such as polysaccharides, proteoglycans, proteins, and triterpenoids [6,78,123,124].
For instance, Wang et al. [211] reported that consuming a G. lucidum spore powder (GLSP)
induced a decrease in blood glucose levels by promoting glycogen synthesis and preventing
gluconeogenesis.

3.6. Cardioprotective Effects

How does G. lucidum have cardioprotective impacts? Many studies have answered this
question. Firstly, Sudheesh et al. [122] reported the presence of α-tocopherol in G. lucidum
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that protected the mitochondria, reducing cardiac toxicity and mitochondrial dysfunction.
Additionally, Gao et al. [212] referred to the positive effects of ganopoly (G. lucidum polysac-
charide extract) on coronary heart disease (CHD) patients. The same authors showed
that a polysaccharide extract of G. lucidum induced decreased blood pressure and serum
cholesterol levels.

3.7. Hepatoprotection

The GLPs and Ganoderma triterpenoids (GTs) can act on the immune system and effec-
tively exhibit hepatoprotective effects and treat liver damage. The hepatoprotective effects
of G. lucidum have been widely studied [213]. GLPs can protect hepatocyte injury by inhibit-
ing lipid peroxidation, elevating antioxidant enzyme activity, and suppressing apoptosis
and immune-inflammatory response [214]. GTs offered significant cytoprotection against
the oxidative damage induced by tertbutyl hydrogen peroxide (t-BHP) in hepatocellular
carcinoma cells by decreasing the level of malondialdehyde and increasing the contents of
glutathione and superoxide dismutase (SOD) [215]. Analysis of histopathology and serum
enzymes in mice revealed an important hepatoprotective function of an ethanol extract of
G. lucidum (GLE). It was therefore assumed that GLE could improve alcohol-induced liver
injury [216]. In addition, a G. lucidum mycelium-fermented liquid (GLFL) was reported to
possess hepatoprotective properties in rats [217].

3.8. Anti-Inflammatory Effects

Inflammation is a normal physiological response to an infection or injury and is part of
host defense and tissue healing [218]. GLPs can prevent inflammation, maintain intestinal
homeostasis, and regulate the intestinal immunological barrier functions in mice [219]. The
anti-inflammatory effect of GLPs plays an important role in the care of sensitive skin [213].

3.9. Prebiotic Potential

Prebiotics are defined as “a substrate that is selectively utilized by host microorgan-
isms conferring a health benefit” [220,221]. Mushrooms are considered untapped sources of
prebiotics such as fibers, oligosaccharides (major constituents of mushrooms), and polyphe-
nols, which can boost the growth and metabolic activity of beneficial members of the gut
microbiota. For example, nondigestible polysaccharides can prevent pathogen prolifera-
tion by improving the growth of probiotics in the gut [222]. During the last decade, the
interplay between prebiotics and human gut microbiota and its implications in mitigating
many diseases; e.g., cancer, diabetes, and obesity gained much focus and has emerged as
one of the principal trending axes of food science and technology. Scientific evidence has
accumulated on the critical role of gut microbiota dysbiosis in exacerbating inflammation
in host tissues, from the intestinal environment to the brain. Likewise, critical data has
established the gut microbiota’s regulatory role in energy metabolism, which may cause
disturbances in the metabolism processes [223]. For instance, mushrooms are a rich source
of prebiotics that may play a pivotal role in treating pneumonia and atherosclerosis, as
well as in their antitumor activity [224]. In the same context, a study conducted on mice
(C57BL/6) confirmed that the Mexican G. lucidum is a rich source of prebiotics that reduced
blood cholesterol [225]. The same study attributed the ability of Mexican G. lucidum to
lower the blood cholesterol level to the significant decrease in the lipid-generating gene
expression (Hmgcr, Fasn, Srebp1c, Acaca), and Abcg5, Abcg8 as genes responsible for re-
verse cholesterol transport, simultaneous with an increase in Ldlr gene expression in the
liver [225]. Another study showed the possibility that G. lucidum polysaccharide peptides
(GLPP) may have a role in alleviating the disturbance in the metabolism of fats through
the ability of these compounds to alter the composition of the gut microbiota, which in
turn has a positive effect on controlling and reducing the disruption of fat metabolism,
regulating genes involved in intestinal integrity, bile acid homeostasis, and extrauterine fat
deposition (Figure 6). Thus, GLPP can be considered a potential functional food component
for treating hyperlipidemia and gut microbiota dysbiosis [226].
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terol 7α-hydroxylase; SREBP-1C: sterol regulatory element-binding protein-1C; PPARα: peroxisome
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Furthermore, to date, no extensive studies have examined the biological activities and
functions of GLFL on the regulation of the gut microbiota and cardiovascular diseases
(CVDs) [227].

