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Abstract. Cyclic adenosine monophosphate (cAMP) is an 
important secondary messenger that has long been recognized 
to control the initiation of meiosis through the activation of 
protein kinase A (PKA) in mammalian oocytes. However, 
PKA is not the only target for cAMP. Recent studies on 
cAMP-dependent and PKA-independent pathways suggest 
that Ras-related protein-1 (Rap1) is activated through its 
cAMP-responsive guanine exchange factors (cAMP-GEFs), 
which comprises the involvement of exchange proteins directly 
activated by cAMP (Epac) in various cellular processes. The 
aim of the present study was to investigate the possible impli-
cation of a cAMP/Epac/Rap1 pathway in mouse oocytes and 
embryos. Reverse transcription polymerase chain reaction 
and immunohistochemistry assays demonstrated the expres-
sion of Epac and Rap1 in oocytes and embryos at different 
stages. Immunofluorescene demonstrated that Epac and Rap1 
had different dynamic subcellular localizations and expres-
sion patterns in oocytes and embryos at different stages. It was 
therefore indicated that Epac and Rap1 may have multiple and 
specific functions during oocyte maturation and embryonic 
development.

Introduction

Mammalian oocytes are physiologically arrested in the 
prophase of the first meiotic division. It is well established that 
meiosis is regulated by the levels of cyclic adenosine mono-
phosphate (cAMP) within the oocyte (1,2). The downstream 
pathway by which high cAMP levels prevent meiotic matura-
tion has remained to be fully elucidated. Numerous studies on 
starfish, fish, amphibians and mammals support the hypothesis 

that protein kinase A (PKA) has major roles in the mainte-
nance of meiotic arrest (3-5).

Although increases in cAMP and activation of PKA are 
crucial for the induction and maintenance of meiotic arrest, the 
precise targets and downstream effectors of cAMP signaling 
have not been fully defined (1,6). Initially, all effects of cAMP 
were attributed to the activation of PKA. The identification 
of a novel class of cAMP-binding proteins termed guanine 
nucleotide exchange factors (cAMP-GEFs) provided a means 
by which changes in cAMP yield actions that are independent 
of PKA (7,8). Recently, the importance of PKA-independent 
signaling pathways in the regulation of oocyte maturation has 
been demonstrated (9,10).

Exchange protein directly activated by cAMP (Epac) was 
discovered during a database search for proteins that may 
explain for the insensitivity to cAMP-induced activation of 
the small GTPase Ras-related protein-1 (Rap1) (7,8). To date, 
two isoforms of Epac (Epac1 and Epac2) have been identi-
fied. Epac1 and Epac2 exhibit distinct expression patterns in 
mature and developing tissues. In particular, Epac1 mRNA 
is expressed ubiquitously, whereas Epac2 mRNA is predomi-
nantly expressed in the brain (8). Accordingly, the present 
study focused on the expression pattern of Epac1. Epac is a 
Rap1‑specific cAMP‑GEF and activates Rap1 directly as an 
effector molecule of cAMP, with no involvement of PKA. 
The cAMP/Epac/Rap1 pathway has been demonstrated and 
implicated in numerous cell systems (11-13). It is involved in 
a variety of cellular processes, including secretion (14), cell 
adhesion (15), intercellular junction formation (16), apop-
tosis (17), cell proliferation (18) and cell differentiation (19). 
The objectives of the present study were to investigate whether 
a cAMP/Epac/Rap1 pathway exists in oocyte maturation as a 
cAMP-dependent but PKA-independent factor.

Materials and methods

Animals. Animal care and handling was performed in accor-
dance with the Animal Research Committee guidelines of the 
Institute of Zoology, Chinese Academy of Sciences. Unless 
otherwise stated, ovaries and ooctyes were obtained from a total 
of 20, 5-week-old B6D2F1 strain mice (C57BL/6 x DBA/2J) 
weighing 18-20 g. C57BL/6 female mice (n=10) and DAB/2 male 
(n=5) mice were purchased from Shanghai SLAC Laboratory 
Animal Co., Ltd. (Shanghai, China). Animals were housed at 
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a controlled temperature (22‑24˚C) and were subjected to a 
12-h light/dark cycle (lights on from 6:00 until-18:00). Animals 
received ad libitum access to food and tap water.

