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Cellular Heterogeneity of the Heart
Nathaly Anto Michel, Senka Ljubojevic-Holzer, Heiko Bugger and Andreas Zirlik*

University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria

Recent advances in technology such as the introduction of high throughput
multidimensional tools like single cell sequencing help to characterize the cellular
composition of the human heart. The diversity of cell types that has been uncovered
by such approaches is by far greater than ever expected before. Accurate identification
of the cellular variety and dynamics will not only facilitate a much deeper understanding
of cardiac physiology but also provide important insights into mechanisms underlying its
pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow
differentiation between a healthy heart and a sick heart while potentially predicting future
disease at much earlier stages than currently possible. These advances have already
extensively improved and will ultimately revolutionize our knowledge of the mechanisms
underlying cardiovascular disease as such. In this review, we will provide an overview of
the cells present in the human and rodent heart as well as genes that may be used for
their identification.
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INTRODUCTION

Cardiovascular disease (CVD) and its sequelae represent a major health and socioeconomic burden
accounting for vast and continuously increasing morbidity, and roughly a third of all deaths in
the world (1). There are many different types of CVD including coronary heart disease, stroke,
peripheral arterial disease, myocardial disease, and aortic disease. Coronary heart disease can lead
to angina, heart attacks, or heart failure. Although the exact cause of CVD is unknown, a solid body
of experimental and clinical data identified inflammation as a common final pathomechanism.
This is particularly well documented for atherosclerosis and its direct clinical consequences (2),
however, increasing evidence suggests that traditional and non-traditional risk factors trigger this
inflammatory process and thus ultimately drive initiation and progression of CVD (3, 4). These
risk factors include smoking, hypertension, hypercholesterolemia, chronic kidney disease, and
diabetes, but also systemic inflammation stemming from chronic inflammatory conditions (e.g.,
rheumatoid arthritis), infectious diseases, or obesity-derived visceral adipose tissue inflammation.
However, how this pathogenic link between (multiple) risk factors, inflammation, and adverse
cardiac phenotypes operates, and which cellular phenotypes or clusters mediate its action in the
heart is largely unknown.

Identification of cellular heterogeneity and their intercommunication can play a vital role in
differentiating a healthy from a diseased heart and it may predict future outcomes with superior
precision and at much earlier stages than currently possible. Conventional ways used to identify
specific cells include fluorescence-activated cell sorting (FACS). FACS is a powerful tool that
allows simultaneous multiparametric analysis of the physical and chemical characteristics of up
to thousands of particles per second. Nonetheless, FACS affords some limitations in sample
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preparation, fluorescent parameters, antibodies selection and
most importantly, paucity of markers that can be assayed at
the same time. Therefore, FACS is not suited for an unbiased
identification and further subclassification of unknown or poorly
subcategorized cells and the definition of their potential roles in
physiology and disease pathology.

In the last 10 years, analyses of cellular heterogeneity
with single cell resolution have made an astounding progress.
Developments in high parametric multiplex cell analysis such
as cytometry by time of flight (CyToF) and single cell RNA
sequencing (scRNAseq) have enabled us to gain a high-power
view on novel individual cellular phenotypes as well as on
distinct cellular expression patterns integrating the transcripts of
thousands of genes (5). While such high-parametric data sets are
still scarce in cardiovascular disease, scRNAseq techniques have
been successfully employed to detail the cellular composition
of whole organs, to identify new cell types, and/or characterize
cellular expression patterns associating with disease, disease
severity, outcome, or therapeutic response in other areas (6–10).
Therefore, they have proven to be an excellent tool to advance
our understanding of the cell types and populations involved
in disease pathogenesis in various fields. Such knowledge is
urgently needed to better understand cardiac physiology and
its derangement through disease and to ultimately improve the
treatment options and outcomes for cardiac patients.

In the following sections, we summarize current knowledge on
the cellular composition of the heart, its relevance for physiology
and pathologic transformation, as well as characteristic
changes in pathological conditions reported. We also provide
a comprehensive overview of the developmental stage-specific
changes in cellular heterogeneity and most promising cellular
markers that can increase robustness and reproducibility of single
cell transcriptomic analyses in different experimental animal
models and human biomaterials (Figure 1 and Supplementary
Tables 1–3). Given that methodological differences between
scRNAseq and FACS complicate data interpretation and
would require a large discussion, we predominantly focus on
publications reporting data generated by scRNAseq.

CELLULAR COMPOSITION OF THE
HEART

Cardiomyocytes – The Core of Cardiac
Contraction
Cardiomyocytes are the engine of the heart where energy is
converted to mechanical work by myosin ATPases consuming
high energy phosphates, thereby driving the cross-bridge cycle
of the cardiomyocyte. While the use of stereological and
morphometric methods estimated that cardiomyocytes would
cover 75% of the total cardiac cell volume in rats, studies
based on flow cytometry and immunohistochemistry revealed
that around 30% of total cardiac cells are cardiomyocytes, with
significant species differences in the cellular composition between
human, mouse and rat hearts (11–13). Confident identification
of cardiomyocytes can be achieved by measuring the expression

proteins involved in the contractile machinery such as myosin
light (MYL2-4,MYL7, andMYL9) and heavy (MYH6,MYH7, and
MYH7B) chains, myosin binding proteins (MYBPC3), troponins
(TNNT2, TNNTI1, TNNTI3, and TNNTC1), and proteins
involved in calcium-mediated processes [ryanodine receptor 2
(RYR2), phospholamban (PLN), Sodium ion/calcium exchanger
(NCX)] (14–16). Integrity of cardiomyocytes is reflected by
expression of the protocadherin 7 (PCDH7) gene which encodes
a strong calcium-dependent adhesive molecule (17), and of SET
(Suppressor of variegation, Enhancer of Zeste, Trithorax) and
MYND (Myeloid-Nervy-DEAF1) domain containing 2 (SMYD2)
corresponding to a lysine methyltransferase that promotes
sarcomere formation and stabilization (18). It seems that the
latter proteins are only significantly expressed in cardiomyocytes
of the adult heart.

