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ARTICLE INFO ABSTRACT

Keywords: Background: Previous work suggests that major depressive disorder (MDD) is associated with disturbances in
Depression global connectivity among brain regions, as well as local connectivity within regions. However, the relative
Treatment importance of these global versus local changes for successful antidepressant treatment is unknown. We used
Response

multiscale entropy (MSE), a measure of brain signal variability, to examine how the propensity for local (fine
scale MSE) versus global (coarse scale MSE) neural processing measured prior to antidepressant treatment is
related to subsequent treatment response.

Methods: We collected resting-state EEG activity during eyes-open and closed conditions from unmedicated
individuals with MDD prior to antidepressant pharmacotherapy (N = 36) as well as from non-depressed controls
(N = 36). Treatment response was assessed after 12 weeks of treatment using the Montgomery-Asberg
Depression Rating Scale (MADRS), at which time participants with MDD were characterized as either responders
(=50% MADRS decrease) or non-responders. MSE was calculated from baseline EEG, and compared between
controls, future treatment responders and non-responders. Putative interactions with the well-documented age
effect on signal variability (increased reliance on local neural communication with increasing age, indexed by
greater finer-scale variability) were assessed.

Results: Only in responders, we found that reduced MSE at fine temporal scales (especially fronto-centrally) and
increased MSE diffusely at coarser temporal scales was related to the magnitude of the antidepressant response.
In controls and MDD non-responders, but not MDD responders, there was an increase in MSE with age at fine
temporal scales and a decrease in MSE with age at coarse temporal scales.

Conclusion: Our results suggest that an increased propensity toward global processing, indexed by greater MSE
at coarser timescales, at baseline appears to facilitate eventual antidepressant treatment response.

Multi-scale entropy (MSE)
Electroencephalography (EEG)
Signal variability

Spectral power density (SPD)

1. Introduction

Major depressive disorder (MDD) affects > 300 million people
globally and is the leading cause of disability worldwide (World Health
Organization, 2017). As such, the long-term personal and societal
consequences of untreated and persistent MDD are substantial (Patten
et al., 2012). From a neuropsychiatric perspective, there is a growing
consensus that MDD is characterized by disturbances in connectivity
among cortical and subcortical brain regions. Connectivity can be
measured using resting-state functional magnetic resonance imaging
(fMRI) as well as electroencephalography (EEG)-indexed coherence.
Recent work using these approaches suggests that both global

connectivity, within and among distributed networks, as well as local
connectivity within regions are altered in the context of MDD.

Studies employing fMRI have identified global connectivity dis-
turbances between and within networks comprised of regions sup-
porting emotional processing (including the amygdala, subgenual
anterior cingulate [sgACC] and pallidum; Disner et al., 2011; Sheline
et al.,, 2010), in the default mode network (DMN, comprised of the
posterior cingulate, precuneus and medial prefrontal cortex [PFCI;
Sheline et al., 2010; Kuhn and Gallinat, 2013; Kaiser et al., 2015;
Mulders et al., 2015), in networks sub-serving attention (including
dorso-/ventro-lateral frontal and posterior parietal cortices; Hamilton
et al., 2015; Kaiser et al.,, 2015), as well as executive function
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(encompassing the dorsolateral/dorsomedial PFC [DLPFC/dmPFC] and
posterior parietal cortex (Mulders et al., 2015; Y.L. Wang et al., 2016).
In addition to global connectivity disturbances, local intra-regional
connectivity alterations have also been observed in MDD (Mulders
et al.,, 2015; Y.L. Wang et al., 2016). A meta-analysis of resting-state
fMRI connectivity data found that MDD was associated with increased
regional homogeneity (ReHo) - a measure of local connectivity - in
anterior regions (e.g., medial PFC) and decreased ReHo in more pos-
terior areas (e.g. para-central gyrus; Iwabuchi et al., 2015).

Similarly, EEG studies point to both distributed and local con-
nectivity disturbances in MDD. Global disturbances have been demon-
strated by several groups, with reports of decreased inter-hemispheric
coherence in MDD patients compared to controls (Knott et al., 2001;
Sun et al., 2008; Lee et al., 2011). Others reported that MDD patients
exhibit lower synchronization likelihood (Montez et al., 2006) and a
relative loss of small-world network characteristics (i.e., lower path
length) in lower (delta/theta) EEG frequency bands during sleep
(Leistedt et al., 2009). However, yet other groups have shown increased
connectivity in MDD, particularly in the theta and alpha bands both
within and among brain regions (e.g., via structural synchrony between
EEG pairs) (Fingelkurts et al., 2007), longer-range coherence assess-
ments (Leuchter et al., 2012) and lagged phase synchronization of alpha
in frontal areas (Olbrich et al., 2014). Finally, local connectivity dis-
turbances were highlighted in a review by Fingelkurts and Fingelkurts
(2015), which suggests that disturbances within the anterior and pos-
terior cortices play an important role in both the pathogenesis and se-
verity of MDD. Thus, both the fMRI- and EEG-indexed connectivity
literature supports the idea that MDD is associated with both global and
local connectivity disturbances.