Immunohistochemistry. Ovaries from 5-week-old B6D2F1 
strain mice (C57BL/6 x DBA/2J) were fixed overnight in 
Bouin's solution and then processed into paraffin wax blocks. 
Sections were cut at a thickness of 5 µm and mounted on 
poly‑l‑lysine‑coated glass slides. Sections were de‑paraffinized 
in xylene, rehydrated in a graded ethanol series and washed in 
deionized water for 5 min. The sections were next heated in 
citrate buffer (pH 9.0) for 30 min in a water bath at 96˚C. The 
samples were treated with 0.3% hydrogen peroxide in abso-
lute methanol for 10 min at room temperature (RT) to inhibit 
endogenous peroxidase activity. Non‑specific protein binding 
was blocked by incubation with 3% normal donkey and goat 
serum for Epac and Rap1, respectively, in PBS for 10 min at 
RT. Working solutions of primary antibodies 91:100 dilution) 
for anti-Epac1 (cat. no. sc-8879) and anti-Rap1 (cat. no. sc-65; 
both from Santa Cruz Biotechnology, Inc., Dallas, TX, USA) 
were applied to the sections overnight at 4˚C. Subsequently, two 
peroxidase-conjugated donkey anti-goat (cat. no. sc-2059) and 
goat anti-rabbit immunoglobulin G (IgG) secondary antibodies 
(cat. no. sc-2054; both Santa Cruz Biotechnology, Inc.), diluted 
1:2,000 in PBS containing 1.5% bovine serum albumin (BSA), 
were applied for 1 h at 37˚C. Labeling was visualized using 
3,3'-diaminobenzidine and counterstained with hematoxylin at 
RT for 5 min. After each step, the sections were rinsed with PBS. 
The control sections were incubated with PBS only, without the 
primary antibody. The experiments were performed at least 
three times for each antibody staining.

Oocyte and embryo retrieval. All oocytes and zygotes 
were obtained from the 5-week-old B6D2F1 female mice 
(C57BL/6 females x DBA/2J males).

The culture medium was G1 medium (Vitrolife, Göteborg, 
Sweden) containing 4 mg/ml BSA (Sigma-Aldrich; Merck 
KGaA, Darmstadt, Germany). Oocytes were cultured in an 
incubator at 37˚C with 6% CO2. Germinal vesicle (GV) oocytes 
were isolated from ovaries into G1 medium containing dibutyryl 
cAMP (100 µg/ml; Sigma-Aldrich; Merck KGaA) to prevent 
resumption of meiosis. Metaphase II (MII) stage oocytes were 
recovered from ampullae from mice superovulated by intraperi-
toneal injection of 7.5 IU of pregnant mare serum gonadotropin 
followed by 7.5 IU of human chorionic gonatropin (hCG) 48 h 
later. Cumulus cells were removed with 0.1 mg/ml hyaluroni-
dase (Sigma-Aldrich; Merck KGaA) by pipetting. To collect 
synchronized embryos, superovulated females were caged 13 h 
after hCG injection with male mice for 1.5 h and vaginal plugs 
were checked the next morning. Zygotes (1-cell embryos) were 
collected from the oviducts 18-20 h after mating. Early 2-cell, 
4-cell and 8-cell embryos were collected at 44, 54 and 68 h after 
mating, respectively.

Immunofluorescene. Mouse oocytes were fixed with 2% formal-
dehyde for 15 min at 37˚C and permeabilized with 0.02% Triton 
X‑100 for 1 h at 37˚C. To determine the expression of Epac and 
Rap1, the fixed oocytes were incubated with goat anti‑Epac1 
(sc-8879; Santa Cruz Biotechnology, Inc.) polyclonal anti-
bodies and rabbit anti-Rap1 (sc-65; Santa Cruz Biotechnology, 

