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Tumorigenesis is frequently accompanied by chronic inflammation, and the tumor
microenvironment (TME) can be considered an ecosystem that consists of tumor cells,
endotheliocytes, fibroblasts, immune cells and acellular components such as extracellular
matrix. For tumor cells, their survival advantages are dependent on both genetic and
epigenetic alterations, while other cells mainly present epigenetic modifications.
Macrophages are the most plastic type of immune cells and undergo diverse
epigenetic alterations in the TME. Some of these epigenetic modifications mitigate
against cancer progression, and others accelerate this process. Due to the complex
roles of macrophages in the TME, it is urgent to understand their epigenetic modifications
associated with the TME. Here, we mainly summarize recent findings on TME-associated
epigenetic alterations of tumor-associated macrophages (TAMs), including DNA
methylation, posttranslational modifications of histone proteins, chromatin remodeling,
and noncoding RNA-mediated epigenetic regulation. At the end of this review, we also
discuss the translational potential of these epigenetic modifications for developing novel
cancer therapies targeting TAMs.

Keywords: epigenetic modification, tumor associated macrophage (TAM), histone modification, tumor
microenvironment, methylation, acetylation, chromatin remodeling, lncRNA
MACROPHAGES AND TUMOR-ASSOCIATED MACROPHAGES

Macrophages are ubiquitously distributed mononuclear phagocytes originating from either
hematopoietic stem cells or yolk sac-derived erythromyeloid progenitors (1). In the dermis,
intestine, and peritoneum, macrophages mainly differentiate from bone marrow-derived
monocytes. In other organs, such as the brain, lung and liver, a considerable portion of
macrophage are represented by self-sustainable populations of tissue-resident macrophages
originating from embryonic progenitors (2). Macrophages play important roles in both innate
and adaptive immune responses by engulfing foreign substances, presenting antigens, and
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communicating intercellularly with other components of the
immune system via surface proteins and secreted cytokines (3).
Apart from their immunologic functions, macrophages are
actively involved in diverse biological processes, such as
angiogenesis, skeletal development, wound healing and
malignant transformation (4).

The functional diversification of macrophages is largely
attributed to their phenotypic plasticity (5). The process through
which macrophages obtain distinctive phenotypic features in
response to certain stimuli within their niche is called
“polarization”. For the convenience of study, macrophages
classically activated by proinflammatory signals such as
interferons, granulocyte macrophage colony-stimulating factor
(GM-CSF), and lipopolysaccharide (LPS) are defined as “M1
macrophages”, and macrophages alternatively activated by anti-
inflammatory factors such interleukin-4 (IL-4), interleukin-10 (IL-
10) and transforming growth factor-b (TGFb) are defined as “M2
macrophages”. Correspondingly, the process through which
macrophages acquire the phenotype of M1 macrophages such as
the production of tumor necrosis factor (TNF), IL-1, and IL-12 is
referred to as “M1-type polarization” or “M1 polarization”, while
the process through which macrophages acquire the phenotype of
M2macrophages such as the expression of scavenger receptors and
high indoleamine 2,3-dioxygenase activity is referred to as “M2-
type polarization” or “M2polarization” (some scientists also use the
term “alternative activation”) (6). The term “M1 or M2
polarization” defines the status of macrophages according to the
stimulus, while the term “classical or alternative activation” defines
the status based on biological consequences. Even though these
classification systems are often used interchangeably these days, the
intensive study conducted by Marco Orecchioni et al. still revealed
some inequivalence which merits some attention (7).

In biological processes other than the activation and
resolution of immune responses, the status of macrophages
may lie in between those extremes, and retain a certain level of
plasticity towards either M1 or M2 polarization in response to
environmental signals (8). Tissue-specific resident macrophages
are key players for tissue homeostasis by forming either trophic
or cytocidal interactions with neighboring cells, remodeling
extracellular matrix, clearing dying cells, and secreting
bioactive molecule such as cytokine, chemokines, growth
factors, enzymes, arachidonate, oxygen, nitrogenderived
metabolites, microvesicles and exosomes (9). The imbalance of
macrophage functions has been documented to play a role in the
many disease such as rheumatoid arthritis, chronic lung diseases
and liver disorders (10–13). The interactions between
microenvironment and resident macrophages have been
reviewed by many researchers (14–16). Therefore, we would
not expand this topic here.