These somewhat diverse findings likely reflect, at least to a certain
extent, heterogeneity in analytic methods as well as clinical factors (i.e.,
MDD is characterized by a constellation of symptom profiles which may
differ between individuals). Nevertheless, certain neural profiles prior
to intervention, including network dynamics and connectivity mea-
sures, may be associated with the course of antidepressant response. In
this context, the relative importance of global and local processing
changes in relation to successful antidepressant treatment response has
not been extensively examined. Multiscale entropy (MSE) is a measure
of brain signal variability (i.e., transient temporal fluctuations in brain
signal) that describes the way signals behave over a range of temporal
scales from fine (e.g., across 2 ms intervals) to coarse (e.g., across 40 ms
intervals) timeframes (Costa et al., 2005). Studies using MSE with EEG
and magnetoencephalography (MEG) suggest that increased MSE at
fine temporal scales, typically reflecting high frequencies, is associated
with an increased reliance on local neuronal processing (Mizuno et al.,
2010; Vakorin et al., 2011; McIntosh et al., 2014). On the other hand,
increased variability at coarse temporal scales, typically linked with
lower frequencies, is associated with increased reliance on global/
larger-scale processing. This relationship is further supported by the
presence of correlations (or anti-correlations) between MSE values at
short and long temporal scales with measures of local and distributed
entropy or functional connectivity, respectively (McDonough and
Nashiro, 2014; McIntosh et al., 2014; Vakorin et al., 2011).

Although studies have used signal variability measures to enhance
our understanding of the neural underpinnings of MDD (Linkenkaer-
Hansen et al., 2005; Lee et al., 2007; Li et al., 2008; Tang et al., 2009;
Mendez et al., 2012; Demirtas et al., 2016), to our knowledge, only one
study to date has used MSE to measure the effect of antidepressant
treatment on local (fine scale MSE) versus global (coarse scale MSE)
neural signals. Specifically, Okazaki et al. (2013) examined how within-
subject MSE profiles changed from before to after electroconvulsive
therapy (ECT) in three depressed patients. They found that depression
symptom improvement after ECT was associated with decreases in local
processing. MSE decreased at fine temporal scales, reflecting primarily
gamma band activity, from pre- to post-treatment in the three patients
who were assessed. However, this paper did not directly examine
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whether MSE profiles measured prior to treatment were predictive or
associated with eventual treatment response (Okazaki et al., 2013).

There is another area of MSE research that is relevant to the in-
vestigation of the relative importance of local versus global commu-
nication for successful treatment response in MDD. Work in healthy
aging has demonstrated that increasing age is associated with a de-
crease in coarse-scale MSE and a concomitant increase in fine scale
MSE, suggesting a shift from global toward more local neural proces-
sing (Vakorin et al.,, 2011; McIntosh et al., 2014; Sleimen-Malkoun
et al., 2015). It is therefore important to consider whether age might
alter the MSE profile associated with positive treatment response. Of
note, Mendez et al. (2012) examined brain changes associated with
successful antidepressant pharmacotherapy using a measure of brain
signal variability (Lempel-Ziv complexity), but did not examine coarse
versus fine scale dependencies in their data. Nevertheless, they showed
that MDD patients displayed higher pre-treatment MEG signal varia-
bility than controls, particularly anteriorly, which then decreased with
treatment. Importantly, this effect was significant only in younger pa-
tients, suggesting an interaction between age and treatment response in
the context of brain signal variability assessments (Mendez et al.,
2012).

In the current study, we expand on previous work by investigating
how brain characteristics associated with global and local processing,
using MSE, relate to antidepressant treatment response. We measured
eyes-open (EO) and eyes-closed (EC) resting-state EEG data prior to
pharmacological treatment (three regimens: escitalopram, bupropion,
escitalopram + bupropion) in adults with MDD and healthy controls.
For MDD patients, we evaluated depression symptoms at baseline and
at 12 weeks post-treatment using the Montgomery-Asberg Depression
Rating Scale (MADRS; Montgomery and Asberg, 1979). Given that
previous work suggests that the propensity for global versus local
processing changes with age, we examined whether we could replicate
previously identified age effects. Importantly, we examined whether
there were differences among eventual treatment responders versus
non-responders in their baseline MSE profiles, and how these differ-
ences related to age and depression score (MADRS) changes from
baseline to week 12 of treatment. Although our primary interest was to
assess responder/non-responder differences at baseline, we included
healthy controls in our analyses to examine putative MSE differences
between patients and controls in this study. Finally, as supplementary
analyses, we assessed spectral power density (SPD) measures. These
analyses allowed us to better interpret our MSE results (Courtiol et al.,
2016), as they enabled us to compare results based on MSE profiles to
results based on the power content of EEG data (which has been ex-
tensively investigated in the context of depression, and in relation to
antidepressant response prediction). To our knowledge, this work is the
first to assess the interplay between age, and the relative importance of
global and local processing changes in relation to successful anti-
depressant treatment response.

2. Methods
2.1. Participants

Similar to what has previously been reported (Jaworska et al.,
2012), resting EEG activity was assessed in 53 adults with a primary
diagnosis of psychiatrist-assessed major depressive disorder (MDD —
Structured Clinical Interview for DSM-IV-TR [SCID]-assessed; Table 1).
However, due to strict criteria regarding EEG data quality and missing
clinical data (details in Section 2.4), 36 MDD patients were included in
the current study and are discussed herein. Four patients (out of 36)
also had a co-morbid anxiety disorder. The 17-item Hamilton Rating
Scale for Depression (HAMD;,; Hamilton, 1960; scores are included in
tables but are not discussed further) and MADRS were used to assess
symptom severity; all patients had MADRS scores = 22 at enrolment.
Patient exclusion criteria included: other Axis I disorder (apart from
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Table 1
Major depressive disorder (MDD) & control group characteristics (means = S.D.).
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Table 2
Characteristics of antidepressant treatment responders & non-responders (means = S.D.)