Among regularly contracting cardiomyocytes, atrial and
ventricular cardiomyocytes participating in the cardiac
conduction system can be distinguished which transduce
electrical stimuli to drive cardiac contraction. These
cardiomyocytes have been traditionally identified based on
hyperpolarization-activated cyclic nucleotide-gated potassium
channel 4 (HCN4) (19) and contactin-2 (CNTN2) expression
(20). Additional markers include gap junction protein alpha-1
(GJA1), gap junction protein alpha-5 (GJA5), secreted protein
acidic and cysteine rich (SPARC)-related modular calcium-
binding protein 2 (SMOC2), ISL LIM homeobox 1 (ISL1) or
T-box transcription factor 3 (TBX3), although the expression
of these markers shows significant heterogeneity depending on
their anatomical location within the conduction system (nodes,
atrioventricular bundle, Purkinje fiber network) (21–23). Using
scRNAseq technology, an even higher grade of heterogeneity
within the conduction system has been revealed. Specific
subpopulations of cardiomyocytes with particular expression of
myozenin 2 (MYOZ2) in adult murine and developing human
heart (24) have been identified, and the expression of insulin-like
growth factor-binding protein 5 (IGFBP5), copine 5 (CPNE5),
and neurotrimin (25) is enriched in the entire conduction system
whereas SMOC2 expression is exclusively observed in cells of the
sinus node (26).

To distinguish the fetal and adult heart, TNNTI1, TNNTI3,
and TNNTC1 are accepted cellular markers in fetuses, whereas
different troponin and myosin genes are commonly used to
identify adult cardiomyocytes (TTN, MYBPC3, TNNT2, MYH7,
and MYL2) (14–16). Of note, while the known switch toward
predominant expression of MYH6 in postnatal hearts (compared
to predominant expression of MYH7 in fetal hearts) is observed
in rodents, humans mainly express MYH7 throughout life
without a significant isoform switch. Furthermore, α-skeletal
actin (ACTA1) is mainly expressed in fetal and neonatal
human hearts, whereas expression of ACTC1 predominates
in the adult heart (27, 28). Fetal hearts also show enhanced
expression of compliant titin (TTN) isoforms (N2BA1/N2BA2),
which are eventually replaced by adult isoforms in postnatal
development (29).

A differentiation between fetal and adult cardiomyocytes can
also be achieved by evaluating markers of cell proliferation,
given the high and low proliferative capacity of fetal and
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FIGURE 1 | Cellular composition and markers of the human and murine heart. Cellular composition and most consistently identified markers that may be used for
identification and separation of major cellular lineages in adult human and murine hearts. A more comprehensive list of additional marker genes, including fetal
human hearts, is provided in Supplementary Tables 1–3.

adult cardiomyocytes, respectively. Convenient markers to
appreciate cardiomyocyte proliferation may include expression
levels of DNA topoisomerase 2 alpha (TOP2A) and marker
of proliferation Ki-67 (MKI67) (14, 30, 31). It remains to be
noted that only few cardiomyocytes in the adult heart (0.4%
of all cardiac cells) display markers of proliferation at all as
revealed by an integrative analysis using a mouse cell type atlas
in combination with single-nuclei RNA-seq (32).

Furthermore, a differentiation between fetal and postnatal
cardiomyocytes is also possible by measuring markers or
metabolites of energy metabolism (33). While fetal hearts
mainly utilize carbohydrates for ATP regeneration and
have low mitochondrial oxidative capacity, cardiomyocytes
switch toward predominant fatty acid oxidation and undergo
marked mitochondrial biogenesis once fatty acid and oxygen
availability increase in the early postnatal period (34). The
fetal metabolic program is characterized by expression of
the liver isoform of carnitine palmitoyltransferase 1 (CPT1),
whereas human postnatal cardiomyocytes express muscle
CPT1, high levels of peroxisome proliferator-activated receptor
alpha (PPARα; induced by fatty acid availability) and PPAR
gamma coactivator 1-alpha (PGC-1α; driving physiological
mitochondrial biogenesis). In addition, the content of glycogen
(measurable by histology are electron microscopy) may
be higher than 30% in fetal but only around 2% in adult
cardiomyocytes (33).

Atrial and ventricular myocardium differs in developmental,
structural, hemodynamic, and physiological properties, which
is reflected by a distinct expression profile (35). Based on
these differences, Hairy/enhancer-of-split related family bHLH
transcription factor with YRPW motif 2 (HEY2) and MYH7
may qualify as markers predominantly expressed in ventricular
cardiomyocytes, whereas expression of natriuretic peptide A
(NPPA) and MYL4 is more evident in atrial cardiomyocytes (16).
Furthermore, the atrial fibrillation susceptibility gene, paired
like homeodomain 2 (PITX2), is only observed in left atrial

cardiomyocytes (36). Interestingly, HCN4 which encodes the ion
channel responsible for spontaneous depolarization and which
has also been associated with atrial fibrillation, is present in
approximately 4% of right atrial, in less than 0.5% of left atrial
and only∼1% of ventricular cardiomyocytes (16).

In non-diseased myocardium, a significant heterogeneity
of cardiomyocytes with gradients of specific gene expression
has been observed, and additional changes in gene expression
are superimposed by cardiac pathologies, complicating the
interpretation of transcriptional profiling studies on the single
cell level. Application of single-cell technology has revealed
a more extensive heterogenic gene expression (e.g., NPPA;
brain natriuretic peptide, BNP; MYH7) in failing hearts than
previously identified using bulk-RNA sequencing (37). In
another study, the combination of single-cell analysis and
RNA in situ hybridization of human dilated cardiomyopathy
samples uncovered transcriptional heterogeneity, allowed to
distinguish distinct gene modules responsible for cardiomyocyte
hypertrophy or failure, and elucidated coordinated molecular and
morphological dynamics of cardiomyocytes that may promote
heart failure development (38). Furthermore, studies in rodents
with pressure overload-induced cardiac hypertrophy showed that
MYH7 genes were greatly expressed with smaller cardiomyocytes
as opposed to larger cardiomyocytes, and that MYH7 was
markedly expressed in middle layers of the myocardium (38).
These data support the concept of adaptive heterogeneity of
cardiomyocytes, where cardiomyocytes that consume less energy
undergo atrophy and express major histocompatibility complex
(MHC) proteins to limit myofibrillar ATPase activity, whereas
other cardiomyocytes with increased oxidative capacity may
express MHC proteins to guarantee a high rate of myofibrillar
ATP consumption Using these novel technologies to provide a
spatial map of cells-of-interest within the heart or to identify
cardiomyocytes of interest may have intriguing clinical value,
e.g., by facilitating diagnostics of myocardial tissue or biopsy
specimen by pathologists.
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Cardiomyocytes are the main cellular population responsible
for cardiac contraction, and their unique molecular composition
allows them to accomplish their highly specialized roles.
However, overall cardiac function needs to be investigated and
understood in the context of cardiac tissue, in which other
cell types operate together with cardiomyocytes to orchestrate
periodic cardiac contractions that adapt to the physiological
demands of the living system.