Scientists have long noticed that M1-polarized macrophages
can effectively phagocytose tumor cells by recognizing elevated
phosphatidylserine levels in the outer membrane leaflet of
malignant cells in vitro (17). However, later studies revealed
that although macrophages ranked first among tumor-
infiltrating immune cells, their tumoricidal activities were often
poor in vivo (18). Over the same period, oncologists started to
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consider solid tumors as a unique microenvironment
characterized by uncontrollable proliferation, dysfunctional
vascularization, abnormal extracellular matrix structure,
chaotic cell infiltration and harsh chemical conditions resulting
from hypoxia and altered metabolism (19). Moreover, the tumor
microenvironment (TME) profoundly remodels the component
and functions of immune cells (20, 21). For example, more
suppressive immune cells, such as myeloid-derived suppressor
cells and regulatory T cells, are enriched in TME, while cytotoxic
T cells and natural killer cells become highly exhausted (22, 23).
Abundant evidence has demonstrated that such TME
preferentially leads macrophages to undergo M2 polarization,
and in turn the altered macrophages reinforce the TME in favor
of more malignant growth (24). Therefore, TME-infiltrating
macrophages are specifically referred to as “tumor-associated
macrophages (TAMs)” since they are profoundly shaped by this
disease and extensively involved in the disease progression. For
example, both hypoxia and tumor cell-derived lactic acid could
induce infiltrating macrophages to express more M2 marker
CD206, vascular endothelial growth factor (VEGF) and Arginase
I (25). VEGF-induced angiogenesis is crucial for a sustained
supply of nutrients supporting tumor growth, while Arginase I
catalyze the hydrolysis of L-arginine to deplete this key nutrient
required for the proliferation of T cells and natural killer cells
(26). Similarly, Itsaso Montalbán Del Barrio et al. showed that
ovarian cancer cell-derived adenosine induced TAMs to express
more ectonucleotidases CD39 and CD73, which further
increased the concentration of immune-suppressive adenosine
in the TME (27). The crucial roles of TAMs in tumor
progression, metastasis, and resistance to therapy are perennial
issues for research articles and reviews (28–32). Recently, Kaiyue
Wu et al. published an instructive review regarding the
subpopulations, functions and novel research techniques for
understanding TAM-TME interaction (33). Therapies aimed at
eliminating TAMs or “re-educating” them from M2 to M1
polarization have achieved remarkable success in both
preclinical and clinical studies, and this topic was recently
reviewed by Jiawei Zhou et al. (34).

TAMs undergo intense local proliferation in response to
TME-required macrophage colony stimulating factor (MCSF),
and the progenies maintain M2-polarized phenotypes (35).
Consistent stimuli from the TME contribute to the directional
transcription profiles of TAMs. The involvement in the
phenotypic TAM remodeling of critical TFs such as hypoxia-
inducible factor 1-alpha (HIF1a) and signal transducer and
activator of transcription 3 (STAT3) has been thoroughly
reviewed by many researchers (36, 37). Apart from TF theory
which builds a real-time correlation between environmental
signals and gene expression patterns for macrophages,
scientists have long noticed the existence of memory-like
behaviors. For example, macrophages trigger faster activation
in response to recurrent signals, which is mediated by epigenetic
modifications of latent enhancers in the genome of macrophages
(38). In this review, we summarize the recent findings regarding
the epigenetic modifications involved in the education of TAMs
by the TME.
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EPIGENETIC MODIFICATIONS
ASSOCIATED WITH MACROPHAGE
EDUCATION BY THE TME

Deoxyribonucleic acid (DNA) is the main substance controlling
the inheritance of biological traits in every organism except
prions and some viruses, but it is fascinating that embryonic
cells harboring the same set of genes can produce all different
types of cells with divergent phenotypes in a multicellular
organism without alterations of DNA sequences. Therefore, the
term “epigenetics” was proposed by Conrad Waddington in
the 1940s to describe the research aimed at deciphering the
mechanisms by which the same repertoire of genes could
produce various phenotypes in specific niches during the
development of metazoans (39). Later, the concept of
epigenetics was adopted by a broader range of principles and
redefined to include studies on both covalent and noncovalent
modifications of DNA and histone proteins as well as the overall
modifications of chromatin structures in any biological or
pathological process (40). For example, the methylation of
DNA, the posttranslational modifications of histone proteins,
chromatin remodeling, and the influences of noncoding RNAs
on nucleosome structure all belong to the research field
of epigenetics. These epigenetic modifications convert
environmental signals into distinct portfolios of accessible
genes, thus facilitating a limited number of transcription
factors (TFs) to produce more divergent transcriptional
profiles. Concurrently, environmental signals could edit
epigenetic signatures at the expression level and/or the
biological activity of enzymes and regulatory factors involved
in epigenetic modifications. Such an intertwined relationship
between inheritable epigenetic modifications and the consensus
DNA/RNA/protein central dogma laid the theological
foundation for the study of environmental adaptation at the
cellular level.

Tissue macrophages exhibit amazing variance in cell
morphology and functions within different organs. The
expression of PU.1, the master macrophage regulator, initiates
epigenetic lineage determination during which PU.1
preferentially binds to tissue-specific TFs to produce tissue-
specific macrophages (41). These TFs includes Sall1, RUNX,
GATA6, PPAR-г, and Spi-C for microglia, intestinal
macrophages, peritoneal macrophages, alveolar macrophages
and splenic macrophages, respectively (42). The expression of
these tissue-specific TFs, as well as their binding preference, are
profoundly dictated by epigenetic modification under the
influences of microenvironment (43, 44). The landscape of
epigenetic modification in some tissue macrophages has been
thoroughly studied through high-throughput sequencing
techniques, which provides a textbook example for the study of
environment-driven epigenetic modification (45).