MDD group Control group Significance Responder Non-responder Significance
(N = 36) (N = 36) (N = 20) (N = 16)
Sex (M/F) 15/21 15/21 p=10 Sex (M/F) 9/11 6/10 p = 0.65
(Chi-square test) (Chi-square test)
Age 40.03 = 12.8 36.9 *+ 9.3 p=0.16 Age 34.2 = 11.7 47.3 = 10.3 p < 0.001
(range: 19-63) (range: 25-60) (range: 28-63) (range: 19-57)
Education (yrs.) 15.7 = 2.4 16.4 = 2.0 p=0.18 Education (yrs.) 15.4 = 2.4 16.1 = 2.4 p=025
Ethnicity 1 African; 2 Asian; 1 1 African; 1 Asian; N.A. Ethnicity 17 Caucasian; 2 1 African; 15 N.A.
South Asian; 32 2 South Asian; 32 Asian; 1 South Asian Caucasian
Caucasian Caucasian Co-morbid N = 2 (panic N = 2 (GAD, N.A.
Pre-treatment 20.8 = 5.1 N.A. N.A. anxiety disorder; specific PTSD)
HAMD,, phobia)
Pre-treatment 299 = 5.1 N.A. N.A. Age of MDD 249 * 14.1 30.5 = 129 p =031
MADRS onset
Pre-treatment N.A. 2.7 £ 46 N.A. Pre-treatment 29.7 = 45 30.3 £ 5.9 p=0.51
BDI-II MADRS
Pre-treatment 20.4 = 6.0 21.3 = 3.8 p =049
BDI-II: Beck Depression Inventory-II; HAMD,;: 17-Item Hamilton Rating Scale for HAMD;,
Depression; MADRS: Montgomery-Asberg Depression Rating Scale; N.A.: not available. Week 12 MADRS 6.0 = 5.0 231 + 6.8 p < 0.001
Note: P values index one-way analyses of variance (ANOVAs), unless stated otherwise. Week 12 43 + 33 15.6 = 4.4 p < 0.001
HAMD,,

anxiety), current (< 6 months) substance abuse/dependence, seizure
history, unstable medical condition and significant suicide risk. Parti-
cipants were also excluded if they had previously obtained adequate
treatment for their current depressive episode with the study medica-
tions (outlined below). At the time of testing, patients were not taking
any psychoactive drugs; appropriate drug washout periods were ap-
plied in previously medicated patients (> 5 wk. for fluoxetine, 1 wk.
for all others).

Thirty-six controls, with no psychiatric or neurological history, were
included in the analyses (N = 43 controls were recruited and tested,
but data from N = 36 was used in the analyses due to strict EEG data
inclusion criteria (Section 2.4; Table 1). Psychiatric history absence was
established using SCID-IV-TR screening questions; if a question was
endorsed, the appropriate modulate was administered. If a likely psy-
chiatric disorder was suspected, these individuals were excluded
(screener/modules administered over-the-phone by well-trained re-
search personnel). To be included, controls also had to score <13 on
the Beck Depression Inventory-II (BDI-II; Beck et al., 1996) and report
no psychiatric history in first-degree relatives.

2.2. Antidepressant regimens

MDD patients were randomized (double-blind) to one of three re-
gimens: escitalopram (ESC) + placebo (N = 11), bupropion (BUP)
+ placebo (N = 14) or ESC + BUP (N = 11; Stewart et al., 2014).
Patients were assessed weekly for the first four weeks, and bi-weekly
thereafter. Dosing was raised if tolerated and remission not reached
(average mg dose at 12wk. for dual treatment: ESC = 30,
BUP = 362.5; for monotherapy: ESC = 34.2, BUP = 407.1). In total,
20 individuals were treatment responders and 16 were non-responders
(Table 2).

2.3. Session overview

Prior to testing, all participants abstained for > 3 h from caffeine
and/or nicotine, and overnight from all other drugs (other than those
for a stabilized physical condition). Electrodes were applied, and
resting EEG was recorded. All participants were compensated $30.00
CDN. This study was approved by the Royal Ottawa Health Care Group
and University of Ottawa Social Sciences & Humanities Research Ethics
Boards; written informed consent was obtained from all participants.

2.4. Electrophysiological recordings and data reduction

While participants were seated in a testing chamber, EEG recordings

GAD: Generalized Anxiety Disorder; HAMD,;,: 17-Item Hamilton Rating Scale for
Depression; MADRS: Montgomery-/o\sberg Depression Rating Scale; MDD: major depres-
sive disorder; N.A.: not available; PTSD: Post-Traumatic Stress Disorder.

Note: P values index one-way analyses of variance (ANOVAs), unless stated otherwise.

were obtained during 3 min vigilance-controlled eyes-closed (EC) and
3 min eyes-open (EO) conditions (counterbalanced). EEG activity was
recorded (500 Hz) using a 32 Ag/AgCl electrode cap (EasyCap, Inning
am Ammersee, Germany) positioned according to the 10-10 system
(Chatrian et al., 1985); an AFz electrode was the ground and averaged
mastoids (TPo,1¢) were the reference. Electrooculographic (EOG) ac-
tivity was monitored with 4 additional electrodes; impedance was
maintained at <5KQ during EEG recordings (BrainVision Recorder,
Gilching, Germany).

Off-line, signals were filtered (0.5-55 Hz; notch filter: 60 Hz; slope:
24 dB/octave), ocular-corrected (Gratton et al., 1983) and segmented
into 2's epochs. This was followed by an automatic artifact rejection
procedure, which excluded epochs with EEG activity exceeding = 50
UV (BrainVision Analyzer, Gilching, Germany). Data were also visually
inspected to ensure that no faulty channels were included/no channel
drift existed (this resulted in the exclusion of data from 14 MDD and 7
controls from our original sample). Subsequently, a minimum of 50 s of
artifact-free EEG data (MDD: 146.5/141.2 s of EO/EC EEG data; con-
trols: 159.2/157.6 s of EO/EC EEG data) from 28 electrodes (Fp;2; F3,
45 F7/8; FC1/2; FCs /65 C3/45 CP1/2; CPs/6; P3/a; P7/s; T7/85 O1/2; F2/Cz/Pz/
Oz for each of the EO and EC conditions) were exported in ASCII
format.

