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Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the
reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free
synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time,
temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of
menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the
reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 �C, incubation time of
13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the
investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl
butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome
shortcomings associated with solvent-assisted enzymatic reactions.
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Introduction

It has been reported that most substrate for esterification

carries the inherent problem of low miscibility which

requires the addition of organic solvents into the reaction

media. Nevertheless, there are undesirable shortcomings

that are associated with the use of solvents for instance,

the costs of separation of solvents and products, as well as

the presence of harmful residual substances in the final

product that could be harmful to human health.[1] In

recent years, the use of hydrolytic enzymes such as pro-

teases, esterases and peptidases in organic synthesis has

been used in the scientific and industrial environments to

address the above problems. The versatile enzyme-cata-

lyzed esterification reactions can be carried out in many

types of media [2], as these biocatalysts have the added

advantages of having high activity in both water and

organic solvents, and the ability to convert a large number

of substrates with high stereospecificity.[3] Several

researchers reported enzymatic synthesis of esters in

organic solvent-free systems in an attempt to make the

processes feasible.[4�7] Catalysis in a solvent-free sys-

tem offers the benefits of minimizing environmental

impact by avoiding the use of flammable organic and toxic

solvents. The manufacturing cost could be considerably

reduced by the simpler technique and lack of down-stream

processing, as well as fewer steps of product purification.

[8] Also, when substrate alone promotes sufficient homoge-

neity for the reaction system, the use of solvent-free sys-

tems is the more interesting medium to maintain the

effectiveness of an interface acting biocatalyst such as

lipases, specifically in terms of interfacial factor.[9]

Another major requirement for the use of enzyme for

industrial processes is thermal stability, as thermal denatur-

ation is a common cause of enzyme deactivation.[10] This

problem can be solved by the use of thermostable enzymes

as these enzymes allow reactions to progress at higher tem-

peratures, thereby, accelerating conversion rates, substrate

solubility and improve miscibility in media.

The experimental conditions in organic synthesis are

also of a major concern as all enzymatic reactions are

influenced by those conditions. Due to the nonlinear man-

ner, uncertainties and complicated structure of biotechno-

logical practices, predictions of the effects of independent

variables on the product and rate of reaction become very
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difficult. Moreover, the task of finding the optimal

conditions to increase efficiency of bioprocesses is almost

impossible due to the lack of appropriate deterministic

mathematical variables of the product and rate of the reac-

tion. Sensitivity of enzyme structure to variables such as

temperature, reaction time, substrate molar ratio and acti-

vator or inhibitor concentrations could potentially increase

the complexity of the models.[8] To address this matter,

response surface methodology (RSM) is a statistical tool

of choice for researchers to optimize [11] multiple varia-

bles and predict better performance conditions.[12] The

method allows determination of optimum conditions under

predetermined reaction preferences, such as high product

yield at the lowest cost and/or with the least number of

experiments. RSM uses quantitative data in experimental

design to conclude and simultaneously solve multivariate

equations in order to optimize processes or products.[13]

RSM has been successfully applied to study and optimize

enzymatic syntheses of various esters, [14,15] as this tech-

nique is more rapid and less expensive than the conven-

tional one-variable-at-a-time or full factorial experiment

when gathering research information.[16,17]

Previously, we described that the thermostable T1

lipase, isolated from Geobacillus zalihae, was successfully

cloned into E. coli expression vector. The crude recombi-

nant T1 lipase had an optimal working temperature and

pH of 65 �C and 9, respectively. The lipase is also active

over a wide pH range (6�11) and stable at 70 �C for up to

24 h.[18,19] The robust nature of the T1 lipase suggests

that it is a good candidate for use in commercial ester syn-

theses that entail harsh processing conditions. We would

like to highlight that it is our first attempt to utilize the

thermostable T1 lipase as an alternative and feasible option

for a solvent-free synthesis of menthyl butyrate. We hoped

the crude T1 lipase was sufficiently efficient as the purified

lipase in catalyzing synthesis of ester as it considerably

reduces the processing steps of the lipase prior to use and

hence, is less time consuming. The objectives of this study

were to investigate the effects of the incubation time, tem-

perature, enzyme loading and substrate to molar ratio, as

well as to utilize RSM to determine the optimum condi-

tions for the T1 lipase-catalyzed reactions and achieve

maximum yield of menthyl butyrate.