In the context of oncology research, epigenetic modification is
one of the major mechanisms by which the TME affects behaviors
of infiltrating cells, such as fibroblasts, vascular endothelial cells,
lymphocytes and tumor cells themselves (46, 47). The involvement
of dysregulated epigenetic modification in the growth and
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metastasis of cancer cells has also been heavily reviewed (48–
50). A study comparing the epigenetic reprogramming patterns in
paired primary and distant metastasis of pancreatic ductal
adenocarcinoma specimens revealed that global changes were
targeted to thousands of large chromatin domains across the
genome that collectively specified malignant traits (51). This
study marks that we have started to understand the landscape of
cancer epigenetics at both spatial and temporal dimensions (52).
Probably due to availability of cell line models and clinical
samples, the mechanisms and biological effects of epigenetic
dysregulation in cancer cells and cancer-related fibroblasts
(CAFs) are more thoroughly studied and reviewed (53–56),
compared to the other types of cells present in TME. The
critical components involved in dysregulated epigenetic signaling
network might be shared among different types of cells, but the
biological consequences are highly cell-type specific (57). The
overall epigenetic landscape of macrophages and other tumor-
infiltration immune cells has been reviewed by several scientists
recently (58–60). In this review, we would mainly discuss
experimental studies as well as the potential applications
regarding the epigenetic modifications associated with TAMs,
which might inspire more basic and translational researches to
investigate the epigenetic modifications of macrophages in
malignant transformation and cancer management.
DNA METHYLATION

In DNA methylation, methyl groups are covalently added to
DNA bases, most frequently the cytosine of CpG dinucleotides
(Figure 1), and the methylation of CpG islands in promoters
typically leads to the silencing of gene expression. In mammals,
cytosine methylation is mediated by DNA methyltransferases
(DNMTs) including DNMT1, DNMT2, DNMT3A, DNMT3B,
and DNMT3L, while the conversion of methylcytosine to 5-
hydroxymethylcytosine is catalyzed by Tet methylcytosine
dioxygenases (TETs) including TET1, TET2 and TET3 (61).

TET2 is one of the most highly expressed Tet enzymes in
murine macrophages, and it is important for the resolution of
LPS-induced inflammation by restraining IL-1b, IL-6, ARG1,
and chemokine expression at the late phase of the immune
response (62, 63) (Figure 2). Wen Pan et al. discovered that
TET2 expression was enhanced in an IL1R/MyD88 pathway-
dependent manner in TAMs isolated from both murine and
human melanoma specimens, and myeloid-specific ablation of
Tet2 led to suppressed melanoma growth in vivo by modulating
the gene expression program from an immunosuppressive status
into a proinflammatory status in TAMs (64). Tumor cell-derived
IL-1a has been linked with higher metastasis in lung cancer and
breast cancer, indicating potential therapeutic value for blocking
the IL-1a/IL1R/MyD88/TET2 axis (65, 66). Some scientists have
noticed that TET2 might be the intersection between cancer and
immunity (67, 68).

Studies focusing on the role of DNMTs in TAMs are sparse.
Therefore, we could only speculate based on data obtained in
other biological systems. DNMT1 has been shown to play crucial
January 2022 | Volume 13 | Article 836223
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roles in M1 activation by suppressing the expression of Krüppel-
like factor 4 (KLF4) and suppressor of cytokine signaling 1
(SOCS1), and DNMT1 overexpression enhances the secretion
of proinflammatory cytokines such as TNFa and IL-6 in
RAW264.7 cells (69, 70). Similarly, a high level of DNMT3B
promotes M1 polarization by methylating the promoter region of
peroxisome proliferator activated receptor g (Pparg) in murine
adipose tissue macrophages, and Dnmt3b silencing induces M2
polarization in RAW264.7 cells (71). All these studies link the
activation of DNMTs with M1 polarization in macrophages.
Recently, a study of pancreatic cancer reported that the direct
cell-cell contact between cancer cells and macrophages would
Frontiers in Immunology | www.frontiersin.org 4
lead to a suppressed glucose metabolic status by changing the
DNA methylation pattern of oxidative phosphorylation-
associated genes in M1 macrophages, but not in M2
macrophages, and this cell-cell interaction could be blocked by
the pre-treatment of DNMTi (72). Mechanistic study showed
that Glycoprotein A Repetitions Predominant (GARP) on the
membrane of macrophage and integrin aV/b8 on the membrane
of the cancer cell played crucial roles in this process. However,
the detailed signaling pathway connecting cell membrane signals
with DNMTs activity remains unsolved.