Fibroblasts – Frequent and Functional
Cardiac fibroblasts are involved in the synthesis and remodeling
of extracellular matrix, communicate with cells of the immune
system, participate in cardiac conductivity and rhythmicity,
and take part in myocardial healing responses, e.g., following
myocardial infarction or during chronic disease states (39–
41). In absence of disease, fibroblasts are nearly equivalent to
cardiomyocytes in cell number, accounting for approximately
25–32% of all cells in the heart (16, 42). In adult human
heart tissue, classical fibroblast markers include decorin (DCN),
gelsolin (GSN), transgelin (TAGLN), regulator of G protein
signaling 5 (RGS5), Smooth muscle aortic alpha-actin 2 (ACTA2),
Thy-1 cell surface antigen (THY1.1), platelet derived growth
factor receptor alpha (PDGFRA), S100 calcium binding protein
A4 (S100A4), discoidin domain receptor tyrosine kinase 2
(DDR2), lymphocyte antigen 6 complex, locus A (LY6A) also
known as Sca-1, vimentin (VIM), and collagen type I alpha
1 chain (COL1A1) (41). However, once fibroblasts become
activated or the heart suffers injury (e.g., myocardial infarction),
fibroblasts may also strongly express other markers such as
periostin (POSTN), alpha smooth muscle actin (αSMA) or
mesenchyme homeobox 1 (MEOX1), among other genetic
signatures. In this respect, a differentiation of three major
types of fibroblasts in the heart by distinct expression profiles
(mature fibroblasts, activated fibroblasts, myofibroblasts) has
been provided in another excellent review (41). Fibroblasts of
the fetal human heart express transcription factor 21 (TCF21),
smooth muscle cells snail family transcriptional repressor 2
(SNAI2), COL1A1, collagen type I alpha 2 chain (COL1A2),
DCN, delta like non-canonical Notch ligand 1 (DLK1), and
lumican (LUM). Similar to cardiomyocytes, fibroblasts also
exhibit differential expression between atria and ventricles, and
between the left and right heart. Good examples are cartilage
intermediate layer protein 2 (CILP) and integrin beta-like 1
(ITGBL1) which are upregulated in the left ventricle while
downregulated in the right ventricle (41). Human and rodent
genes involved in pathological remodeling of the heart or
considered as profibrotic markers are cytoskeleton associated
protein 4 (CKAP4), NADPH oxidase 4 (NOX4), insulin like
growth factor 1 (IGF1), A disintegrin and metalloproteinase
(ADAM) with thrombospondin type 1 motif 4 (ADAMTS4),
vascular cell adhesion molecule (VCAM), and AXL receptor
tyrosine kinase (AXL) (16, 24, 43, 44). For example, in the
event of myocardial ischemia reperfusion, an increase in the
expression of CKAP4 was identified in activated fibroblasts
(24), a protein considered also responsible for development
of atrial fibrosis in the heart (45). Interestingly, myocardial
biopsies of patients suffering from ischemic heart disease also

show increased expression of CKAP4 in fibroblasts, accompanied
by activation of other genes such as POSTN, WNT1-inducible
signaling pathway protein-1 (WISP1), and tenascin C (TNC) (24)
as well AE binding protein 1 (AEBP1) a novel transcription factor
identified in human cardiac fibrosis (46).

In mice, fibroblasts have been intensely studied. In young
mice, fibroblasts constitute 15–19% of the healthy murine heart,
whereas in adult mice, this percentage increases to more than 20%
(47). Characteristic markers used to identify fibroblasts in murine
hearts include COL1A1, GSN, DCN, WNT inhibitory factor 1
(WIF1), dickkopf WNT signaling pathway inhibitor 3 (DKK3),
metallothionein 2 (MT2), TIMP metallopeptidase inhibitor 1
(TIMP1), PDGFRA, and TCF21 (48). In the context of disease,
expression of the fibrosis-associated extracellular matrix genes,
POSTN and fibrillin 1 (FBN1), are increased in a mouse model
of pediatric mitochondrial cardiomyopathy, although expression
of these genes has been reported in other cell types as well (47).
Upon ischemia reperfusion, fibroblasts show high expression of
POSTN, WISP1, and TNC, associated with fibroblast activation
(24). Another study in mice demonstrated that gene expression
of fibroblasts was skewed toward Ki-67, COL1A2, collagen type
III alpha 1 chain (COL3A1), collagen type V alpha 1 chain
(COL5A1), SPARC, secreted frizzled related protein 2 (SFRP2),
and DKK3 following myocardial infarction (49). However, in
pigs the infarct zone presented upregulation of ACTA2, COL1A1,
TIMP2, POSTN, TAGLN, MMP2, and FN1 genes specifically in
the infarct zone (50).

Aging has a significant impact on the fibroblast expression
profile and function. Comparing transcriptomes of 12 week-
old and 18 month-old mouse hearts using single-nucleus RNA
Seq revealed that aging predominantly affected fibroblast gene
expression, and a total of 12 age-dependent fibroblast subclusters
were identified (51). Gene ontology analysis of differentially
regulated genes elucidated that aging predominantly affected
expression of genes related to inflammatory/immune responses,
extracellular matrix organization, angiogenesis, and osteogenesis.
In particular, expression of serine protease inhibitors (SERPIN)
family E member 1 and 2 (SERPINE1 and 2) was increased
in certain fibroblast clusters, promoting antiangiogenic effects
upon their secretion. Furthermore, some fibroblast subclusters
identified in this study showed higher expression of genes
involved in osteoblast differentiation such as DDR2, runt related
transcription factor 2 (RUNX2), glycoprotein M6B (GPM6B),
JunB proto-oncogene, AP-1 transcription factor subunit (JUNB),
and CCAAT enhancer binding protein beta (CEBPB), showing a
transition toward an osteogenic fate. This osteogenic transition
seems to be particularly evident within epicardial layers of the
aged heart (51).