Materials and methods

Materials

All chemicals were purchased from Sigma-Aldrich, USA.

The recombinant T1 lipase was revived from stock culture

in our lab and grown in Luria Bertani (LB) broth supple-

mented with antibiotics ampicillin and chloramphenicol.

[18,20] The cultures were centrifuged at 10,000 rpm for

10 min and resuspended in distilled water before sonica-

tion. The crude lipase solution was centrifuged again under

the same conditions and was adjusted to pH 9.0 using

NaOH 2M prior to freeze drying and was kept at ¡20 �C.

T1 lipase-catalyzed esterification

Menthyl butyrate was produced by esterification of men-

thol with butyric anhydride using lyophilized crude T1

lipase as the biocatalyst. The esterification reaction was

carried out in screw-capped flasks (25mL) and each set of

reaction was prepared in triplicates. The lyophilized crude

lipase was weighed and added to menthol. The enzymatic

esterification was started by addition of varying amounts

of butyric anhydride with different molar ratio (mmol men-

thol/mmol butyric anhydride) to the reaction mixture. The

reaction mixture was stirred at 200 rpm at the desired reac-

tion temperature under different period of times. The coded

and actual levels for the central composite rotatable design

(CCRD) for variables generated by RSM are indicated in

Table 1. For removal of generated water, 10mg of 0.3 nm

molecular sieves, previously dried overnight at 60 �C, were
added 1 h after incubation started. A control without

enzyme was run in parallel under the same conditions.

Analysis and characterization of menthyl butyrate

The reaction was terminated by dilution with 5mL isooc-

tane and the solution was centrifuged at 10,000 rpm for

5min to remove the enzyme. A sample of 1mL of the

solution was sent for gas chromatography analysis on a

Perkin Elmer (model Clarus 600, USA) instrument

equipped with flame-ionization detector and Ultra 1 capil-

lary column (25m £ 0.25mm i.d. £ 25mm film thick-

ness). The temperature program was chosen as follows:

110�150 �C (4 �C/min) and 200 �C (5 �C/min). The injec-

tor and detector temperatures were 230 and 250 �C,
respectively. The carrier gas, N2, flow rate was 1mL/min

and the split was 50:1. The composition of the reaction

mixtures was calculated from the number of millimoles of

produced menthyl butyrate.

Experimental design, statistical analysis

and optimization

A four factor five-level CCRD that required 30 experi-

ments was used in this study. The variables and their lev-

els selected for the synthesis of menthyl butyrate were as

follows; A: temperature (40¡60 �C), B: incubation time

(10¡30 h), C: amount of enzyme (2¡4mg) and D: molar

ratio of menthol/butyric anhydride (1:1¡3:1). The

Table 1. Coded and actual levels of variables for the central
composite rotatable design.

Variable Levels

¡2 ¡1 0 C1 C2

A: temperature (�C) 30.0 37.5 45.0 52.5 60.0

B: reaction time (h) 10 15 20 25 30

C: enzyme amount (mg) 2.0 2.5 3.0 3.5 4.0

D: substrate molar ratio (MR) 1 1.5 2.0 2.5 3.0
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experiments were randomized for statistical reasons and

each experiment was run in triplicates.