Analyses of bulk tissues have identified DNMT3B
overexpression in many types of solid tumors such as breast and
FIGURE 1 | Summary of the typical epigenetic modifications on genomic DNA, Histone proteins and LncRNAs.
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colorectal cancers (73, 74), and more precise analyses specifically
focusing on DNMT expression and DNA methylation status in
TAMs are urgently required. DNMT inhibitors (DNMTi) such as 5-
Aza-2’ deoxycytidine (5-Aza-dC, decitabine, DAC) and 5-
azacytidine (5-AC) can sensitize cancer cells to various
therapeutics (75, 76), although their influence on TAMs is still
controversial. For example, in vivo treatment with 5-AC led to
decreased M2 macrophages and increased M1 macrophages
through the enhancement of type I IFN signaling in the TME in
a murine ovarian cancer model (77, 78), while in vitro treatment
with DNMTi resulted in significantly attenuated proinflammatory
functions in RAW264.7 cells and isolated primary murine
peritoneal macrophages (79, 80). Recently, a preliminary RNA-
sequencing study of DAC-treated murine pancreatic ductal
adenocarcinoma tissues revealed increased expression of Chi3l3,
reflecting an increase in a subset of tumor-infiltrating M2-polarized
macrophages (81). A lot of DNMTi-associated work was conducted
in macrophage cell lines, murine models and atherosclerosis-
Frontiers in Immunology | www.frontiersin.org 5
associated macrophages, so there is an urgent need for more
direct evidence to conclude the influence of DNMTi therapies on
TAMs in more clinically relevant models.

In addition to the cytosine of DNA, the adenine of RNA can
also be methylated to form N6-methyladenosine (m6A), which
has a remarkable influence on various biological behaviors of
RNA such as splicing, stability and translation (82). Recently
several studies have focused on the role of RNA m6A in
macrophage activation and cancer-associated reprogramming
(83, 84). Scientists have indicated that RNA m6A may be a
form of epigenetic regulation. However, in this review, we mainly
focus on narrowly defined epigenetic modifications related
to chromatin.

HISTONE METHYLATION

Histones are central players that maintain the chromatin structure.
Approximately 147 base pairs of DNAs are wrapped around an
FIGURE 2 | The representative epigenetic signaling regulatory factors and pathways involved in modulating M2 polarization in tumor microenvironment.
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octamer of histones (2 copies each of H3, H4, H2A and H2B) to
form the nucleosome core particle, while histone H1 interacts with
DNA of variable length and links adjacent nucleosome cores to
further compact the chromatin (85). Histone methylation means
the modification of arginines and lysines by the addition of 1, 2, or 3
methyl groups to histone proteins (86) (Figure 1). Histone
methylation influences the compaction of chromatin and
accessibility to TFs as well as other regulatory protein complexes.
Therefore, it plays an important role in transcriptional activation
and repression. There are 2 types of histone methyltransferases
(HMTs): histone lysine N-methyltransferases and histone arginine
N-methyltransferases (87). Histone demethylation is mediated by
histone demethyltransferases (HDMs), including lysine-specific
demethylase, Jumonji domain-containing hydroxylases (JMJDs)
and peptidyl arginine deiminases. The coexistence of redundant
HMTs and HDMs indicates that histone methylation can be
reversely regulated by environmental signals (88).

Irina Tikhanovich et al. discovered that HMT protein arginine
methyltransferase 1 (PRMT1) positively regulated Pparg gene
expression through histone H4R3me2a methylation at the Pparg
promoter in murine macrophages, and PPARg was one of the key
transcription factors promoting M2 polarization (89). Following
this discovery, Jie Zhao et al. showed that the PRMT1/IL-6/STAT3
axis promoted alcohol-associated HCC progression by inducingM2
polarization in mice fed with Lieber-DeCarli alcohol liquid diet, and
PRMT1 expression was correlated with STAT3 activation in TAMs
in human HCC specimens (90). These results suggest that PRMT1
is a potential therapeutic target in TAMs for alcohol-associated
HCC immunotherapy. Recently, Xiuling Wang et al. reported that
G9a, another HMT, could promote lipid-induced M1 macrophage
polarization by negatively regulating CD36 (91). However, the
involvement of G9a in the TME-TAM interaction requires
further investigation. These examples also highlight the
importance of specificity during the development of antagonists
and agonists for each HMT because different HMTs might play
opposite roles in M1/M2 polarization.

Evidences have shown that the expression level of the H3K27
demethylase JMJD3 could be influenced by cytokines and tumor-
derived exosomes present in the TME, and a high level of JMJD3
contributes to M2 polarization. For example, Makoto Ishii et al.
reported that the activation of the IL-4/STAT6 signaling axis
increased the expression level of JMJD3, which decreased the
suppressive H3K27 methylation at the promoter of genes related
to M2 polarization (Figure 2), including Chi3l3, Retnla, Arg1, Nos2
and Irf4 using a schistosoma mansoni egg-challenged mouse mode
in vivo (92, 93). Concurrently, an in vitro study also demonstrated
that IFNg could also increase JMJD3 mRNA levels in human
monocyte-derived macrophages (94). Recently, Jing Xun et al.
discovered that breast cancer cells induced TAMs to express more
JMJD3 by secreting exosomes containing microRNA-138-5p
(Figure 2), thus enhancing M2 polarization in TAMs (95).