In a study focused specifically on the role of active fibroblasts
in myocardial infarction in mice, a subpopulation called cells
reparative cardiac fibroblasts (CFRs), was identified by the
expression of POSTN and collagen triple helix repeat containing
1 (CTHRC1). CFR activity appears to be essential in scar healing
following MI (52). Of note, the CFR signature was also found in
MI model in swine, and at least in part in human myocardial
biopsy specimen taken from the ischemic zone of ischemic
cardiomyopathy or from dilated cardiomyopathy, indicating this
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signature may be conserved across species and highlighting the
translational significance of these findings.

Interestingly, specifically targeting fibroblast may reduce
fibrosis in mice suffering myocardial injury (53, 54). Aghajanian
et al. set out to identify proteins specifically expressed by activated
cardiac fibroblasts in a MI mouse model. They found that
fibroblast activation protein alpha (FAP) is one of the main
responsible for fibrosis and that FAP was also previously observed
in human and rat hearts after MI (55). Of note, targeting FAP by
nanoparticle-mediated generation of chimeric antigen receptor
(CAR) T cells, in vivo resulted in a reduction in cardiac fibrosis
suggesting that this approach may hold promise for treatment of
fibrosis in cardiac disease states (56, 57).

Approximately three decades ago, fibroblasts were suggested
to be considered as immune cells because of their ability to
produce cytokines when stimulated with IL1 or TNFα. They
are also capable of producing prostaglandin E2 (PGE2), giving
them the ability to regulate immune responses. Furthermore,
fibroblasts produce several growth factors as for example platelet-
derived growth factor, transforming growth factor-β and insulin-
like growth factors that regulate the reparative response, possibly
involving autocrine regulatory loops (58). Finally immune
functions of fibroblast may include interaction with myeloid
cells, lymphocyte mobilization as well as induction of pro-
inflammatory attributes, as observed in inflammatory disorders
and cancer (59). Although fibroblasts may take part in immune
responses in these diseases, it remains largely unexplored whether
and what immune cell functions they may exert in the heart.

Endothelial Cells – An Underrecognized
Force
In the heart, endothelial cells cover the inner lumen of
cardiac chambers, blood, and lymphatic vessels. Using
immunohistochemistry, it has been estimated that endothelial
cells cover more than 60% of non-myocyte cardiac cells in
the adult mouse heart (60). Endothelial cells (ECs) fulfill a
number of different tasks, including control of blood flow by
modulating the degree of vascular relaxation and constriction,
regulation of extravasation of solutes, fluid, macromolecules and
hormones, participation in leukocyte trafficking and hemostasis,
and contributions to thermoregulation and angiogenesis (61,
62). Based on the multitude of different functions within a
variety of distinct tissues, endothelial cells show a high degree of
heterogeneity, are equipped with specific properties, and exert
different morphological features, all regulated by differences in
the cellular gene expression programs (63, 64).

Despite the cellular heterogeneity of endothelial cells, markers
could be identified to distinguish this cell type from other
cardiac cells. Endothelial cells of the adult human heart can
be identified by platelet and endothelial cell adhesion molecule
1 (PECAM1), cadherin 5 (CDH5), and von Willebrand factor
(VWF), and subdivision into arterial endothelial cells is possible
by prospero homeobox 1 (PROX1), FMS related tyrosine kinase
4 (FLT4), podoplanin (PDPN), B one M arrow tyrosine kinase
gene in chromosome X non-receptor tyrosine kinase (BMX),
and natriuretic peptide receptor 3 (NPR3) (16). In mice, NPR3

is selectively expressed in adult endocardium (65). In the fetal
human heart, endothelial cells can be identified using Sry-type
box transcription factor (SOX) 7, 17, and 18, PECAM1, and
CDH5. It is important to mention that these cells can undergo
endothelial-mesenchymal transition and will then express genes
that have been mostly used to identify fibroblasts (COL3A1;
COL1A2; fibronectin 1, FN1; and biglycan, BGN). Thus, a deeper
characterization of these cells is highly recommended. Other
genes that are useful for the identification of endothelial cells
are apolipoprotein E (APOE), intercellular adhesion molecule 2
(ICAM2), tyrosine kinase with immunoglobulin like and EGF-
like domains 2 (TIE2), endoglin (ENG), and nitric oxide synthase
1 and 2 (NOS1 and NOS2) (15, 66). Further classification between
venous and arterial endothelial cells is feasible with the following
genes: EPH receptor B4 (EPHB4), neuropilin 1 and 2 (NRP1
and NRP2), nuclear receptor subfamily 2 group F member 2
(NR2F2), ephrin B1 (EFNB), delta like canonical Notch ligand
4 (DLL4) and HEY1/2 (61). Lymphatic endothelial cells are
found in a low percentage in the heart, and these are expressing
PROX1, lymphatic vessel endothelial hyaluronan receptor 1
(LYVEL), FLT4, and PDPN (60). Interestingly, it was observed
that endothelial cells are also able to switch on cardiomyocyte
lineage genes such as MYL2, myoglobin (MB), MYL3, TNNT2,
TNNI3, and ACTC1 following myocardial infarction, indicating
the utility of transcriptional profiling and cell marker analysis
in detecting cell type shifts, thus facilitating understanding of
pathology, e.g., a cell type shift from endothelial cell phenotype to
cardiomyocyte phenotype following myocardial infarction (67).