2.5. Multi-scale entropy (MSE) estimation of temporal signal complexity

Full details of multi-scale entropy (MSE) and its relevance for the
analyses of signal complexity are provided in Costa et al. (2005). The
MSE method calculates entropy as a measure of regularity (predict-
ability) of the EEG signal at different temporal scales. The calculation of
MSE involves two steps. First, data are resampled to create several
temporal scales. For each scale, data points within non-overlapping
windows are averaged. For example, scale 1 is the raw time series (i.e.,
2ms windows in the context of a 500 Hz sampling rate), scale 2
averages over 2 time points (i.e., 4 ms windows), scale 20 averages over
20 time points (i.e., 40 ms windows), etc. Second, sample entropy is
calculated for each epoch, measuring predictability by evaluating the
appearance of repetitive patterns. We calculated MSE for each epoch
using the algorithm available at www.physionet.org/physiotools/mse/,
with parameter values m (pattern length) = 2 and r (tolerance) = 0.5.
The length of the time series was 1000 data points (corresponding to 2 s
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epochs at a sampling rate of 500 Hz). For each participant, electrode-
and condition-specific (EO/EC) MSE estimates were obtained as a mean
across within-epoch entropy measures for scales 1-20 (or 2 ms to 40 ms
windows), where lower values represent fine temporal scales, and
higher values represent coarse temporal scales. Given that there are no
known published data on whether differences exist in MSE profiles
between EO and EC conditions, both were included. It is also feasible
that the sensitivity for detecting group differences may have differed
between conditions, thus, assessing both was a prudent approach.

2.6. Spectral power density (SPD)

In addition to MSE, we calculated spectral power density (SPD). A
comparison of MSE and SPD results allows us to examine how MSE
measures relate to the frequency content of the EEG signal, and to
evaluate if treatment response and age-related changes depend more on
linear (assessed by both MSE and SPD) or nonlinear (assessed only by
MSE) dependencies in the data (Courtiol et al., 2016; H. Wang et al.,
2016). SPD was evaluated using a Fast Fourier Transform (FFT) for each
epoch. Power was first normalized (M = 0, SD = 1), then, the relative
contribution of different frequencies to total spectral power was cal-
culated, with a frequency resolution of 0.5 Hz. Single epoch estimates
were averaged to obtain mean SPD for each condition (EO/EC) per
subject (calculated using in-house code ran on Matlab; The MathWorks,
Inc., Natick, Massachusetts).

2.7. Partial least squares (PLS) analyses

Statistical assessments of MSE and SPD measures were carried out
using partial least squares analyses (PLS; McIntosh and Lobaugh, 2004;
Krishnan et al.,, 2011). We addressed the following questions in our
MSE and SPD analyses: 1. Whether there were group differences (MDD
responders, non-responders, controls) in condition-dependent MSE and
SPD measures (conditions: EO, EC) at baseline. 2. Whether there were
group-dependent (MDD responders, non-responders, controls) differ-
ences in baseline correlations between MSE and age, and SPD and age.
3. We also examined whether there were responder/non-responder
differences in brain-behaviour correlations between MSE with MADRS
change scores (MADRSp e ireatment-MADRSweek12; @ greater positive
change score indicates greater depression symptom improvement from
baseline/pre-treatment) and with age, and between SPD with MADRS
change scores and with age. We kept responders and non-responders in
separate groups as we wanted to allow for the assessment of potential
group differences in MADRS change scores and age effects. Controls
were not included in this analysis as they lacked MADRS change scores
(controls were tested once).

For the sake of simplicity, the implementation of PLS analyses is de-
scribed in the context of MSE, but this process was the same for SPD.

2.7.1. Task PLS

Task PLS identifies latent variables (LVs; i.e., the expression of the
PLS results) that highlight similarities or differences between groups
and/or conditions. The LVs contain three vectors. The first vector in-
dicates the strength of the effect. The remaining two vectors relate
experimental design and brain signal. The experimental design vector
contains task saliences, which indicate the degree to which each con-
dition in each group is related to the brain signal pattern identified in
the LV. These task saliences can be interpreted as the contrast that
codes the effect depicted in the LV. The brain signal vector contains
MSE temporal scale saliences. These are numeric electrode weights
which identify the electrodes at temporal scales that are most related to
the effects expressed in the LV. For each LV, there is one salience per
electrode timescale that applies to all groups and all conditions.

2.7.2. Behaviour PLS
We used behaviour PLS to examine: (a) group- and condition-
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dependent correlations between age and MSE/SPD in all three groups
(responder, non-responder, controls), and (b) group- and condition-
dependent correlations between age and MADRS change scores in MSE/
SPD in the MDD groups (responder, non-responder).

We performed PLS on a correlation matrix comprised of the cov-
ariance between MSE measures and age/MADRS change scores across
participants in each group. Behaviour PLS results are very similar to
those of task PLS, except that LVs show similarities or differences be-
tween groups/conditions in terms of brain-‘behaviour’ (age/MADRS)
correlations.