Inc.) polyclonal antibodies for 1 h at 37˚C. After being 
washed with PBS, oocytes were transferred to a solution with 
secondary antibodies: Cy3-conjugated anti-goat IgG (1:500; 
cat. no. 705-165-003; Jackson ImmunoResearch Laboratoris, 
Inc., West Grove, PA, USA) and Cy3-conjugated anti-rabbit 
IgG (1:500; cat. no. 111-165-003; Jackson ImmunoResearch 
Laboratoris, Inc.) for 1 h at 37˚C. All of the secondary antibodies 
were purchased from Jackson Laboratories (Bar Harbor, ME, 
USA). DAPI (0.2 µg/ml, DA0001, Sigma-Aldrich) was used to 
stain the nuclei for 5 min at RT. Slides were examined using a 
laser-scanning confocal microscope with a 63 x oil immersion 
objective lens and a Leica SP2 krypton-argon ion laser (Leica 
Microsystems, Wetzlar, Germany) for the simultaneous excita-
tion of fluorescence for proteins and DAPI for DNA.

Reverse transcription polymerase chain reaction (RT‑PCR) 
analysis. mRNA was prepared from 100 MII-stage oocytes 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) according to the manufacturer's 
instructions. Standard complentary DNA synthesis by reverse 
transcription of the RNA was then performed using random 
primers and SuperScript™ III RNase H-Reverse Transcriptase 
(Invitrogen; Thermo Fisher Scientific, Inc.). Epac1 and Rap1a 
mRNA were detected by RT-PCR with mRNA primer pairs 
using hot start Taq DNA polymerase (Takara Bio Inc., Shiga, 
Japan). PCR was performed in 96-well plates with 2 l 10 x Taq 
Buffer, 10 mM deoxy-ribonucleoside triphosphate, 25 mM 
MgCL2, primers at a final concentration of 0.2 µm and a cDNA 
sample derived from 5 ng total RNA in a total volume of 
20 µl. Following 2 min incubation at 50˚C followed by 10 min 
incubation at 95˚C, the samples were subjected to 40 cycles of 
amplification (95˚C for 15 sec, 60˚C for 1 min) and dissocia-
tion (95˚C for 15 sec, 60˚C for 1 min and 95˚C for 15 sec). All 
the test reactions were accompanied by negative controls and 
were performed with at least two independent preparations. 
The PCR primers were non-dimerizing under the conditions 
employed and were typically intron-flanking. They were 
designed according to the mouse Epac1 mRNA sequence with 
the GenBank accession no. NM_144850.1: Sense, 5'-TCC CCT 
CCT GTC ATC CCC-3' and antisense, 5'-GCC ATC ATC CGC 
ATC TTC TC-3' [product length, 116 base pairs (bp)] and Rap1a 
mRNA sequence with the accession no. NM_145541.4: Sense, 
5'-TTC TGC AAA GTC AAA GAT CAA CG-3' and antisense, 
5'-TTT TAG GCT TCT TCT TTT CCA CTG-3' (product length, 
95 bp). As a positive control, the mRNA for GAPDH was 
amplified using the following primers (based on accession 
no. NM_001001303): Sense, 5'-TGA CGT GCC GCC TGG AGA 
AA-3' and antisense, 5'-AGT GTA GCC CAA GAT GC-CCT 
TCA G-3' (product length, 98 bp). The PCR products were 
separated using 1.0% agarose gel electrophoresis, ethidium 
bromide staining and UV transillumination followed by 
capture with a charge-coupled device camera. Fragment sizes 
were estimated using a 100 bp DNA ladder (M106R; Genscript 
Biotech Corporation, Nanjing, China).

Results

Expression of Epac1 and Rap1a mRNA in MII‑stage oocytes. 
The expression of Epac1 and Rap1a mRNAs was detected 
in the MII-stage oocytes using RT-PCR analysis. This result 
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demonstrated Epac1 and Rap1a mRNA is expressed in 
MII-stage mouse oocytes (Fig. 1).