Some genes related to the role of endothelial cells in vascular
tension, permeability and vessel formation are differentially
expressed in young and adult mice. In healthy, 10-day-old mice,
genes such as cytochrome c oxidase subunit 6A2 (COX6A2),
cardiac myosin binding protein C (MYBPC3), myosin heavy
chain associated RNA transcript (MHRT), NPR3, TIE1, and
TIE2 are clearly expressed (47). However, endothelial cells
in adult mouse hearts express CDH5, PECAM1, fatty acid
binding protein 4 (FABP4), VWF, and VCAM1 (48, 68–70).
It is important to mention that although these markers are
very specific for endothelial cells, other genes GJA1; ATPase
sarcoplasmic/endoplasmic reticulum calcium transporting 2,
ATP2A2; TTN; RYR2; MYH6) have also been reported that
are related to cardiomyocyte function (71). Once cardiac
tissue suffers a damage due to myocardial infarction, e.g.,
3 days following coronary artery ligation, genes involved
in leukocyte migration [e.g., chemokine (C–C motif) ligand
9 (CCL9), C–X–C motif chemokine ligand 2 (CXCL2)] are
upregulated in endothelial cells. Intriguingly, different genes
related to collagen production (COLl3A1), ribosome assembly
and protein translation [ribosomal protein L9 (RPL9) and S12
(RPS12)], and cell proliferation [tumor protein, translationally
controlled 1 (TPT1)], are enriched in endothelial cells 7 days
following myocardial infarction (72). In heart failure, the most
relevant genes upregulated in endothelial cells are mainly
related to cell adhesion, angiogenesis, and cell migration
(major histocompatibility complex, class I, B, HLA-B; EGF like
domain multiple 7, EGFL7; receptor activity modifying protein
1 and 2, RAMP1, RAMP2; plasmalemma vesicle associated
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protein, PLVAP; inhibitor of DNA binding 1, ID1; and formin
like, FMNL3), inflammatory response (CX3CL1; cluster of
differentiation 74, CD74), as well as development and maturation
(SOX17, SOX18) (73).

Immune Cells – Regulators of Health and
Disease in the Heart
The more frequent use of single-cell immune profiling in
combination with advanced visualization technologies has
profoundly deepened our understanding of the immune system
of the heart, revealing the presence of a diverse landscape of
innate and adaptive immune cells. Virtually all known types
of immune cells have been described within the heart of both
human and rodents including monocytes/macrophages, T-cells,
B-cells, natural killer (NK) cells, and mast cells. Their precise
roles often are yet to be fully defined (74). A recent study showed
monocytes constituted 4.3% of all cells within fetal human hearts.
They were identified by expression of basic leucine zipper ATF-
like transcription factor 3 (BATF3), lysozyme (LYZ), S100A8 and
S100A6. Macrophages accounted for approximately 4.7% of all
cells within the fetal human heart. Proliferating macrophages
expressed the markers membrane spanning 4-domains A4A
(MS4A4A), selenoprotein P (SEPP1), and CD68, while non-
proliferating macrophages expressed additionally MKI67, LYZ,
and S100A6. Around 5% of all cells were T cells, predominantly
expressing GATA binding protein 3 (GATA3), lymphotoxin beta
(LTB), and interleukin 7 receptor (IL7R), 2.4% of all cells were
NK cells and expressed eomesodermin (EOMES), natural killer
cell granule protein 7 (NKG7), granulysin (GNLY), granzyme
A (GZMA), granzyme B (GZMB), and perforin 1 (PRF1). B
cells represented 3.2% of all cells with signatures showing
expression of B cell CLL/lymphoma 11A (BCL11A), membrane
spanning 4-domains A1 (MS4A1), and immunoglobulin lambda
like polypeptide 5 (IGLL5). Mast cells (1.3% all cells) could be
separated by expression of tryptase beta 2 (TPSB2) and GATA2
and dendritic cells by that of CD1C+, respectively (15).

Macrophages can be commonly classified by their phenotype
and function into M1 and M2 polarized macrophages. Classically
activated macrophages (M1 polarization) express interleukin
1β (IL1B), CCL2, CCL9, CXCL3, and usually govern pro-
inflammatory functions (16, 75). In contrast, M2 polarized,
non-classical macrophages are more likely to express APOE,
galectin-3 (LGALS3) and the transmembrane glycoprotein NMB
(GPNMB) and largely contribute to resolution of inflammation
and repair (75).

As in fetal human hearts, myeloid cells represent the most
prominent cellular fraction in adult human hearts. Commonly
they are classified according to their C-C-chemokine receptor
type 2 (CCR2) expression status into locally proliferating,
self-renewing tissue resident (TR) CCR2− macrophages,
originally populating the heart from the yolk sac in early
stages of embryonic development, and CCR2+ tissue resident
macrophages (TRMs) stemming from the monocyte blood pool.
While CCR2− TRMs are abundant in the healthy state and
instrumental for repair following damage, e.g. after myocardial
infarction (MI), CCR2+ TRMs are rare in healthy states

but quickly recruited upon injury and frequently mediating
disease (76). The latter are not only recruited from blood
and bone marrow but also from other tissues functioning
as a reservoir to ensure timely recruitment during onset
of inflammation (77, 78). Combining genetic fate mapping
with scRNAseq, Dick et al. identified three clusters of TRMs:
T cell immunoglobulin and mucin domain containing 4
positive, LYVE1 positive, major histocompatibility complex
class II low and CCR2 negative (TIMD4+LYVE1+MHC-
IIloCCR2−) relying almost exclusively on self-renewing
by proliferation, TIMD4−LYVE1+MHC−IIhiCCR2− that
are partially renewed from blood monocytes and finally
TIMD4−LYVE1−MHCIIhiCCR2+ that recruit themselves from
exterior monocytes only. Interestingly, the TIMD4+CCR2−
group limited adverse remodeling in a mouse model of MI (79).
TRMs have not only been implicated with myocardial infarction
but with various other cardiac pathologies including myocarditis.
Here, macrophages expressing mast cell immunoglobulin like
receptor 1 (MILR1), CXCL9, lymphocyte antigen 6 complex,
locus I (LY6I), NOS2, arginase 1 (ARG1), argininosuccinate
synthase 1 (ASS1) appeared to entertain the inflammatory
process (66). In addition, cardiac hypertrophy mimicked by the
transverse aortic constriction has been linked to proinflammatory
TRMs expressing Oncostatin M (80, 81). Important note has
been found a correlation of human expression genes and
mouse, CCR2+ macrophage abundance is associated with left
ventricle (LV) remodeling and systolic function in heart failure
patients (77).

Macrophage gene signature characteristically differs between
male and female human hearts. Male cardiac macrophages
upregulate genes involved in responding to foreign antigens,
antigen processing, and presentation via MHC class II molecules
such as interferon regulatory factor 8 (IRF8), a gene linked to
chronic inflammation (82). In contrast, female-upregulated genes
in cardiac macrophages are involved in the response to stress
and the electron transport chain, e.g., the TSC22 domain family
member 3 (TSC22D3, also known as Gilz), the most upregulated
gene in female macrophages and the most sexually dimorphic
macrophage gene between both sexes (68), a transcription factor
implicated in anti-inflammatory functions and a downstream
driver of the potent anti-inflammatory effects of glucocorticoids
(83–85).