2.7.3. PLS statistical assessment

Statistical assessment in PLS is carried out across two levels. First,
the overall significance of each LV is assessed with permutation testing
(Good, 2000). An LV was considered significant if the observed singular
value exceeded the permuted singular value in > 95% of the permu-
tations (p < 0.05). Second, bootstrap resampling is used to estimate
confidence intervals around electrode weights in each LV, allowing for
an assessment of the relative contribution of particular electrodes/
timescales, and the stability of the relation with age, MADRS change
scores and group/condition (Efron and Tibshirani, 1986). No correc-
tions for multiple comparisons are necessary because the electrode
timescale weights are calculated in a single mathematical step on the
whole brain. For the MSE and SPD measures, we plotted bootstrap ra-
tios (ratio of individual weights over estimated standard error) as a
proxy for z-scores. Confidence intervals were plotted for group effects.
A minimum threshold of a stable 95% confidence interval was used for
all analyses.

3. Results
3.1. Participants

Participant characteristics (MDD vs. controls; treatment responders
vs. non-responders) are presented in Tables 1 and 2. A one-way analysis
of variance (ANOVA) yielded a main effect of group (MDD responders,
non-responders, controls) on age [F(2,69) = 8.08, p = 0.001]; follow-
up comparisons indicated that non-responders were older than re-
sponders and controls (p < 0.001). Though problematic from a sta-
tistical perspective, the composition of responder and non-responder
groups was beyond our control (i.e., these groups could not be matched
on age ahead of time). Importantly, this age difference was not pro-
blematic with respect to the interpretation of our results as atypical age
effects appear only in the responder group (outlined in subsequent
sections), who did not differ in age from the control group.

3.2. MSE

3.2.1. Group (MDD responders, non-responders, controls) & condition (EO/
EC) effects

Task PLS examining groups at baseline (MDD responders, non-re-
sponders, controls) and conditions (EO/EC) identified one significant
LV, indicating an MSE difference between EC and EO conditions that
was common across groups (p < 0.001; Fig. 1A). Increased sample
entropy was observed at fine temporal scales in the EO condition at
2-14 ms, with a cross-over at coarser scales, with greater sample en-
tropy for the EC condition starting at 22 ms. These differences were
homogeneous across all electrodes.

3.2.2. Group (MDD responders, non-responders, controls), condition (EO/
EC) & age effects

Behaviour PLS examining group- (responders, non-responders,
controls) and condition- (EO/EC) dependent changes in MSE associated
with age identified one significant LV (p = 0.004; Fig. 2A). It revealed
an age effect across both conditions that was specific to controls and
MDD non-responders, but was absent in responders. An increase in MSE
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SPD: Iv=1, p <0.001
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Fig. 1. Task partial-least squares (PLS)
examining group (antidepressant treat-
ment responders, non-responders, con-
trols) and condition (eyes-open [EO]/eyes-
closed [EC]) effects in multiscale entropy
(MSE) (A) and spectral power density
(SPD) at baseline (B). Bar graphs depict
the contrast between EO/EC conditions

across groups that was significantly ex-
pressed across the entire dataset as de-
termined by permutation tests. The statis-
tical image plots (figures below) represent
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(both EO/EC) with age was noted at fine temporal scales (2-18 ms) at
P4, O1,9, P78, C,, P, and CP5 6. There was a crossover to a decrease in
MSE for EO/EC conditions with age at coarse temporal scales
(26-40 ms). These effects were strongest at electrodes P3, T, Pz, and
CPy/2.

3.2.3. MDD group (responders/non-responders), condition (EO/EC),
age & MADRS change score effects

For our behaviour PLS examining MDD group- and condition-de-
pendent changes in MSE associated with age and MADRS change scores,
we kept responders and non-responders in separate groups because age-
related differences (Section 3.2.1) could interact with MADRS-related
effects. Our analysis identified one significant LV (P < 0.001; Fig. 3A).
This LV identified a relation between MSE and MADRS change scores in
MDD responders that was not associated with age. A decrease in EO/EC
MSE with greater positive MADRS change scores was observed at fine
temporal scales (2-16 ms), which was strongest at CP, and CP¢. There
was a crossover to an increase in MSE with greater positive MADRS
change scores at coarse temporal scales (24-40 ms). These effects were
widespread, across almost all electrodes, and strongest at P3, O,, F,, P,,
O,, and FC; . For MDD non-responders, this LV identified an age effect
that was not associated with MADRS score changes. In non-responders,
there was increase in EO/EC MSE with age at fine temporal scales
(2-16 ms), with a crossover to a decrease in EO/EC MSE with age at
coarse emporal scales (26-40 ms). The spatial configuration of these
effects matched that of the responder MADRS effect described above.
Supplementary Fig. 1 illustrates MSE-MADRS change score correlations
for responders and non-responders at electrode Pz at 30 ms per treat-
ment regimen.

Overall, these results suggest that decreased fine scale MSE at
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bootstrap ratio maps. Each row represents
electrodes and timescales/frequencies at
which the contrast displayed in the bar
graphs was most stable as determined by
bootstrapping. Values represent the ratio
of the parameter estimate for the electrode
2 source divided by the bootstrap-derived
1 standard error (roughly z-scores). Positive
0 values indicate timescales and electrode
sources showing higher MSE/SPD during
the EC condition, while negative values
depict timescales and electrode sources
showing higher MSE/SPD during the EO
condition.