Concerning this, it has been demonstrated that the gut microbiota could play an impor-
tant role in host health through their influence on cardiovascular risk factors [228,229]. As
was mentioned previously, the products associated with G. lucidum have positive effects on
the gut microbiota, and thus these products can regulate the risk factors for cardiovascular
disease in the intestine. Chang et al. [230] reported an altered gut microbiota composition
in an obese mouse model treated with a water extract of G. lucidum mycelium. In addition,
GLFL was shown to reduce plasma low-density lipoprotein (LDL-c) cholesterol, triglyc-
erides, and total cholesterol, and increase high-density lipoprotein (HDL-c) cholesterol in
mice [231]. Additionally, Wu et al. [227] reported that when GLFL was fed to humans, it
profoundly altered the gut microbiota. In the post-feeding group, there was an evident
difference in β diversity as compared to the case of the pre-feeding group; this suggested
that GLFL had altered the composition of the gut microbiota. Furthermore, the same
authors reported that GLFL could protect humans by stimulating the growth of probiotics
(i.e., genus Lactobacillus (p < 0.05)) while inhibiting the growth of pathogens (i.e., genus
Aggregatibacter and Campylobacter (p < 0.05)).

3.10. The Health Risks of Ganoderma lucidum and Its Products

Most research on G. lucidum and its products has reported positive clinical outcomes
and potential therapeutic uses, while the innocuity and potential toxic effects in humans
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have been poorly investigated. For instance, G. lucidum extracts could cause toxicity
in vitro [35]. Moreover, G. lucidum spore-powder treatment caused hepatotoxic effects,
as reported by Wanmuang et al. [232] Although no adverse effects of consumption of
G. lucidum on lactation were proven, it is not advised for pregnant or lactating women [233].

4. Future Trends

Thus far, many questions have arisen regarding why and how to expand and maximize
the utilization of G. lucidum and its derivatives, and what to do about the new applications
and innovative techniques used in this regard. These points will be discussed via three
axes as follows.

4.1. Do the Beneficial Medical Properties of G. lucidum Need More Scientific Evidence?

Several publications have reported that G. lucidum may have diverse beneficial thera-
peutical characteristics via its myriad bioactive compounds, such as triterpenes, polysac-
charides, and proteins; hence, G. lucidum and its products are still common as commercial
products. Therefore, the efficacy and safety of the consumption of G. lucidum are still
considered knowledge gaps that are poorly investigated. During the past three decades,
in vitro/in vivo studies reported by Western researchers have shown biomedical benefits
for G. lucidum, which helped promote this mushroom in the Western world. However, there
still is an urgent need to fully understand the related biomechanisms, and thus unlock their
biotherapeutic application. The isolation, purification, and identification of active com-
pounds of G. lucidum should be carried out to decipher the bioactivity of these compounds
within its nutraceutical and pharmaceutical products. This aspect is a big challenge when
implementing the commercial standardization strategies of G. lucidum products [6,35].

More research is needed to re-examine and study the bioactive ingredients extracted
from G. lucidum, and this will be beneficial for clinical applications due to the discrepancy
in the research results for G. lucidum or its derivative products (e.g., GLFL, GLPP, and
WEGL). For example, Wu et al. [231] reported that a GLFL was unsafe because it increased
the number of opportunistic pathogens; e.g., Acinetobacter, and decreased probiotics; e.g.,
Lactococcus. These results were in contrast to what was obtained when they were applied to
mice [226].

Continued genetic studies of G. lucidum will elucidate the biosynthesis of the thera-
peutically active compounds produced by this mushroom; e.g., the unique triterpenoid
antitumor ganoderic acids (GAs). The clustered regularly interspaced short palindromic
repeats and CRISPR-associated protein 9 (CRISPR-CAS9) technology has positively iden-
tified active curative components in G. lucidum by constructing functional genes of GA
biosynthesis in this mushroom, thus serving as a vital platform for metabolic engineering
in G. lucidum. Therefore, the CRISPR-CAS9 technique can be a cornerstone in all biotech-
nological applications of G. lucidum, such as molecular breeding. Therefore, a complete
understanding of the G. lucidum genome will pave the way for its future roles in medical
and industrial applications [71,115,234].

Large-scale studies on G. lucidum mushrooms will be conducted with standard scien-
tific methods in the near future.

4.2. Future of the G. lucidum Mushroom in the Food Industry

Nowadays, several Ganoderma lucidum-based products are available in nutraceutical
form. Some of them are marketed as dietary supplements and are widely consumed in
many countries such as the United States, where they are combined with many other
ingredients; e.g., coffee and tea. Because there is no proper toolkit, the consistency of the
quality of dietary supplements derived from G. lucidum is rarely evaluated. Additionally,
G. lucidum could be considered a source of food preservatives [5,187,235].

To validate G. lucidum’s nutraceutical usage, more research on this mushroom is needed.
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4.3. Is Tracing the Species and Geo-Origin of G. lucidum Essential?