Constructing a cell atlas of the human heart from scRNAseq
data, Tucker et al. identified two main immunologic cell
clusters: A) a cluster representing TRMs expressing the scavenger
receptors CD163 and collectin subfamily member 12 (COLEC12),
the mannose receptor C-type 1 (MRC1), the E3 ubiquitin ligase
membrane associated ring-CH-type finger 1 (MARCH1), and the
natural resistance-associated macrophage protein 1 (NRAMP1)
which could be further separated into two macrophage clusters,
both M2-like, expressing recombination signal binding protein
for immunoglobulin kappa J region (RBPJ) and coagulation
factor XIII A chain (F13A1) on the one hand and the
transmembrane collagen COL23A1 on the other (16). B) an
immune cell cluster showing a T cell phenotype expressing the
T cell surface antigen CD2, the early T cell antigen CD69, and the
T-cell receptor-associated transmembrane adaptor 1 (TRAT1),
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the T cell immune adaptor src kinase associated phosphoprotein
1 (SKAP1), and the thymocyte selection marker CD53 (16).

Immune cells of the adaptive immune system are the
second largest cell fraction within the human heart and have
been implicated with various cardiovascular diseases including
myocardial infarction, myocarditis, and heart failure summarized
elsewhere in a recent review by Steffens et al. (74). For example, T
regulatory cells (Tregs) showing elevated expression of forkhead
box P3 (FOXP3), CD25, cytotoxic T-lymphocyte associated
protein 4 (CTLA4), and killer cell lectin like receptor G1 (KLRG1)
were identified during MI in mouse hearts (86). However,
interferon gamma (IFNG), tumor necrosis factor (TNF), IL3 and
IL17 genes, related to classically polarized Th cells were not
differentially expressed after MI in mice (87). In the same model,
B cells presented with upregulation of activation markers such
as CD69, CCR7, CXC-chemokine receptor type 5 (CXCR5), and
transforming growth factor beta 1 (TGFB1) (88).

Other immune cell types found in the adult human heart
include granulocytes expressing CCR1, colony stimulating factor
3 receptor (CSF3R), and S100A9, B-cells expressing MS4A1 (14)
and dendritic cells that – despite their very low number in
cardiac tissue – may be identified by expression of CD209a (16).
The knowledge about their significance for cardiac diseases is
still very limited.

Other Cell Types – Rare and
Underrecognized
Recently, it has become evident that the cellular diversity of
the heart stretches beyond cardiomyocytes, endothelial cells,
fibroblast, and immune cells. Some of the more untraditional cells
found in the heart are:

Adipocytes
Epicardial adipose tissue covers up to 80% of a human
heart while it is essentially absent in rodents (89). Therefore,
adipocytes account for up to 20% of the total mass (90).
Since epicardial adipose tissue is supplied with blood thought
the coronary circulation and it has a common embryonic
origin with the heart, it has been suggested that it might be
important for cardiac physiology (89). Epicardial adipose tissue
can be segregated into adipocytes, preadipocytes and the so-
called stroma vascular fraction comprising various cell types
such as vascular cells and fibroblasts. Although the exact role
of adipocytes remains unknown, it is possible that they might
serve as a local energy store or to protect cardiomyocytes
from lipotoxicity and hypothermia (91). Marker genes used
for identification of adipocytes are those regulating the size
and lipid droplet stability, including cell death-inducing DNA
fragmentation factor, alpha subunit like effector c (CIDEC) and
perilipin 5 (PLIN5). Furthermore, cardiac adipocytes are notably
enriched of adiponectin, C1Q and collagen domain containing
(ADIPOQ), which plays a role in the regulation of fatty acid
transport and intracellular calcium homeostasis, as well as in
thyrotropin releasing hormone degrading enzyme (TRHDE)
expression, a gene responsible for inactivation of the thyrotropin
release hormone.

Surprisingly, these cells also overexpress IGF1 and T cell-
activated increased late expression (TACTILE also known as
CD96), markers involved in cell growth and proliferation in
different cell types (16). While the mentioned studies are
supportive of adipocytes playing a role in the development of
CVD, descriptive and mechanistic studies are scarce in this topic.

Pericytes/Smooth Muscle Cells
The main difference between pericytes and smooth muscle cells
is that pericytes reside within micro vessels, whereas smooth
muscle cells contribute to the vascular wall of larger vessels. In
human hearts, pericytes are characterized by genetic expression
of platelet-derived growth factor receptor beta (PDFRB), ATP
binding cassette subfamily C member 9 (ABCC9), and potassium
voltage-gated channel subfamily J member 8 (KCNJ8), and it is
possible to subdivide them by the expression of some adhesion
molecules such as neural cell adhesion molecule 2 (NCAM2) and
CD38, or with a gene related in microvascular morphogenesis,
chondroitin sulfate proteoglycan 4 (CSPG4). Expression of
MYH11, known as smooth muscle actin, generates a debate
on the specificity of this gene (14). A recent study provided
additional evidence on reliable genetic tools that can be used
to identify, label, and target cardiac pericytes in mice, thereby
facilitating further investigation of the role of this understudied
cell type in heart disease (92).

Proteins related with contractile function such as MYH11,
ACTA2, TAGLN, RGS5, vitronectin (VTN), KCNJ8, and
myocardin (MYOCD) are used to identify smooth muscle cells
(48, 68, 72). Until now, no changes in smooth muscle cells
have been reported in the heart during any CVD, but one
study performed in smooth muscle cells of ascending aortic
wall in patients with myocardial infarction showed that at least
21 genes were upregulated in comparison with the control
group (non-myocardial infarction patients). Those genes were
related to three different functions such as the regulation of
smooth muscle cell contraction by ATPase Na+/K+ transporting
subunit alpha 2 (ATP1A2), superoxide dismutase 1 (SOD1), and
MYOCD, heart development by histone deacetylase 9 (HDAC9),
polycystin 2, transient receptor potential cation channel (PKD2),
hexamethylene bisacetamide inducible 1 (HEXIM1), FOXP1,
and integrin subunit beta 1 (ITGB1), and not less important
actin cytoskeleton organization by spectrin alpha, erythrocytic 1
(SPTA1), platelet activating factor acetylhydrolase 1b regulatory
subunit 1 (PAFAH1B1), erythrocyte membrane protein band 4.1
like 2 (EPB41L2), and profilin 1 (PFN1) (93). This shows that
these cells may play an important role in the development of
CVD, but so far, they have not been identified.