However, great caution must be taken when attempting to
predict the biological function of one HMT/HDM based on the
other because the summation of direct and indirect influences of
these epigenetic regulators on macrophage polarization could be
dramatically diverse, due to different target preferences and
Frontiers in Immunology | www.frontiersin.org 6
modification sites. For example, SMYD3 and SET7/9, both of
which are HMTs, induce activating histone codes on the
promoters of S100A9 and S100A12 in response to glucose, thus
promoting M1 polarization (96), while SMYD5-mediated H4K20
trimethylation and SMYD2-mediated H3K36 dimethylation
function as repressive checkpoints for the expression of TLR4
target genes in macrophages (97, 98). Similarly, both SETD4 and
ASH1L are H3K4 methyltransferases. SETD4 positively regulates
IL-6 and TNFa expression in TLR agonist-stimulated macrophages
by directly activating H3K4 methylation (99), while ASH1L
enhances the expression of tumor necrosis factor alpha-induced
protein 3 (Tnfaip3) through the induction of H3K4 methylation at
the Tnfaip3 promoter, thus suppressing IL-6 and TNFa production
in TLR-triggered macrophages (100). The opposite biological effects
for these two H3K4 methyltransferases in response to the same
stimulus suggest a high level of complexity for the functional
interplay between HMT/HDMs and transcriptional regulation.
However, most of our current knowledge is obtained from in
vitro experiments deprived of TME signals, which might lead to
biased conclusions. Thus, the utilization of both macrophage-
specific transgenic mice and tumor models is required to precisely
and comprehensively understand the biological roles of these HMT/
HDMs in the process of tumor progression.
HISTONE ACETYLATION

Histone acetylation and deacetylation are catalyzed by histone
acetyltransferases (HATs) and histone deacetylases (HDACs) at
lysine residues along histone tails (101) (Figure 1). Histone
acetylation generally indicates transcriptional activation,
and histone deacetylation often correlates with repressed
transcription (102).

Many studies have directly or indirectly demonstrated that the
functions of macrophages could be finetuned via histone acetylation
profiles by signaling molecules present in the TME (Figure 2). For
example, Haruka Shinohara et al. reported that colorectal cancer
cells induced M2 polarization by exosome-mediated secretion of
miRNA-145 to downregulate HDAC11 expression in TAMs, thus
leading to significant enlargement of the tumor volumes in DLD-1
cell-xenografted mice (103). In addition to exosomes, cells in the
TME constantly compete for nutrients such as glucose and oxygen,
and redirect cellular metabolism from oxidative respiration to
anaerobic glycolysis, which reduces the production of acetyl-
coenzyme A (104). Mario A. Lauterbach et al. discovered that
macrophages increased glycolysis and tricarboxylic acid cycle
volume to generate more acetyl-coenzyme A from glucose upon
TLR4 activation, thus leading to augmented histone acetylation
which facilitated the transcription of LPS-inducible gene sets
contributing to M1 polarization (105). This study connects the
aerobic metabolism pathway with proinflammatory polarization via
histone acetylation, which might partially explain the phenotypic
shift fromM1 toM2 for TAMs during malignant transformation in
a hypoxic TME.

The production of IL-6, a key interleukin inducing M2
polarization, is frequently regulated by histone acetylation in
January 2022 | Volume 13 | Article 836223
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its promoter. For example, Yi-Chang Wang et al. discovered that
leukocytes infiltrating tumors expressed higher ubiquitin-specific
peptidase 24 (USP24) levels than surrounding tumor cells in lung
cancer patient specimens, and USP24 increased the level of
histone H3 acetylation in the promoters of NFKB1 and IL-6 by
stabilizing HAT p300, thereby increasing the expression of these
genes in M2 macrophages to promote the progression of lung
cancer (106). In another experimental condition, Lingli Hu et al.
reported that sodium valproate, a widely used HDAC inhibitor,
increased histone activation marks H3K4me3 and H3K9ac at Il6
promoter regions in a murine paraquat-induced pulmonary
fibrosis model (107).

Yung-Chi Chang et al. utilized an in vitro cell model, transgenic
mouse model, and clinical specimens to demonstrate that decoy
receptor 3 (DcR3) suppressed the expression of genes involved in
MHC-II-dependent antigen presentation by inducing
deacetylation of histones associated with the promoter of CIITA,
the master regulator of MHC-II expression, which led to M2
polarization in TAMs (108). Later, the same group reported that
xenograft growth and spreading were significantly enhanced by
monocyte-specific DcR3 expression in CT26 mice colorectal
cancer model, and DcR3-induced tumor growth was blocked by
the HDAC inhibitor sodium valproate (109). Keratinocytes
enhance DcR3 expression in response to epidermal growth
factor (EGF), transforming growth factor a (TGFa) and TNFa
in psoriasis patients (110), and lung fibroblasts increase DcR3
expression via the Akt/GSK-3b/NFATc1 signaling axis in contact
with the collagen matrix in patients with idiopathic pulmonary
fibrosis (111). However, whether these TME-associated factors
could upregulate DcR3 expression in macrophages remains to be
experimentally investigated.
OTHER HISTONE POSTTRANSLATIONAL
MODIFICATIONS

Similar to other proteins, histones undergo a variety of
posttranslational modifications (PTMs) (112). We have
discussed the involvement of methylation and acetylation, the
two most frequently mentioned types of histone PTMs for
epigenetic research, during the education of TAMs by TME in
previous paragraphs. The roles of other histone PTMs in TAM/
TME interactions are relatively less studied. Thus we summarized
several studies regarding arginine citrullination, lysine
ubiquitination, lysine SUMOylation, ADP-ribosylation, proline
isomerization, and serine/threonine/tyrosine phosphorylation
occurring in histones (Figure 1).