A software package, Design Expert Version 6.0.6

(Stat-Ease, Statistics Made Easy, Minneapolis, MN, USA)

was used to fit the second-order model to the independent

variables using the following Equation (1):

y ¼ b0 þ
X4

i ¼1

bixi þ
X4

i ¼1

biixi

þ
X3

i ¼ j

X4

j ¼ i þ 1

bijxij þ e;

(1)

where y is the dependent variable (% yield) to be mod-

elled; xi and xj are the independent variables (factors), b0,

bi , bii and bij are the regression coefficients of the model

and e is the error of the model. Analysis of variance

(ANOVA) was used to determine the adequacy of the con-

structed model to describe the observed data. R2 presents

statistical points to the percentage of the variability of the

optimization parameters explained by the model. Three-

dimensional surface plots were generated to illustrate the

main and interactive effects of the independent variables

on the dependent ones.

Results and discussion

Model fitting and analysis of variance (ANOVA)

RSM consists of an empirical modelization technique

used to evaluate the relation between experimental and

observed results.[21] In order to obtain a proper model for

optimization of menthyl butyrate synthesis in a solvent-

free system, the CCRD was chosen as it has been widely

accepted as the best design for response surface optimiza-

tion.[22] The selected model consists of four factors and

five levels including temperature, reaction time, amount

of enzyme and substrate molar ratio. The experimental

and predicted results are indicated in the matrix design

(Table 2). The predicted values were acquired through

model-fitting technique using the Design Expert software.

Fitting of the data to various models (linear, two factorial,

quadratic and cubic) and their subsequent ANOVA

showed that the reaction was most suitably described with

a quadratic polynomial model. The quadratic polynomial

model, expressed in coded variables, is represented by the

following Equation (2):

Yieldð%Þ ¼ þ 74:50þ 6:02Aþ 3:12B¡ 343C þ 0:98D

þ 2:62A2 ¡ 1:86B2 ¡ 3:58C2 ¡ 3:16AC

¡ 4:78AD¡ 2:83BC¡ 2:08CDþ 4:36A2D

þ 4:04B2C;

(2)

where A is the reaction temperature, B the time, C is the

amount of enzyme and D the substrate molar ratio. In

ANOVA, the F-value is derived from the ratio of regres-

sion mean sum of squares and error mean sum of squares

(the difference between the predicted and experimental

values), while the P-value refers to the probability value

for the corresponding F-value. For the model fitted, the

software generated model coefficients, F-values and P-

values (Prob. > F) which points to the insignificant proba-

bilities and was used to justify the significance of each

experimental variable. If the P-value is very small (less

than 0.05), this indicates that the individual terms in the

model have a significant effect on the response. The com-

puted F-value (15.96) for the model (Table 3) is signifi-

cantly higher as opposed to tabulated F13,16 D 2.40 at P D
0.05, as well as a very small P-value (<0.0001) which

implies the model is highly significant. This is further cor-

roborated by a suitable coefficient of determination (R2 D
0.9284) which shows more than 92% of variability for the

conversion (%) can be explained by the model.

According to the ANOVA of factors, the F-value for

the lack of fit is 2.06 is lower than the tabulated value of

F0.05(11,5) D 4.07, implying the lack of fit is not significant

relative to the pure error, therefore, the relationships of

the reaction parameters represented by the model are well

within the ranges selected.[23] To evaluate the optimiza-

tion technique, the observed and predicted values of the

percentage conversion was compared and the results are

depicted in Figure 1. As can be seen, the predicted values

of the response from the model agreed well with the

experimental values. Consequently, this model could be

appropriately applied to navigate the design space.[24]

Chaibakhsh et al. also reported a response model that suf-

ficiently depicted reaction parameters in the enzymatic

solvent-free synthesis of the commercial adipate ester.[8]

Mutual effects of factors on the conversion of menthol

The contour plots illustrated the main and interactive

effects of the independent variables on the conversion of

menthol. Figure 2 depicts the effects of temperature and

enzyme amount, as well as their mutual interaction in the

synthesis of menthyl butyrate under constant conditions,

substrate molar ratio (2:1) and time (20 h). As indicated

by the linear coefficients and F-value of the parameters,

temperature has a very significant influence on the per-

centage of conversion, and the response expected was a

monotonic increase in conversion with increase in temper-

ature. In other words, a high reaction temperature was

more favourable in improving the conversion percentage.