Localization of Epac1 and Rap1a in the adult mouse 
ovary. The existence of Epac1 in the human ovary has 
been demonstrated by northern blotting (8). In addition, the 
cAMP/Epac1/Rap1a pathway has been indicated to partici-
pate in the proliferation of immature rat granulosa cells 
and the regulation of progesterone secretion by luteinizing 
human granulose cells (20,21). However, data regarding the 
specific expression patterns of these two genes in the female 
germline are limited. To address this, the sections of mouse 
ovaries were stained to analyze the distribution of Epac1 
and Rap1a proteins throughout oogenesis. Immunostaining 
indicated that the two proteins were expressed throughout 
the entire ovary (Fig. 2B-E). The two proteins were detected 
in either germ or follicle cell tissues throughout the different 
stages of oocyte development, from primordial follicles to 
Graafian follicles and were distributed throughout the cyto-
plasm. Epac1 immunostaining in oocyte and granulosa cells 
appeared uniform (Fig. 2B and C). By contrast, the immu-
nostaining for Rap1a in oocytes appeared stronger than that 
in granulosa cells (Fig. 2D and E).

Localization of Epac during meiotic maturation of mouse 
oocytes. The present study examined the dynamic localization 
of Epac1 in mouse oocytes using immunocytochemistry and 
confocal microscopy. At the GV stage, Epac was first seen as 
small accumulations scattered in the cytoplasm (Fig. 3A). After 
GV breakdown (GVBD), the chromatin condensed towards the 
center of the oocyte. A network of small clusters, distributed 
uniformly throughout the cytoplasm, then became evident 
(Fig. 3B). Following the migration of the condensed meiotic 
chromosomes to the cortex of the oocyte, small clusters became 
polarized and concentrated at opposite ends (Fig. 3C). However, 
at the MII stage, when the first polar body is extruded and the 
MII spindle is already established, the accumulations appeared 
to become reduced and spread out in the ooplasm (Fig. 3D). 
When the MII oocyte had been fertilized and developed into a 
one-cell stage zygote, the network of clusters almost disappeared 

and Epac became uniformly distributed throughout the embryo 
(Fig. 3E).

Differential expression of Rap1a protein in oocytes and embryos. 
As a member of the Ras-like small GTPase superfamily, Rap1 
has been implicated in the regulation of a variety of cellular 
processes. However, its role in oocyte maturation and early 
embryonic development has remained to be elucidated. Using 
immunocytochemistry, it was evidenced that Rap1a expression 
patterns differed between mouse oocytes and early preimplanta-
tion embryos. During different stages of oocyte maturation, Rap1a 
was dispersed uniformly as small punctuations throughout the 
cytoplasm (Fig. 4A). When oocytes were fertilized and allowed 
to develop into 1-cell zygotes, the small punctuations aggregated 
into visible clusters of particles that mainly occupied the cortical 
region of blastomeres (Fig. 4B). This phenomenon was evident 
even in 2-cell and 4-cell stage embryos (Fig. 4C and D) and 
persisted in subsequent early preimplantation embryos (Fig. 4E). 
In general, the localization of Rap1a is variable and depends on 
the cell type (22,23). The activation of Rap1a and the subsequent 
response are determined by the local environment. In addition, 
the spatial and temporal localization of Rap1 is associated with 
different cellular functions (24). Therefore, it is speculated that 
Rap1a may have a different function in oocyte maturation from 
that in early embryonic development.

Discussion

The present study indicated a mutually exclusive dynamic 
expression of Epac1 and Rap1a in oocytes and embryos. Epac1 
has a unique distribution during oocyte maturation, which 
disappeared upon entering the MII stages. Rap1a exhibited 
its typical expression only beginning from pronuclear-stage 
embryos and persisting in subsequent early preimplantation 
embryos (Fig. 4A-E). As the limitation of our experimental 
research method, the 8-cell stage embryo showed in Fig. 4E may 
appear the cell <8 for the embryo was squeezed on a glass slide. 
The different and dynamic localizations of Epac1 and Rap1a 
are likely to be crucial determinants of the functions of these 
proteins. It is anticipated that, as with PKA, the multiple func-
tions of this pathway may depend on the localization of these 
two proteins (25).