Protein phosphorylation means the addition of phosphate
groups to serine, threonine, tyrosine, or sometimes histidine
residues of proteins, thus creating a negative charge at the site of
modification (113) (Figure 1). Protein phosphorylation is
catalyzed by protein kinases, and its removal is mediated by
protein phosphatases. The phosphorylation of histone H1 at
multiple sites has been demonstrated as one of the prerequisite
steps for gene induction in vitro (114–117). Steven Z.Josefowicz
et al. discovered that in LPS-stimulated mouse macrophages,
Frontiers in Immunology | www.frontiersin.org 7
mitogen- and stress-activated protein kinases (MSKs)
phosphorylate histone H3 at serine 28, which directly
promotes p300/CBP-dependent transcription (118). More
interestingly, Sayantan Banerjee et al. reported that both the
lack of transcription favorable histone phosphorylation at the IL-
12 promoter and the abundance of ERK1/2-dependent histone
phosphorylation at the IL-10 promoter led to the polarization of
TAMs toward a more immunosuppressive form, although the
mechanism underlying the ability of the TME to preferentially
change the phosphorylation pattern of histones in TAMs has not
been clarified (119).

Citrullination is the posttranslational conversion of
peptidylarginine to peptidylcitrulline via the catalysis of calcium-
dependent peptidylarginine deiminases (Figure 1), thus leading to
changes in the positively charged arginine residue to an uncharged
citrulline residue (120). The level of citrullinated histone H3
significantly increases after LPS stimulation in macrophages
derived from U937 cells in vitro, as a result of the enhanced
expression level of peptidylarginine deiminases (121). The
involvement of histone H3 citrullination in epigenetic regulation
or gene expression has not been thoroughly studied, but it has
been demonstrated to be an important step in the formation of
extracellular traps for immune cells (122).

Ubiquitination refers to the addition of a single ubiquitin
molecule (monoubiquitination), or the conjugation of ubiquitin to
preceding ubiquitin moieties (polyubiquitination) to lysine residues
of proteins (123) (Figure 1). Ubiquitin is a 76 amino acid
polypeptide, and ubiquitination leads to a dramatic change in
protein conformation. Monoubiquitination tends to be considered
a signal transduction event, while polyubiquitination is a
typical recognition marker for 26S proteasomal proteases
(124). Monoubiquitination of H2A at lysine 119 prevents the
recruitment of SPT16 and SSRP1 at the transcriptional promoter
region, and blocks RNA polymerase II release at the early stage of
elongation, which mediates selective repression of a specific set of
chemokine genes modulating migratory responses to TLR
activation in macrophages, such as Ccl5, Cxcl2, and Cxcl10 (125).

Similar to ubiquitination, SUMOylation means covalent
ligation of small ubiquitin-related modifier (SUMO) groups,
which are approximately 100 amino acids in length, to lysine
residues of a protein (126) (Figure 1). Our current knowledge
indicates that histone SUMOylation generally mediates gene
silencing through recruitment of HDAC and heterochromatin
protein 1 (127, 128), although its involvement in macrophage
polarization has not been thoroughly investigated.

ADP-ribosylation refers to the transfer of an ADP-ribose
moiety from NAD+ to amino acid residues, such as lysine,
arginine, glutamate, aspartate, cysteine, phosphoserine, and
asparagine, which is mediated by ADP-ribosyltransferases
(129) (Figure 1). ADP-ribosylation increases the negative
charge of the modified protein. Mono-ADP-ribosylation has
been detected in all 4 core histones and the linker histone H1
in mammalian cells (130). Upon LPS stimulation, the enzymatic
activity of chromatin-associated poly(ADP-ribose) polymerase 1
(PARP-1) increases, and the ADP-ribosylation modification of
histones destabilizes histone-DNA interactions in the
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nucleosome, thus improving site accessibility at the gene loci of
Il1b, Mip2, and Csf2 in macrophages (131). The study of protein
ADP-ribosylation modification in immunology and cancer has
gained increasing attention in recent years, although the
involvement of histone ADP-ribosylation in TAMs has not
been thoroughly investigated yet (132).