Control

bootstrap ratio

45
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centro-parietal electrodes, and increased mid- to coarse scale MSE
throughout the brain at baseline is associated with an increased anti-
depressant response specifically in responders. To ensure that these
results hold independent of age, we performed a supplementary ana-
lysis without age. This behaviour PLS, examining changes in MSE as-
sociated with MADRS change scores, identified one LV (p = 0.004),
which replicated the MADRS change score effect described above.
Again, in responders, an EO/EC MSE decrease existed with greater
positive MADRS change scores (i.e., greater antidepressant response) at
fine temporal scales (2-12 ms; strongest at Tg, CP, and FCs). There was
a crossover to an increase in EO/EC MSE with greater positive MADRS
change scores at coarse temporal scales (24-40 ms; effects were wide-
spread, and strongest at Cy4, P4, F5, P,, FC; » and FCs).

3.3. SPD

3.3.1. Group (MDD responders, non-responders, controls) & condition (EO/
EC) effects

The task PLS examining group (MDD responders, non-responders,
controls) and condition (EO/EC) identified one significant LV, in-
dicating an SPD difference between EC and EO conditions that was
common across all groups (p < 0.001; Fig. 1B). Increased power in
delta (< 4 Hz) and beta/gamma (16-50 Hz) was observed in EO across
all electrodes. For EC, increased alpha power (8-13 Hz) was noted
across all electrodes, and in theta (4-8 Hz) at Fp,, F, and T.

3.3.2. Group (MDD responders, non-responders, controls), condition (EO/
EC), & age effects

The behaviour PLS examining group- and condition-dependent
changes in SPD associated with age revealed an age effect specific to
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A. MSE: Iv =1, p = 0.004 B. SPD: Iv=1, p <0.001 Fig. 2. Behaviour partial-least squares (PLS)
06 06 results for the correlation of multiscale entropy

o4 558 0al EES (MSI%) and age (A) as well as spe(ft?al power
density (SPD) and age (B) by condition (eyes-
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e J 2 J healthy controls) at baseline. Bar graphs depict
8 02 l 8 02 the contrast between groups across EO/EC
04 04r conditions that were significantly expressed
-0.6 -0.6 across the entire dataset as determined by
08 08 permutation tests. The statistical image plots

4 ) ) ) ) ) ) 4 ) ) ] ) ) ) (figures below) represent bootstrap ratio maps.
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MDD non-responders and controls (absent in responders; p < 0.001;
Fig. 2B). SPD decreased with age during EO/EC conditions in alpha
(8-13 Hz) throughout the brain (maximal at Fp,, Cs, T, P55 and CPs).
Additionally, SPD increased with age in the beta (16-30 Hz) and
gamma bands (30-44 Hz) throughout the brain (maximal at P, Ty, Ts,
Pg and CPs).

3.3.3. MDD group (responders/non-responders),
age & MADRS change score effects

The behaviour PLS examining group- and condition-dependent
changes in SPD associated with age and MADRS change scores identi-
fied one significant LV (p < 0.001; Fig. 3B). This LV indicated a
MADRS change score effect for MDD responders in the EO condition
that was not associated with age. EO SPD increased with greater posi-
tive MADRS change scores in high theta (6-7 Hz) and alpha (8-13 Hz);
effects were homogeneous across electrodes. EO SPD decreased with
increased MADRS change scores in beta (16-30 Hz) and gamma
(30-50 Hz). These effects were strongest at Fp,, P4, F;, T, /g, Pg, FCs and
CP¢ for beta (17-25Hz), and Fp,, P4, Pg, P, and CP, for gamma
(37-50 Hz). For MDD non-responders, this LV identified an age effect in
EO/EC conditions that was not associated with MADRS change scores.
EO/EC SPD decreased with age and in high theta (6-7 Hz) and alpha
(8-13 Hz); effects were homogeneous across all electrodes. EO/EC SPD
increased with age in the beta (16-30Hz) and gamma bands
(30-50 Hz). Effects were strongest at Fp,, Py, F, T7/g, Pg, FCs, and CPg
for beta (17-25 Hz), and Fps, P4, Pg, P,, and CP, for gamma (37-50 Hz).

condition (EO/EC),

20

MSE/SPD and age was most stable as de-
termined by bootstrapping. Values represent
the ratio of the parameter estimate for the
electrode divided by the bootstrap-derived
standard error (roughly z-scores). Positive va-
lues indicate timescales and electrode sources
showing decreases in MSE/SPD in EC/EO
conditions with increasing age, while negative
values show increases in MSE/SPD in EC/EO
conditions with increasing age.
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4. Discussion
4.1. Overview

Using resting-state EEG collected prior to antidepressant pharma-
cotherapy, our study is the first to investigate the relative importance of
global and local processing for successful treatment response.
Additionally, because previous work suggests that the propensity for
more local versus global processing changes with age, we examined if
such age-related changes interact with the EEG signal variability profile
associated with treatment outcome. We found that normal aging MSE
profiles were not evident in future responders. Instead, in future re-
sponders, an increased propensity toward large-scale network proces-
sing prior to treatment was associated with a greater antidepressant
response.

4.2. MSE & SPD differences between eyes-open and closed conditions

Our task PLS identified only one significant LV, a main effect of
condition, differentiating EO from EC resting-state profiles across all
groups (responders, non-responders and controls). Contrary to our ex-
pectations, this analysis did not identify a main effect of treatment re-
sponse group. Treatment effects do exist on our data, and are discussed
in Section 4.4.