According to the F-value (Table 3), the effect of tempera-

ture on conversion was more significant than the amount

of enzyme. It was observed that the percentage conversion

increased with the temperature increase and peaked at

51.6 �C. Increasing the reaction temperature obviously
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Table 2. Composition of the various runs of the central composite rotatable design, actual and predicted responses for the crude T1
lipase.

Variable

Run no. Temperature (�C) Time (h) Enzyme amount (mg) Molar ratio Actual yield (%) Predicted yield (%)

1 37.50 15.00 2.50 1.50 37.96 43.74

2 52.50 15.00 2.50 1.50 76.40 71.67

3 37.50 25.00 2.50 1.50 60.48 55.64

4 52.50 25.00 2.50 1.50 83.06 83.57

5 37.50 15.00 3.50 1.50 63.34 61.10

6 52.50 15.00 3.50 1.50 73.16 76.39

7 37.50 25.00 3.50 1.50 64.19 61.69

8 52.50 25.00 3.50 1.50 78.75 76.98

9 37.50 15.00 2.50 2.50 67.70 68.15

10 52.50 15.00 2.50 2.50 78.01 76.95

11 37.50 25.00 2.50 2.50 85.25 80.05

12 52.50 25.00 2.50 2.50 86.32 88.85

13 37.50 15.00 3.50 2.50 75.99 77.19

14 52.50 15.00 3.50 2.50 75.10 73.35

15 37.50 25.00 3.50 2.50 78.04 77.78

16 52.50 25.00 3.50 2.50 76.40 73.94

17 30.00 20.00 3.00 2.00 70.78 72.95

18 60.00 20.00 3.00 2.00 95.93 97.04

19 45.00 10.00 3.00 2.00 62.90 60.83

20 45.00 30.00 3.00 2.00 67.96 73.32

21 45.00 20.00 2.00 2.00 65.41 67.05

22 45.00 20.00 4.00 2.00 51.68 53.32

23 45.00 20.00 3.00 1.00 72.75 72.55

24 45.00 20.00 3.00 3.00 76.66 76.46

25 45.00 20.00 3.00 2.00 69.90 74.50

26 45.00 20.00 3.00 2.00 75.58 74.50

27 45.00 20.00 3.00 2.00 73.72 74.50

28 45.00 20.00 3.00 2.00 72.18 74.50

29 45.00 20.00 3.00 2.00 73.42 74.50

30 45.00 20.00 3.00 2.00 78.51 74.50

Figure 1. Comparison between the predicted and experimental
values for the conversion of menthyl butyrate catalyzed by crude
T1 lipase.

Figure 2. Contour plot showing the effect of temperature (A) and
enzyme amount (C) and their mutual interaction in the synthesis
of menthyl butyrate catalyzed by crude T1 lipase at constant
molar ratio butyric anhydride/menthol (2:1) and time (20 h).
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improved substrate conversion due to greater unfolding of

the enzyme [23] and the molecules become less rigid.

[19,25,26]

It is widely accepted that temperature has two impor-

tant roles in any reaction system. It has been described

that an increase in temperature can reduce mixture viscos-

ity that enhances integration of reactants. The diffusion

process is also improved as mass transfer limitations are

reduced, thereby favouring interactions between enzyme

molecules and reactants.[27] Furthermore, crude T1 lipase

has a working temperature of 65 �C [1] but has been

known to catalyze reactions at 70 �C for prolonged peri-

ods of incubation with little enzyme inactivation. The

higher temperature accelerates enzyme�substrate colli-

sion, consequently enhancing the conversion of sub-

strates.[28] The crude T1 lipase achieved the highest

conversion when 2.90 mg (0.60%, w/w) of enzyme was

used. It was noted that any increase in enzyme loading

beyond this point led to the decline of the product. This

could be due to presence of superfluous enzyme molecules

in the reaction mixture without involvement, thereby lim-

iting diffusion and mass transfer.[12,28]