It is thought that a high level of cAMP in the oocyte main-
tains putative initiator proteins in a phosphorylated (inactive) 
state, inhibiting oocyte maturation and that the activation of 
initiator proteins by dephosphorylation via mechanisms that 
remain elusive induces maturation-promoting factor (MPF) 
activity (26,27). MPF is activated upon GVBD and increases until 
it reaches a plateau at the end of the first meiotic M‑phase (28,29). 
MPF is rapidly reactivated to enter meiosis II and is maintained 
at a high level during the MII phase arrest. The discrete sets of 
steps through which cAMP activates or inactivates MPF are still 
under investigation. There is a consensus that PKA has major 
roles in this process. Thus, the change of cAMP levels within 
the oocyte leads to the activation of MPF in a PKA-dependent 
manner. However, the inhibitory role of cAMP on meiosis 
contradicts the fact that maturation is stimulated by a surge of 
the gonadotrophins, luteinizing hormone and follicle stimulating 
hormone (30), both of which stimulate cAMP production in the 
somatic cells of follicles and increase the level of cAMP in 

Figure 1. Reverse transcription polymerase chain reaction performed on 
100 MII-stage mouse oocytes with primers specific for Epac1 (product 
length, 116 bp), Rap1 (product length, 95 bp) and GAPDH (product length, 
98 bp). Lanes: M, 100‑bp DNA ladder; 1‑3, amplification products for Epac1, 
Rap1 and GAPDH, respectively; 4-6, negative controls without reverse tran-
scriptase, RNA and complementary DNA in the reaction tube, respectively. 
Rap1, Ras-related protein-1; Epac, exchange proteins directly activated by 
cyclic adenosine monophosphate.
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oocytes via gap junctions (31). Studies have attempted to explain 
this apparent paradoxical action of cAMP concerning the spatial 
localization of the downstream signaling proteins involving 
the cAMP-PKA pathway (32). However, it is also possible 
that PKA-independent pathways (e.g., the cAMP/Epac/Rap1 
pathway) are involved.

Epac has emerged as an important target of cAMP in a 
variety of processes. The isomers contain a cAMP-binding 
domain with significant sequence homology to the R subunits 
of PKA and a GEF domain that functions to exchange GTP 
for GDP (7,8). Epac was first demonstrated to be an exchange 
factor for the small GTPase Rap1. GTP-bound Rap1 causes 
the activation and initiation of a cascade of protein kinases 
of the mitogen-activated protein kinase (MAPK) signal 
transduction pathway (21,33,34). Numerous protein kinases 
and phosphatases have been suggested to participate in 
the process of meiotic arrest and progression in mice. The 
MAPK extracellular signal-regulated kinase 1/2 is one of the 
protein kinases that may participate directly and indirectly 
in the regulation of meiotic resumption of oocytes (35,36). 

The MAPK pathway has a crucial role in the reactivation of 
MPF after meiosis I and thereafter in the maintenance of MII 
arrest (37). It may be speculated that the cAMP/Epac/Rap1 
pathway regulates the inhibition and progression of mouse 
oocyte maturation through activating the MAPK pathway. 
Of course, further experiments should be performed to test 
this hypothesis.

In most cases, the involvement of Epac compensates 
for the role of PKA and it is frequently intrinsically linked 
to the cAMP/PKA pathway (15). Dual control involving 
PKA and Epac may enhance the dynamic range of cAMP 
signaling (22). PKA activity per se is not sufficient, and it is 
rather the complex cAMP signaling pathways that regulate 
meiotic arrest and progression.

In conclusion, the present study was the first, to the best 
of our knowledge, to demonstrate that Epac and Rap1 display 
dynamic and characteristic expression patterns in mouse 
oocytes and embryos. These results offer a basis for further 
research to elucidate the function of the cAMP/Epac/Rap1 
pathway in oocytes and embryos.

Figure 2. Ovarian localization of Epac and Rap1 proteins determined by immunohistochemistry. (A) Negative control. The control sections were incubated 
with PBS only, without the primary antibody and the blue appearance is the result of hematoxylin staining. (B-E) Ovarian sections at various stages of oogen-
esis with immunostaining for (B and C) Epac and (D and E) Rap1. Different stages of follicles were showed in (B and D) primary follicles, secondary follicles 
and antral follicles. Arrowheads indicate antral stage follicles in (C and D) and the circle indicates cumulus and granulosa cells in E (scale bar, 20 µm). Rap1, 
Ras-related protein-1; Epac, exchange proteins directly activated by cyclic adenosine monophosphate.
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(C) 2-cell stage embryo. (D) 4-cell stage embryo. (E) 8-cell stage embryo 
(scale bar, 25 µm).
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