Our results suggest that the EO condition was associated with
greater MSE than the EC condition at fine temporal scales, whereas the
EC resting-state condition was associated with increased MSE at mid- to
coarse-temporal scales. Although there are no known published MSE
comparisons between EO and EC resting-state conditions, the MSE data
are complementary to our SPD findings, which are consistent with
previous work. We found that higher frequencies (16-50 Hz) were more
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A MSE: Iv =1, p < 0.001 B SPD: Iv =1, p < 0.001 Fig. 3. Behaviour partial-least squares (PLS) results
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dominant during EO, whereas alpha was more dominant during EC.
Alpha is thought to be inversely associated with cortical and physio-
logical arousal (Barry et al., 2007); it is prominent when the eyes are
closed and is maximal in occipital-parietal regions, though it can extend
to frontal/thalamic regions (O'Gorman et al., 2013). Given suggestions
that lower EEG frequencies modulate activity over larger spatial regions
in longer temporal windows (von Stein and Sarnthein, 2000; Vakorin
et al., 2011; Mclntosh et al., 2014), increased alpha may reflect greater
longer-range variability associated with more diffuse oscillations during
EC. Conversely, increased SPD in beta/gamma during EO may reflect
relatively increased activity in more local networks, though this is
speculative.

4.3. Age-related changes in MSE & SPD

Our behaviour PLS examining the relationship between resting-state
MSE and age replicated the age effect reported in previous studies
(Hogan et al., 2012; McIntosh et al., 2014; Sleimen-Malkoun et al.,
2015; H. Wang et al., 2016). However, this effect was stable only for
controls and eventual antidepressant non-responders, and did not exist
in future responders. In controls and non-responders, MSE increased
with age at fine temporal scales (2-18 ms) bilaterally in non-frontal
regions (with strongest effects parietally), and decreased with in-
creasing age at coarser temporal scales (2640 ms) in the same regions.
Consistent with previous literature, this supports the idea that healthy
aging is characterized by increased local information processing (higher
MSE at fine temporal scales) and decreased long-range interactions with
other neural populations (lower MSE at coarse temporal scales) in
controls and non-responders (Hogan et al., 2012; McIntosh et al., 2014;
Sleimen-Malkoun et al., 2015; H. Wang et al., 2016). That is, aging

Frequency (Hz)

tends to shift the integration between distributed neural populations
toward more local neural processing, particularly in more posterior
brain regions (Vakorin et al., 2011). Given that this aging pattern is
ubiquitous in the MSE literature, it is interesting that it does not hold in
future treatment responders. As such, our data suggests that the EEG
signal variability profile associated with treatment outcome might in-
teract with age-related changes.

Our SPD results were complementary to our MSE results, where the
age effect was stable only for controls and future antidepressant non-
responders, but not for future responders. For controls and non-re-
sponders, increasing age was associated with greater power in beta and
gamma bands, and decreased alpha power throughout the brain.
Previous work indicates that healthy aging (i.e., from young to older
adulthood) tends to be accompanied by a decrease in resting-state ac-
tivity in low frequencies (0.5-6.5 Hz), with increases in beta power
(Vlahou et al., 2014; though profiles can change in the very elderly).
These SPD results indicate that with increasing age, there is a relative
increase in the contribution of local communication (likely supported
by higher frequencies) and a relative decrease in the contribution of
long-range communication (supported by low frequencies; von Stein
and Sarnthein, 2000).

Previous literature is mixed about the degree of complementarity
between MSE and power spectrum/SPD analyses. For instance, while
some studies show similar effects between the two approaches (e.g.,
Lippe et al., 2009; McIntosh et al., 2008, 2014; Mizuno et al., 2010;
Misic et al., 2011; Sleimen-Malkoun et al., 2015; Szostakiwskyj et al.,
2017), others identified differences (e.g., Catarino et al., 2011; Heisz
et al., 2012; Takahashi et al., 2009; Ueno et al., 2015; H. Wang et al.,
2016). Potential inconsistencies between MSE and SPD results have
been interpreted to reflect differences in the relative contribution of
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linear versus nonlinear dependencies in the data; changes in linear
dependencies are evident in both MSE and SPD, whereas changes in
nonlinear dependencies are evident only in MSE (Courtiol et al., 2016;
H. Wang et al., 2016). In the context of the current work, a comparison
of MSE and SPD results suggests that our age-related effects are asso-
ciated with alterations in the linear dependencies that are evident in
both MSE and SPD, rather than nonlinear dependencies that would be
evident only in MSE.

4.4. MDD treatment response and its relation to age and pre-treatment MSE
and SPD

Our task PLS identified no significant main effect of treatment re-
sponse group. Given that in this analysis eventual treatment responders
and non-responders were categorized based on a specific cutoff score
(i.e., responders exhibited = 50% reduction in MADRS scores from pre-
treatment to week 12), it was feasible that variation in response mag-
nitude within each group could mask potential differences between
groups. That is, there was a broad distribution of response magnitudes
in both samples. Thus, we felt that characterizing the relationship be-
tween response magnitude and MSE patterns within each group was
worthwhile. Additionally, non-responders showed the typical age-re-
lated MSE profile as controls, but responders did not. This differential
age effect might influence potential MSE differences between the
magnitude of treatment response in future responders and non-re-
sponders. As such, we examined whether the magnitude of response by
week 12 of treatment (i.e., MADRSpc treatment -"MADRSweek12) and age
were related to baseline brain signal variability per group. Our beha-
viour PLS identified a significant association between MSE and treat-
ment response specifically in the responder group. In responders,
greater depression symptom alleviation (i.e., greater change in MADRS
scores) was associated with increased mid- to coarse-scale MSE
(24-40 ms) in diffuse (frontal, central and parietal) brain regions and
decreased fine-scale MSE (2-12 ms) in fronto-central regions. This re-
lation was not stable/not significant in non-responders. As with our age
analysis described above, the canonical MSE age effect was not present
in future responders. This suggests that greater propensity for mid-to-
long-range communication among neuronal populations, coupled with
decreased reliance on local communication before treatment, is im-
portant for good treatment response. Lastly, as a supplementary ana-
lysis, we assessed whether there were responder/non-responder dif-
ferences in MSE measures that correlated with MADRS change scores
without age included in the analysis, and confirmed previous assess-
ments. Namely, that in responders, increased mid-to-long-range com-
munication, and decreased reliance on local communication, was cou-
pled not with age, but with a good treatment response.