Figure 3 shows the effect of variating reaction time

and enzyme amount on the synthesis of menthyl butyrate

at constant temperature 45 �C and substrate molar ratio

(2:1). Prior to optimization, the range of reaction time was

carefully chosen, otherwise, the optimal condition of syn-

thesis could not be ascertain within the experimental

region through the analysis of statistics and contour plots.

[24] According to the F-value, the effect of time for the

conversion of menthol is more significant than the amount

of enzyme used. Reaction with fairly low enzyme amount

(2.6 mg) and longer reaction time (22.5 h) resulted in

76.6% conversion of menthol. This observation is referred

to as the inverse proportionality between reaction time

and enzyme amount, as previously reported in many

industrial enzyme-catalyzed processes.[8] Generally, min-

imal use of enzyme for high conversion of product is

desirable as cost of enzymes can be quite high. In this

study, reactions with low enzyme amount and short reac-

tion time gave the lowest conversion of menthol.

Table 3. Analysis of variance (ANOVA) and model coefficients obtained from the synthesis of menthyl butyrate catalyzed by crude T1
lipase.

Source Sum of squares Degree of freedom Mean square F-value P-value

Model 3107.52 13 239.04 15.96 < 0.0001

A � temperature 870.61 1 870.61 58.11 < 0.0001

B � time 234.06 1 234.06 15.62 0.0011

C � amount of enzyme 94.26 1 94.26 6.29 0.0233

D � substrate molar ratio 7.64 1 7.64 0.51 0.4853

A2 192.79 1 192. 79 12.87 0.0025

B2 96.58 1 96.58 6.45 0.0219

C2 358.55 1 358.55 23.93 0.0002

AC 159.71 1 59.71 10.66 0.0049

AD 366.24 1 366.24 24.45 0.0001

BC 127.97 1 127.97 8.54 0.0100

CD 69.26 1 69.26 4.62 0.0472

A2 101.59 1 101.59 6.78 0.0192

B2C 87.24 1 87.24 5.82 0.0282

Residual 239.70 16 14.98

Lack of fit 196.41 11 17.86 2.06 0.2192

Pure error 43.29 5 8.66

Cor total 3347.22 29

Figure 3. Contour plot showing the effect of time (B) and
enzyme amount (C) and their mutual interaction in the synthesis
of menthyl butyrate catalyzed by crude T1 lipase at constant
molar ratio butyric anhydride/menthol (2:1) and temperature
(45 �C).
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The mutual interactions of varying temperature and

substrate molar ratio under constant conditions,

enzyme amount (3 mg) and time (20 h) are shown in

Figure 4. According to the F-value, the effect of sub-

strate (butyric anhydride:menthol) molar ratio is less

important as compared to enzyme amount, reaction

time and temperature. However, the interaction of tem-

perature and substrate molar is a significant term due

to a very small P-value (0.0001). The effect of temper-

ature is very significant (F-value D 58.11) as opposed

to substrate molar ratio (F-value D 0.51). Increasing

the temperature has a significant positive effect on per-

centage conversion of the product. A high conversion

of menthyl butyrate corresponding to 97.3% at 59.8 �C
at substrate molar ratio 2.55:1 was observed. Interest-

ingly, the contour plot also showed high percentage

conversion at lower temperature coupled with high

substrate molar ratio. This perhaps is due to the pres-

ence of larger amounts of substrate which increases

the probability of substrate�enzyme collision.[12] As

expected, the lowest product conversion occurred at

low reaction temperature and low substrate molar ratio.