Mesothelial Cells
The mesothelial layer covering the heart has a crucial role
in cardiac development and repair after injury. The most
recent insights into cellular composition and diversity of the
epicardium have lately been summarized comprehensively (94).
This distinct small population of mesothelial cells expresses
Wilms tumor 1 (WT1), basonuclin 1 (BNC1), basonuclin 2
(BNC2), and odd-skipped related transcription factor 1 (OSR1)
under normal conditions, while neuropeptide Y (NPY) has been
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described to be responsible for cardiac remodeling, angiogenesis
and vasoconstriction (14, 16). This cell subpopulation also
expresses unspecific genes such as slow muscle troponin T1, slow
skeletal type (TNNT1) or genes involved in immune response
(complement C1r, C1R; complement factor I, CFI; complement
C3, C3; and serpin family G member 1, SERPING1) (16).

Glia Cells/Schwann Cells
This cell type covers all surfaces of neuronal cells, and it has
been shown to regulate tissue remodeling in a paracrine fashion
(95). Peripheral glial cells can be separated into two main types;
satellite glial cells covering neuron cell bodies located in ganglia,
and Schwann cells which wrap nerve fibers. Since cardiac glial
cells are dispersed throughout the heart, they were particularly
difficult to analyze until the development of the scRNAseq
methodology. However, scRNAseq studies have not yet examined
sufficient cardiac glial cells to either detect subpopulations or
investigate their change during heart development and disease.
Although these cells are confirmed to be present in the heart
(16), approaches to isolate these cells are limited. Generally used
markers include CSPG4 [also called Nerve/glial antigen 2 (NG2)],
PDGFRB, and melanoma cell adhesion molecule (MCAM), which
are non-specific; CSPG4 and MCAM are expressed as well in
mural cells, and PDGFRB expression is found in mural cells and
fibroblasts. It is thought that CD59a might be a good marker (68),
but this marker is also highly expressed in endothelial cells.

Progenitor/Progenerative Cells
Using radiocarbon (14C) birth dating and design-based
stereology Bergmann et al. provided compelling evidence for the
strikingly low regeneration capacity of human cardiomyocytes,
with less than 1% renewing yearly in an adult human heart
(13). Nevertheless, identification and understanding of
progenitor/progenerative cells is highly relevant, as unlocking
regenerative potential of contractile cells could provide means to
rescue an injured heart (96). Over the last decade, two potential
sources of cardiomyocyte renewal were extensively studied—
pre-existing cardiomyocytes undergoing dedifferentiation and
duplication, and stem or progenitor cells that contribute to
de novo generation of cardiomyocytes—with recent work (97,
98) and subsequent consensus (99) favoring the former. By
combining genetic fate-mapping with stable isotope labeling and
multi-isotope imaging mass spectrometry, it was demonstrated
that cardiomyocyte turnover in adult heart is primarily driven by
the division of pre-existing cardiomyocytes during normal aging
and after myocardial injury (98). Furthermore, a population
of cardiomyocytes with a high pro-regenerative profile was
identified in infant patients with dilated cardiomyopathy but
was absent in children >6 years of age (100). In addition, an
integrative cluster analysis of adult murine hearts obtained
from multiple data sets discovered a minor population of
cardiomyocytes characterized by proliferation markers that could
not be identified by analyzing the datasets individually (101),
further supporting the idea that the renewal of the cardiomyocyte
pool is driven by cytokines of resident cardiomyocytes rather
than differentiation of progenitor cells.

On the other hand, cardiac progenitor cells are made up of
different cell types characterized by the expression of proto-
oncogene receptor tyrosine kinase (KIT), LY6A, ATP binding
cassette subfamily G member 2 (ABCG2), ISL1, and TBX18
(25, 100–103). However, recent genetic lineage tracing studies
revealing that only a small fraction of endogenous cells expressing
LY6A or KIT contribute to the adult cardiomyocyte population
challenge the view that newly formed cardiomyocytes are
predominantly derived from cardiac progenitor cells (69, 104,
105). Even with these data, it has not yet been possible to define
whether the cardiomyocyte renewal, if any, is originated by the
generation of new cardiomyocytes from a rare division of existing
cardiomyocytes or from putative cardiac stem cells after cardiac
injury (96, 106).

NKX2 Homeobox (NKX2) and ISL1 expression has led to the
identification of previously unknown progenitor subpopulations
during the early phase of cardiac fate decision-making (107).
In addition, a population of cardiomyocytes with a high pro-
regenerative profile was identified in infant patients with dilated
cardiomyopathy but was absent in children >6 years of age
(108). It is broadly accepted that adult heart also has an,
albeit very limited, regenerative potential. Its origin, however,
is still matter of an ongoing debate. An integrative cluster
analysis of adult murine hearts obtained from multiple data sets
discovered a minor population of cardiomyocytes characterized
by proliferation markers that could not be identified by analyzing
the datasets individually (97).

It is now widely accepted that the heart has an, albeit
very restricted, regenerative potential. However, further work in
needed to identify and characterize populations of proliferative
cardiomyocytes and mechanisms of endogenous renewal that
could be exploited for repairing the injured myocardium.

DISCUSSION

In recent years, scRNAseq has made a quantum leap from
large-scale cell population studies to single cell analysis.
Despite its short history, scRNAseq has already begun to drive
new discoveries in different disciplines that would not have
been possible with traditional methods such as for example
FACS analysis. International collaborative efforts of multiple
laboratories aim to define the cellular heterogeneity in all
organ systems. The Human Cell Atlas (109) and Human
BioMolecular Atlas Program1 are of particular importance
for human physiology and pathophysiology, while the Tabula
Muris project (32) allows for deconvolution of murine single
cell subtype transcriptome. In addition, Asp et al. combined
scRNAseq data of human embryonic cardiac cells, RNA-seq data
of spatial transcriptomics, and in situ sequencing data to map
cell-type distribution and spatial organization in the human
embryonic heart and generate a 3D gene profile atlas of the
developing human heart (110). Using a similar approach to
study the development of the chicken heart from the early to
late four-chambered heart stage, Mantri et al. identified diverse

1https://commonfund.nih.gov/hubmap
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cellular lineages in developing hearts, their spatial organization,
and their interactions during development (111). Although the
atlases generated from scRNAseq technology are becoming more
and more complete, one of the crucial remaining tasks that will
facilitate their effective integration into future clinical trials, is
standardization of the markers used for the different cells, as well
as experimental and analytical pipelines.