Antidepressant treatments (pharmacological and otherwise) most
consistently affect large-scale connectivity normalization within the
DMN (Sheline et al., 2010; Kuhn and Gallinat, 2013; Li et al., 2013;
Kaiser et al., 2015; Mulders et al., 2015; Martino et al., 2016) and
connectivity changes between cortico-limbic regions (Gudayol-Ferre
et al., 2015; Dichter et al., 2015). Thus, our results suggest that an
increased propensity toward distal communication (perhaps involving
the DMN or cortical-limbic regions) is what may facilitate large-scale
network normalization in treatment responders.

Our SPD results are complementary to our MSE results, suggesting
that linear (rather than nonlinear) dependencies are driving our effects.
For SPD, greater treatment response was associated with increased pre-
treatment power in the theta and alpha bands, and decreased power in
beta and gamma bands in responders. This relationship was not stable
in non-responders. Decreased MSE at fine temporal scales appears to
reflect the negative association between treatment response (i.e.,
MADRS score changes) and SPD at higher frequencies (beta/gamma).
On the other hand, increased MSE at coarse temporal scales appears to
reflect the positive association between treatment response and SPD at
lower frequencies (alpha/theta band). Elevated alpha power/amplitude
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at baseline has been quite consistently observed in eventual responders
(vs. non-responders) to various antidepressant pharmacotherapies
(Knott et al., 1996; Tenke et al., 2011; Jaworska et al., 2014). One
interpretation is that this may reflect a hypo-aroused state that benefits
from the arousing electrocortical effects of some antidepressants. Again,
our all-encompassing analysis examining whether there were re-
sponder/non-responder differences in SPD measures that correlated
with both age and MADRS change scores confirmed the results from the
individual age- and MARDS change score analyses.

To our knowledge, very few studies have assessed the relationship
between pre-treatment EEG signal variability and antidepressant
treatment response, and as such, our work addresses this literature gap.
Arns et al. (2014) compared pre-treatment EEG variability using
Lempel-Ziv complexity [LZC] in depressed responders and non-re-
sponders to repetitive transcranial magnetic stimulation (rTMS). Al-
though they found no prognostic value in averaged LZC measures, they
showed that LZC changes during the measuring session were in-
formative. Eventual treatment responders (categorized based on de-
pression score changes from baseline) exhibited an increase in signal
complexity in the alpha band from the first to the second minute of
recording at baseline, while non-responders showed a decrease (Arns
et al., 2014). Although a direct comparison of their results with the
current study is not possible, both studies suggest that variability me-
trics associated with longer-range neural communication at pre-treat-
ment appears pertinent for a positive treatment response.

4.5. Conclusions & limitations

Our paper is not without limitations. Notably, our eventual non-
responder group was older than our responders and controls. However,
the effect of age on treatment response is quite weak (De Carlo et al.,
2016). Additionally, responders (not non-responders) were the ones
who exhibited atypical age-related MSE and SPD profiles. Second, al-
though our sample size was adequate for this study (and comparable to
other published research), larger sample sizes grouped by age may have
revealed more subtle effects, and possibly allowed for improved char-
acterization of the interplay between treatment response and age.
Third, future research would also benefit from the addition of fMRI-
connectivity based measures, as spatial assessments of connectivity
profiles between and within networks, would complement the current
work. Finally, ideally, the HC and MDD groups would have been as-
sessed with the same depression symptom scales (however, the use of
the BDI in the HC group was to ascertain the absence of significant
depression symptoms).

In sum, our study aimed to assess how the propensity for local
versus global communication, as measured with pre-treatment EEG
signal variability, relates to antidepressant pharmacotherapy response.
We found that in eventual responders, decreased MSE at fine temporal
scales (especially fronto-centrally) and increased MSE at coarser tem-
poral scales (especially fronto-centrally and parietally) at baseline was
associated with greater antidepressant response following 12 weeks of
antidepressant pharmacotherapy. Complimentary SPD analyses in-
dicated that greater MADRS score decreases were associated with
greater pre-treatment theta/alpha and lower fronto-central beta/
gamma in responders. Interestingly, when we examined how this re-
lationship is modulated by age, we found that the canonical age-related
shift in neural profiles, from more global to more local neural proces-
sing with increasing age, was not evident in future responders.
Complimentary SPD analyses showed a similar effect, wherein age-as-
sociated changes, including decreased theta/alpha and increased beta/
gamma with increased age, was evident only in controls and non-re-
sponders, but not in future responders. Thus, our aging analyses un-
derscore the idea that an increased propensity toward distal commu-
nication supports greater antidepressant response.

Overall, this work presents preliminary, yet compelling, evidence
that the brain dynamics of individuals who are sensitive/responsive to
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antidepressant treatment is different from those who do not adequately
respond. Increased treatment response, regardless of age, is character-
ized by an increased propensity for long-range interactions among
neural populations (lower MSE at coarse temporal scales). This con-
tributes to the literature regarding the utility of objective electrocortical
markers in predicting clinical response. Future examination of varia-
bility changes throughout the course of treatment would be especially
worthwhile to deepen our characterization of the pathophysiology of
MDD (Okazaki et al., 2013; Arns et al., 2014), particularly with respect
to comparing variability profiles in eventual treatment responders
compared with non-responders.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.10.035.
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