Apart from covalent modification at different residues of
histones, the conformational state of prolines in histones also
plays a role in epigenetic regulation (Figure 1). For example,
isomerization of prolines at the amino-terminal tail of histone
H3 by proline isomerase FPR3 inhibits the methylation of
H3K36 by SET2 (133).
CHROMATIN REMODELING ENZYMES

The fundamental subunit of chromatin is called the “nucleosome”,
which is composed of DNA wrapped around the histone octamer,
and then chromatin is further packaged into heterochromatin with
a higher structure to reduce volume (134). Therefore, gene
transcription requires alterations of compact chromatin structure,
which allow the exposure of active DNA segments to transcription
machinery under the action of ATP-dependent chromatin-
remodeling enzymes (135, 136).

There are five major families of ATP-dependent chromatin-
remodeling enzymes: SWI/SNF, ISWI, Nurd/Mi/CHD, SWR1,
and INO80 (137). Their roles in macrophage polarization are
quite diverse. For example, the catalytic BRG1/BRM subunits of
the SWI/SNF class of ATP-dependent nucleosome remodeling
complexes are consistently required for the activation of
secondary response genes and primary response genes induced
with delayed kinetics in LPS-stimulated macrophages, while a
Mi-2b complex is selectively recruited along with SWI/SNF
complexes to act antagonistically to limit the induction of
these gene classes (138).

Systematic studies on the involvement of ATP-dependent
chromatin-remodeling enzymes in TAMs are still in the very
early stages. Ping-Chieh Chou et al. preliminarily reported an
interplay between tumor-secreted IGFBP2 and ATP-dependent
chromatin-remodeling enzyme INO80 in pancreatic ductal
adenocarcinoma (PDAC) as a conference poster and showed
that PDAC tissues often secreted excessive Insulin-like growth
factor binding protein-2 (IGFBP2) to pancreatic juice and serum,
and tumor-secreted IGFBP2 directly regulated INO80 functions
and inhibited MHC class II expression in macrophages (139). The
mechanism underlying this interaction is unknown yet, although
it likely occurs via direct protein-protein interactions (140).
NONCODING RNA-MEDIATED
EPIGENETIC REGULATIONS

Noncoding RNAs are a special class of regulatory RNAs that are not
translated into proteins (141). Noncoding RNAs that have
approximately 200 nucleotides or more are called “long
noncoding RNAs (lncRNAs)”, while the longest lncRNAs, which
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are much longer than 200 nucleotides, are referred to as “long
intergenic non-coding RNA (lincRNA)” (142). LncRNAs are highly
structured biomacromolecules capable of simultaneously interacting
with proteins, DNA, and other RNA via different motifs within one
molecule (143). Therefore, lncRNAs can guide epigenetic
modulators catalyzing epigenetic modifications to specific regions
of the genome in both cis and trans manners (144).

In macrophages, lincRNA-EPS restrains the expression of
immune response genes by interacting with heterogeneous
nuclear ribonucleoprotein L to induce the aggregation of
nucleosomes via a CANACA motif located in its 3′ end, and
genetic deletion of lincRNA-EPS leads to enhanced basal and
TLR4-induced expression of immune response genes in
macrophages (145). However, the mechanisms by which
lincRNA-EPS specifically localizes to the genomic loci of target
genes remain unsolved. Moreover, the regulatory mechanism for its
expression and its association with TAM transformation also
requires further investigation. Another lncRNA, CDKN2B-AS,1
has been shown to form an RNA-DNA triplex with the CDKN2B
promoter and recruit EZH2 and CTCF to inhibit CDKN2B
transcription by accelerating histone methylation in macrophages
(146). A similar RNA-DNA triplex might also exist for
lincRNA-EPS.

Whole-transcriptome analysis of macrophages stimulated with
the synthetic TLR2 ligand Pam3CSK4 revealed that Pam3CSK4

treatment significantly increased the level of lincRNA-Cox2 in
macrophages. Silencing of lincRNA-Cox2 led to attenuated
Pam3CSK4-induced expression of TLR1 and IL-6 (147).
Mechanistically, lincRNA-Cox2 is assembled into the SWI/SNF
complex in macrophages after TLR ligand stimulation, and the
lincRNA-Cox2/SWI/SNF complex can modulate the assembly of
NFkB subunits to the SWI/SNF complex to induce the
transactivation of late primary inflammatory response genes in
response to microbial challenge (148). However, whether the
formation of the lincRNA-Cox2/SWI/SNF complex is influenced
by TME-associated signals remains to be investigated.
TRANSLATIONAL POTENTIAL OF
MACROPHAGE-ASSOCIATED
EPIGENETIC MODIFICATIONS AND
PERSPECTIVE

The reversible polarization of macrophages is a double-edged
sword for cancer therapy. On one hand, a wide variety of
pharmaceutical interventions could be utilized to drive M1
polarization and achieve tumoricides (149–151). On the other
hand, high plasticity correlates with a high chance of being
adversely influenced by environmental factors once
pharmacological interventions are withdrawn (152). Therefore,
although macrophages are superior to T cells due to their low
dependency on antigen specificity, the development of
macrophage-based immune cell transfusion therapy still lags
behind T cell-based immune cell transfusion therapy. In 2017,
Cory M. Alvey et al. reported that the injection of bone marrow-
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derived macrophages pretreated with SIRPa blocking antibody
exhibited intratumoral accumulation and phagocytotic activity
for 1-2 weeks in mouse model, although these macrophages
quickly differentiated toward nonphagocytic TAM phenotype
and lost tumor-suppressive activity (153).