Despite challenges associated to tissue availability and
cellular isolation (112), in the cardiovascular field alone,
numerous groups have used scRNAseq technology to identify
new cell populations and key molecular players driving
numerous physiological and pathophysiological processes in
the heart. Using scRNAseq of isolated cardiomyocytes from
heart failure patients with ventricular arrhythmia, Yamaguchi
et al. recently identified a subpopulation of cardiomyocytes
which readily expresses dopamine D1 receptor (113). Following
the lead from untargeted transcriptomic analyses, they further
generated cardiomyocyte-specific D1 receptor knockout and
overexpressing mice and proved that cardiac D1R receptor
upregulation is both necessary and sufficient for inducing life-
threatening ventricular arrhythmia.

scRNAseq of cells from a commonly used heart failure
model—transverse aortic constriction (114) mouse model—
facilitated novel discoveries with important clinical implications.
Transcriptome analysis of >11,000 single cells revealed that
activation of proinflammatory macrophages is the key event in
the transition from normal to reduced ejection fraction (115).
Furthermore, macrophage activation and subtype switching, a
key event at middle-stage of cardiac hypertrophy, was effectively
attenuated by Dapagliflozin, a sodium glucose cotransporter 2
inhibitor known for its beneficial effects in heart failure patients,
as well as two additional anti-inflammatory agents, inhibitor of
galectin-3 (TD139) and Arglabin, which are rarely used in setting
of cardiac diseases. Importantly, the authors could confirm
similar molecular and cellular patterns in human samples of
hypertrophic cardiomyopathy and heart failure. Nomura et al.
manually isolated single cardiomyocytes from wild-type and
p53 cardiomyocyte-specific deficient mice in the presence or
absence of TAC (38). They subsequently analyzed transcriptomes
of 473 cardiomyocytes and found that continuous pressure
overload leads to a cardiomyocyte divergence into adaptive
and failing phenotypes, and that p53 signaling is specifically
responsible for alterations typical for late cardiac remodeling.
Again, accompanying human single-cardiomyocyte analysis
validated the conservation of the pathogenic transcriptional
signatures in heart failure patients. Satoh et al. applied three
single-cell analysis methods, namely, sc-qPCR, scRNAseq, and
single-molecule fluorescence in situ hybridization (smFISH) to
study transcriptome profile in isolated cardiomyocytes and cross
sections from TAC murine hearts at an early hypertrophy stage
(2 weeks post-TAC) and at a late heart failure stage (8 weeks
post-TAC) (116). In alignment with the idea of cardiomyocytes
progressing into different phenotypes over the course of the
remodeling, expression levels of MYH7, a representative fetal
gene, greatly varied in hypertrophic cardiomyocytes and was
more consistently found in failing cardiomyocytes. MYH7-
expressing cardiomyocytes were significantly more abundant
in the middle layer, compared with the inner or outer layers

of hypertrophic hearts, while such spatial differences were not
observed in failing hearts. Interestingly, expression of MYH7
was negatively correlated with cellular size and abundance of
mitochondria-related gene transcripts.

In a rat model of heart failure with preserved ejection
fraction, scRNAseq transcriptome analyses of the sinoatrial node
revealed significant alterations in both the “membrane clock” (ion
channels) and the “calcium clock” (spontaneous calcium release
events) which—when probed in functional experiments—further
validated RNA-seq data (117).

Dong et al. performed meta-analyses of large-scale, publicly
available bulk and single-cell RNA sequencing datasets to identify
vascular smooth muscle cell (VSMC)-enriched long non-coding
RNAs. The role of novel VSMC-expressed long non-coding
RNA, cardiac mesoderm enhancer-associated non-coding RNA
(CARMN), was then investigated in VSMC-specific CARMN
knockout mice that underwent carotid artery injury. In vivo,
CARMN deletion in VSMC exacerbated, while its overexpression
markedly attenuated injury-induced neointima formation in two
independent animal models, underscoring its potential clinical
implication as a therapeutic target for intimal hyperplasia (80).

Although there are only a few reports on spatial
transcriptomics in the heart, two areas of cardiac research
are particularly dependent on detailed understanding of the
spatial transcriptome patterns. First, cardiac development is a
spatially complex process and comprehensive understanding of
regional changes in gene expression during heart maturation
is of great interest. Second, spatial information is crucial in
myocardial infarction, given that localized occlusion of a
coronary artery differentially affects the site directly adjacent
to the infarct site, whereas the remote areas are only indirectly
affected. Accordingly, care must be taken when developing
treatment strategies. In conditions where only a portion of
cells shows alterations in signaling pathways, we must learn
more about the specific cell type, their localization in the heart,
as well as the temporal resolution of their reprogramming in
order to introduce the treatment, when and where this trigger is
detrimental, and to reduce off-target effects.

Two important factors complicate interpretation of data on
cellular heterogeneity of the heart. First, there are continuous
fluctuations in abundance of diverse cellular lineages, their
spatial organization and molecular composition, as well as
their interactions during heart development. Second, well-
documented inter-species differences must be considered when
extrapolating data from experimental animal models to human
cardiac physiology and pathophysiology. Therefore, the high-
level standardization of markers for different cell types, their
developmental stage and their host species is crucial for the
comprehensive understanding of cellular heterogeneity in cardiac
health and disease.

Overall, our knowledge on the cellular composition and
its dynamic changes in cardiac health and disease is steadily
increasing through the advent of powerful technologies such
as scRNAseq. scRNAseq technology alone and particularly in
combination with spatio-temporal genetic and/or proteomic
data has a potential to transform our knowledge on disease
mechanisms, more precisely predict patients at risk of developing
adverse cardiac outcomes and reveal mechanisms underlying
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distinct personalized therapeutic responses. It, therefore, holds a
promise to become an integral and central part of future clinical
trials (118).
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