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Summary

Molecular methods to investigate functional groups
in microbial communities rely on the specificity and
selectivity of the primer set towards the target.
Here, using rapid sand filters for drinking water pro-
duction as model environment, we investigated the
consistency of two commonly used quantitative PCR
methods to enumerate ammonia-oxidizing bacteria
(AOB): one targeting the phylogenetic gene 16S
rRNA and the other, the functional gene amoA. Clon-
ing-sequencing with both primer sets on DNA from
two waterworks revealed contrasting images of AOB
diversity. The amoA-based approach preferentially
recovered sequences belonging to Nitrosomonas
Cluster 7 over Cluster 6A ones, while the 16S rRNA
one yielded more diverse sequences belonging to
three AOB clusters, but also a few non-AOB
sequences, suggesting broader, but partly unspeci-
fic, primer coverage. This was confirmed by an
in silico coverage analysis against sequences of
AOB (both isolates and high-quality environmental
sequences). The difference in primer coverage signif-
icantly impacted the estimation of AOB abundance at

the waterworks with high Cluster 6A prevalence, with
estimates up to 50-fold smaller for amoA than for
16S rRNA. In contrast, both approaches performed
very similarly at waterworks with high Cluster 7
prevalence. Our results highlight that caution is war-
ranted when comparing AOB abundances obtained
using different qPCR primer sets.

Introduction

Investigation of environmental microbial communities by
molecular techniques has, over the last decades, demon-
strated large advantages, primarily by overriding the limi-
tation associated with microbial cultivation in the
laboratory. Although so-called ‘open format’ methods exist
which do not require a priori sequence information from
the community of interest, much of the routine monitoring
techniques of microbial communities, such as qPCR, are
‘closed-format’ (i.e. require a priori sequence information)
(Zhou et al., 2015). These ‘closed-format’ methods typi-
cally depend on the ability of a primer set for unbiased
amplification of all (or most) of the target sequences with-
out amplifying non-target sequences. Primer sets are
designed based on the current information from nucleo-
tide databases and require occasional validations as new
sequences from the environment are added.
To study bacterial functional groups, primer sets may

either target a relevant functional gene or, if the function
is performed by one or a few taxa, the phylogenetic 16S
rRNA gene. This is the case for the ammonia-oxidizing
bacteria (AOB), which predominantly belong to the beta-
subclass of Proteobacteria and carry a functional amoA,
which codes for a subunit of the ammonia monooxyge-
nase (Norton, 2011). AOB are key players in the first
step of nitrification in many natural and engineered sys-
tems. To quantify this group, researchers routinely
employ qPCR targeting amoA or group-specific 16S
rRNA gene sequences (Junier et al., 2010). However, as
these two approaches are not typically compared, it is
unclear whether they are equally good at estimating
AOB abundance.
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We attempted this comparison, using biomass
extracted from biological rapid sand filters (RSF) used
for production of potable water from groundwater. One of
the key roles of these filters is ammonium removal,
which is mediated by ammonia-oxidizing prokaryotes
(AOP) (van der Wielen et al., 2009). Occasional failures
in ammonium removal call for better understanding and
monitoring of AOP communities, which require accurate
molecular quantification methods.
Here, we investigate the consistency of two molecular

approaches for quantifying AOB: one targeting a phylo-
genetic gene (16S rRNA) and the other, a functional
gene (amoA). We tested two commonly applied AOB-
specific primer sets: CTO189a/b/c – RT1r for 16S rRNA
(Kowalchuk et al., 1997; Hermansson and Lindgren,
2001) and amoA1f - amoA2r (Rotthauwe et al., 1997).
These primer sets were evaluated for coverage and
specificity both in silico and on DNA extracted from bio-
mass from two RSFs. The difference in primer pair
selectivity, combined with the compositional differences
of the AOB guild across sand filter communities, had a
major effect on the quantification outcome.