From the economic point of view, it is desirable to

achieve high percentage conversion of substrate at low

enzyme amounts and high substrate levels as this offsets

the usually high cost of enzymes. The following illustrates

the effect of enzyme amount and substrate molar ratio

under constant reactions conditions, temperature 45 �C
and time 20 h (Figure 5). According to the F-value, the

effect of enzyme amount was more significant than sub-

strate molar ratio. A high percentage conversion was

achieved with high substrate levels and low enzyme

amounts. The highest conversion was accomplished with

enzyme amount of 2.43 mg (0.39%, w/w) and substrate

molar ratio (2.99:1).

Attaining optimum conditions and verification of the

model

The highest yield accomplished from the various runs was

95.93% using temperature 60 �C, 3 mg of enzyme, butyric

anhydride/menthol molar ratio of 2:1 and reaction time

20 h. For development of industrial processes for the

esterification of menthol for use in cosmetic formulations,

food additives and medicines, the first aspect that comes

to mind is reducing production cost. With regards to this,

a high degree of conversion was possible by simply seek-

ing the optimum point on the response surface. The soft-

ware Design Expert 6.0.6 proposed several experimental

conditions to find the optimum point and maximize per-

centage conversion under a variety of preferred condi-

tions. However, only four sets of the predicted conditions

suggested by the model were chosen. The first two were

chosen for the highest percentage conversion of product

under conditions of minimum enzyme amount and short-

est reaction time. The last two experimental sets were

options for the shortest reaction time, whereby the enzyme

amount was not specified but within the range of the

model. The experiments using the proposed conditions

were performed and the observed results are shown in

Table 4. The experimental values were found to be rea-

sonably close to the values predicted by the model, there-

fore, confirming the adequacy and validity of the

predicted model. T1 lipase was able to catalyze esterifica-

tion of menthol to menthyl butyrate with percentage con-

version close to 100% employing fairly low enzyme

amounts and low reaction time. Thus, it has been demon-

strated that RSM can be applied effectively to predict con-

ditions for high conversion of menthyl butyrate catalyzed

by T1 lipase. The enzyme catalyzed high conversion of

menthyl butyrate close to completion under optimized

operating conditions generated by CCRD.

Figure 4. Contour plot showing the effect of temperature (A)
and substrate molar ratio (D) and their mutual interaction in the
synthesis of menthyl butyrate catalyzed by crude T1 lipase at
constant enzyme amount (3 mg) and time (45 h).

Figure 5. Contour plot showing enzyme amount (C) and sub-
strate molar ratio (D) and their mutual interaction in the conver-
sion (%) of menthyl butyrate catalyzed by crude T1 lipase at
constant time (20 h) and temperature (45 �C).
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Conclusion

In this work, we demonstrated that the thermostable crude

T1 lipase was an exceptionally robust and efficient biocat-

alyst to be used for synthesis of menthyl butyrate in a sol-

vent-free system. The study found that variables such as

reaction temperature and incubation time were the major

factors that affected the yield of menthyl butyrate fol-

lowed by enzyme amount and lastly, substrate molar ratio.

The response contours revealed optimal combination of

parameters to afford the highest conversion of the product

at low incubation time and enzyme amount in a solvent-

free system were 60 �C, incubation time of 13.15 h using

enzyme load of 2.53 mg (0.53% w/w, enzyme/substrate)

and substrate molar ratio butyric anhydride/menthol of

2.7:1. The predicted yield was 99.17%, closely agreed

with the actual experimental value of 99.3%. While

changing other conditions, with the use of short incuba-

tion time, it also resulted in a similar percentage yield of

98.5% and is in good agreement with the predicted of

100% conversion. Hence, our first attempt of using RSM

for high yield synthesis of menthyl butyrate was success-

ful using crude recombinant T1 lipase. It can be said that

the T1 lipase is a promising option to overcome draw-

backs related with solvent-assisted enzymatic reactions.
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