Research conducted by Loyd and others [14] showed that manufactured G. lucidum-
based products (e.g., dietary supplements), which are marketed as derived from G. lucidum,
contain not only G. lucidum but also multiple Ganoderma species, are unfortunately sold
for medicinal uses. Of course, not all Ganoderma species produce the same therapeutic
compounds, the same quality, or the same quantities. This raises questions about the
traceability and authenticity of mushroom species, and how important this is in the industry.
Therefore, this question should be addressed in subsequent research focusing on G. lucidum
and its products.

As mentioned by Qi et al. [236], the geographical-origin traceability of mushrooms and
their products is critical to assure their quality and safety. Indeed, the nutritional and thera-
peutic properties of each mushroom species vary depending on the geo-origins [237–240].
Lu et al. [237] proved this fact through their research on samples of G. lucidum collected
from different geographic regions, in which they found that the content of each G. lucidum
sample of ganoderic acids A and B, polysaccharides, and triterpenoids varied according
to their geographical origin (including the differences in cultivation and environmental
conditions). Hence, the geo-origin traceability of G. lucidum will reinforce the value of this
mushroom globally at all levels, whether industrial or economic.

Then, what is the best method that can be used for species and geo-traceability tar-
gets? El Sheikha and Hu [8] proposed the DNA barcoding approach as a new “cutting
edge” technology to significantly enhance food traceability in general and in mushrooms,
especially from the field to the table.

5. Infographic for Ganoderma lucidum: Current Scenario and Future Perspectives

Recently, research on G. lucidum and its products has achieved substantial progress and
has become a focus of the attention of the scientific community in many fields. Many studies
from different viewpoints elucidated the biological characteristics, chemical composition
and active components, pharmacological effects and related mechanisms, and clinical
applications based on G. lucidum. Furthermore, at the industrial level, G. lucidum has made
some progress.

In the future, new chemical compositions and active components (as a promising
functional food), cellular and molecular mechanisms of biological activities (e.g., prebiotic
effects), rapid and confirmatory methods to identify effective ingredients, fermentation
and cultivation techniques, double-blind large-scale clinical trials, and quality control
monitoring of product will be the aims of G. lucidum research (see Figure 7).



Foods 2022, 11, 1030 20 of 29Foods 2022, 11, x FOR PEER REVIEW 20 of 30 
 

 

 
Infographic 1. Ganoderma lucidum: current scenario and future perspectives. 

6. Conclusions 
Ganoderma lucidum (Lingzhi, Reishi, or Mannentake) is a promising source of prebi-

otics due to its abundance of several bioactive compounds that have nutritional and me-
dicinal effects and are present in all parts of the fungus (fruit bodies, mycelium, and 
spores). Therefore, since ancient times, G. lucidum has been used traditionally in Chinese 
medicine to treat chronic diseases. In addition, Chinese tradition refers to G. lucidum as 
“the lucky fungus” for its power to alleviate conditions such as arthritis, insomnia, and 
chest tightness. 

There has been an increased interest in G. lucidum as a dietary supplement containing 
Reishi, which is a widespread therapeutic agent worldwide. As for Western countries, the 
bioactive substances extracted from G. lucidum have been used in alternative medicine to 
support traditional medicine in treating severe diseases, including diabetes, hepatitis, and 
cancer. Nevertheless, continuing this trend requires more clinical trials, typically to 

Figure 7. Infographic for Ganoderma lucidum: current scenario and future perspectives.

6. Conclusions

Ganoderma lucidum (Lingzhi, Reishi, or Mannentake) is a promising source of prebiotics
due to its abundance of several bioactive compounds that have nutritional and medicinal
effects and are present in all parts of the fungus (fruit bodies, mycelium, and spores).
Therefore, since ancient times, G. lucidum has been used traditionally in Chinese medicine
to treat chronic diseases. In addition, Chinese tradition refers to G. lucidum as “the lucky
fungus” for its power to alleviate conditions such as arthritis, insomnia, and chest tightness.

There has been an increased interest in G. lucidum as a dietary supplement containing
Reishi, which is a widespread therapeutic agent worldwide. As for Western countries, the
bioactive substances extracted from G. lucidum have been used in alternative medicine
to support traditional medicine in treating severe diseases, including diabetes, hepatitis,
and cancer. Nevertheless, continuing this trend requires more clinical trials, typically to



Foods 2022, 11, 1030 21 of 29

confirm efficacy and safety. Soon, more studies will be conducted on this mushroom on a
larger scale in terms of medicinal applications or the food industry. The geographical origin
is considered one of the critical factors that greatly impact both the safety and quality of
mushrooms. Therefore, the determination of geographical origin has become an essential
requirement to provide consumers with safe and high-quality mushrooms, including
G. lucidum. Although there are many challenges facing the production of nutraceuticals
and functional foods from G. lucidum on a large scale, especially in light of the limited
clinical trials in humans, there is a potential for innovation, development, and expansion of
applications (e.g., in food and pharmaceutical applications) due to G. lucidum’s promising
nutritional and health characteristics.
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