Results & Discussion

Two molecular approaches targeting the phylogenetic
16S rRNA and functional (amoA) genes were applied to
investigate AOB abundance in pre-filter and after-filter

units at three Danish waterworks; Islevbro, Sjælsø, and
Langerød. The abundance of the AOB 16S rRNA genes
ranged from ca. 3 9 106 to ca. 3 9 108 copies/g drained
wet sand across RSF units and waterworks (Fig. 1). The
abundance estimates were similar between replicate
after-filters within waterworks and indicated some
expected within-plant patterns. Notably, at Sjælsø water-
works, AOB were one-order of magnitude more abun-
dant in the pre- than in the after-filter units and, in
Islevbro after-filters, a clear two order of magnitude
decline of AOB abundance was noted with depth. The
enumeration of amoA revealed similar AOB distributional
trends within and across pre- and after-filters. However,
the abundance of amoA was consistently lower (ca. 50-
fold) than that of 16S rRNA gene at both Islevbro and
Sjælsø waterworks (Fig. S1). This difference becomes
even larger considering that the genomes of betapro-
teobacterial ammonia-oxidizers typically contain a single
ribosomal operon (Stoddard et al., 2014) but frequently
multiple (1–3) amo operons (Norton et al., 2002). This
inconsistency between the two abundance estimates
was not observed at Langerød waterworks.
Islevbro and Langerød waterworks, showing, respec-

tively, the largest and smallest differences between the
two methods, were selected for cloning-sequencing anal-
ysis in order to examine the selectivity and specificity of
the two primer sets towards the AOB. The sequences of
the clones recovered from Islevbro and Langerød

Fig. 1. qPCR enumeration of ammonia-oxidizing bacteria in the top (0–5 cm) and bottom (40–50 cm) layers of rapid sand filters units (pre-filter
-PF- and after-filter-AF) at three Danish waterworks: Islevbro (ISL), Sjælsø (SJ), and Langerød (Lang). The qPCR was performed either by tar-
geting 16S rRNA (primers CTO189a/b/c –RT1r (Kowalchuk et al., 1997; Hermansson and Lindgren, 2001)) or amoA (primers amoA1f - amoA2r,
Rotthauwe et al., 1997) genes. When multiple filter units have been sampled at the same waterworks, the data are presented as multiple bars.
See supplementary information for details on sampling, DNA extraction, and for qPCR conditions.
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waterworks (82 and 77 with 16S rRNA genes primers
and 43 and 92 for amoA primers) were placed into maxi-
mum likelihood trees along reference sequences to ten-
tatively classify them (Figs 2 and 3). Phylogenic analysis
and classification of the 16S sequences were hindered

by the very short length of the amplicon (75 bases). All
partial amoA sequences and most of the 16S ones were
tentatively identified as belonging to Betaproteobacterial
AOB (Norton, 2011), but five 16S sequences (6%) were
closely related to sequences that did not belong to AOB

Fig. 2. Neighbour-joining tree of the 16S rRNA gene sequences cloned from after-filter units at Islevbro (ISL, red circle) and Langerød (LANG,
blue square) waterworks along with reference sequences. The cloning was performed with the same primer set as for the qPCR and the
sequences have been submitted to DDBJ under accession number LC100143-100160. The tree was created using the maximum likelihood
function of Mega 7 software (Kumar et al., 2016) and relies on 41 variable positions. Multiple occurrences of identical sequences are presented
in parentheses. The reference strains are presented with the accession numbers after their name.
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but to other Beta-Proteobacteria. (Fig. 2, Table S2).
These diverse non-AOB sequences are thus false posi-
tives and indicate that the selectivity of the 16S rRNA
primer set is imperfect, which might introduce overesti-
mation of AOB abundance in some communities. We
indeed note that these non-AOB sequences were
obtained from one of our clone libraries (Islevbro) but not
the other. Imperfect specificity of primer sets targeting
the 16S rRNA gene of betaproteobacterial AOB has
already been noted (e.g., Mahmood et al., 2006). Most
clones from Islevbro waterworks were tentatively
assigned to Nitrosomonas Cluster 6A (N. oligotropha lin-
eage), irrespective of the primer set. At Langerød water-
works, in contrast, the identity of the dominant AOB
lineage changed depending on the molecular approach:
the 16S rRNA- based approach identified AOB belonging
to Cluster 6A as dominant, while the amoA-based
approach only retrieved sequences from the

Nitrosomonas europaea/eutropha lineage (Cluster 7).
While the difference between the diversity retrieved by
the two primer sets could also originate from cloning bias
(e.g. Palatinszky et al., 2011) we further explored the
role of amplification bias.
We thus performed an in silico coverage analysis of

the primer sets against sequences from AOB for which
the entire priming region for forward and/or reverse pri-
mer was available, collected from RDP (Cole et al.,
2014) or FunGene databases (Fish et al., 2013) for 16S
rRNA and amoA respectively (number of sequences
considered and their distribution into AOB clusters is
presented in Table S1). For the 16S rRNA primer set,
our analysis revealed a high coverage for both primers
across all clusters (Fig. S2), with the forward primer hav-
ing a slightly worse coverage than the reverse one (zero
or one mismatch for more than 91% and 98% target
sequences respectively).

Fig. 3. Neighbour-joining phylogenetic tree inferred from AOB amoA gene sequences cloned from after filter-units at Islevbro (ISL, red circle)
and Langerød (LANG, blue square) waterworks and from reference sequences. The cloning was performed with the same primer set as for the
qPCR. These sequence data have been submitted to DDBJ under accession number LC142697-142707. The phylogenetic tree was created
using the maximum likelihood function of Mega 7 software (Kumar et al., 2016) Multiple occurrences of highly similar sequences (≥ 99%
similarity) are presented in parentheses. The reference strains are presented with the sequence identification numbers (GI) numbers in front of
their name.
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The analysis of amoA primer set revealed a clear dif-
ference between Cluster 6A and the other clusters: the
sequences assigned to the former presented, on aver-
age, more mismatches to both the forward and the
reverse primers (Fig. S2). All Cluster 6A sequences pre-
sented at least two, and up to four, mismatches with the
primer set while it barely exceeded one, on average, for
the other clusters (Fig. S2). The good match between
Cluster 7 sequences and the amoA primer set is consis-
tent with the high amplification of N. europaea
sequences reported in a recent qPCR comparative
assay (Meinhardt et al., 2015). In contrast, the presence
of an increasing number of mismatches between a pri-
mer and its binding site, in particular two and more mis-
matches, can significantly reduce the efficiency of PCR
amplification (Bru et al., 2008). Therefore, we conclude
from our in silico analysis that the amoA primer set
would be, on average, less efficient at amplifying Cluster
6 sequences than Cluster 7 ones when both are present.
This can explain the lack of detection of Cluster 6A with
the amoA cloning-sequencing at Langerød, where both
clusters co-dominated according to the 16S approach
(Table S2). However, this co-dominance of Cluster 6A
and 7 did not result in incorrect quantification of AOB by
the amoA qPCR, which performed similarly as that for
the 16S rRNA gene (Fig. 1, Fig. S1). In Islevbro water-
works, cloning-sequencing with the 16S primer set indi-
cated a strong dominance of Cluster 6A, with Cluster 7
being undetectable. This low abundance of Cluster 7
probably allowed Cluster 6A to retain its high prevalence
in the amoA clone library, in spite of its low PCR amplifi-
cation efficiency. This low efficiency, caused by primer-
target mismatches, was, however, apparent in the drastic
underestimation of AOB abundance with the amoA-
based qPCR at Islevbro (Fig. 1, Fig. S1).
Our in silico and experimental results highlight the

importance of primer set selection for AOB quantification
in complex microbial communities and demonstrate that
results can be heavily primer- and community-depen-
dent. Thanks to its consistent coverage across AOB
clusters, the primer set targeting the 16S rRNA gene
performed better than the amoA one which amplifies
Cluster 6A at low efficiency. This amoA primer set,
although commonly used, is thus poorly adapted to anal-
yse communities dominated by this type of AOB. The
16S rRNA gene-qPCR presents the disadvantage that it
can overestimate AOB abundance, although this prob-
lem was not detected in one of the waterworks and was
modest in the other, with a few percent of non-target
sequences in the clone library. A recent comparison of
16S rRNA and amoA- based qPCR methods, using pri-
mer sets similar, but not identical, to those used here, in
activated sludge communities (Baptista et al., 2014)
revealed that the amoA-based methods yielded

abundance estimates very similar to those obtained with
FISH, while the 16S rRNA qPCR ones were significantly
lower. Their conclusion differs from that of this study and
is likely due to compositional differences in the respec-
tive communities. Therefore, we recommend, along with
(Meinhardt et al., 2015) to consider using multiple primer
sets when exploring AOB in unknown communities.
Inconsistencies between qPCR results would indicate
that there is uncertainty in the abundance estimates and
that these estimates should be checked with other
methods (e.g., qFISH).
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