The application of epigenetic interventions to “lock”
macrophages at the M1 status might be one potential solution
for their low phenotypic stability in the TME. For example, the
exogenous expression of several epigenetic regulators, such as
DNMT1 and DNMT3B, has been previously mentioned to
enhance the M1 polarization of macrophages, while the
silencing of some other factors, such as TET2 and PRMT2,
could retard M2 polarization. Nowadays we have powerful tools
for targeted gene editing and controlled protein degradation such
as CRISPR-Cas9 and PROTAC technologies (154, 155). It would
be theoretical feasible and rational to evaluate the long-term
behavior of macrophages pretreated with the combination of
SIRPa blocking antibody and genetic manipulation of such
genes, and both therapeutic effects and carcinogenic safety
should be taken into consideration during the evaluation.

A recent work by Mengwen Zhang et al. demonstrated that the
infusionofM1macrophages alone led to increaseddistalmetastasis
in a murine orthotopic pancreatic cancer model in which
endogenous macrophages had been depleted, since M1
macrophages would be transformed to TAMs once they
infiltrated TME. However, the pretreatment of infused
macrophages with DNMTi could suppress the metabolic
functions of TAMs and significantly reduced metastasis (72). The
underlying mechanism has been discussed in the section of “DNA
methylation” previously in this review. Even though the long-term
effects of DNMTi could not be evaluated due to the limitation of
short experimental duration, this study is still strong evidence
demonstrating the potential application of epigenetically
reinforced macrophages in cancer therapy. Moreover, this report
also inspires the research community to think out of the box ofM1/
M2 redirection, but to utilize the difference between M1 and M2
macrophages for differentiated strike.

Apart from transfusion therapy, systematic treatment targeting
intratumoral macrophages in situ is also a feasible strategy.
Targeting elements such as mannose, structured peptides, DNA
aptamers, and antibodies could be used in combination with drug
encapsulation methods, such as lipid polymers and other high
molecular weight materials (156–159). Although relative
enrichment of drugs intratumorally is achievable, leakiness is
inevitable. Therefore, a crucial question to be answered is the
influence of these pharmaceutical compounds on other cell
compounds in tumors as well as in healthy organs. Compared
with therapies targeting cytokines and immune checkpoints,
therapies targeting epigenetic modifications are more prone to
unexpected systematic effects since these signaling pathways are
highly infrastructural. Therefore, it is urgent to conduct more in
vivo evaluations in studies regarding epigenetic interventions
targeting TAMs. On the other hand, therapeutic interventions
targeting tumor cells would simultaneously hit TAMs, and the
altered behaviors of TAMs might play key roles in resistance and
relapse, which requires great attention.
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Therapies targeting TME-TAM interactions would also be
beneficial for epigenetically regulating macrophage functions.
Technologies for developing humanized neutralizing antibodies
against cytokines or receptors involved in M2 polarization-
associated epigenetic modifications, such as IL-4 and IL-1a,
are mature these days (160). The concentration of these agents
could be further increased in TME with the help of
nanotechnology since macromolecular drugs tend to
concentrate in tumors with abnormal tumorous vessels (161).
Generally, cytokines influence more than one kind of immune
cells, so these neutralizing antibodies would have potent power in
re-shaping tumor immune microenvironment (162, 163). Some
other interventions aimed at suppress the functions of other cells in
the TME might have concomitant effects on TAMs. For example,
gefitinib, an EGFR inhibitor suppressing tumor growth and
angiogenesis, was recently shown to inhibit the crosstalk between
macrophages and cancer cells by blocking receptor interacting
protein kinase 2 (RIPK2) (164). With an increasing community
of oncologists realizing the importance of TAMs, more attention
would be payed to investigate macrophage phenotypes during the
evaluation of cancer therapies.

Recently, Rongchen Shi et al. reported that systemic
administration of DNMTi DAC stimulated the activation of
TAMs towards an M1-like phenotype in a murine peritoneal
carcinomatosis of colorectal cancer model. Mechanistically,
DAC bond ATP-binding cassette transporter A9 and induced
cholesterol accumulation, which increased p65 phosphorylation
and IL-6 expression in a DNMTi-independent manner (165).
The universality of the mechanism identified in this study has yet
to be tested with more experimental evidence in other models, as
we have discussed several studies with different results in the
section “DNA methylation” previously in this review. However,
it is generally acknowledged that DNMTi therapies would
improve immune microenvironment from the point of tumor
infiltrating T cells by re-activating the expression of
immunosurveillance-related genes in tumor cell, and the
combination of DNMTi with immune therapies has exhibited
some therapeutic benefits in several studies (81, 166–168).
Understanding the biological behaviors of TAMs in these
processes might further improve these therapies.

In summary, TAMs, as the intratumorally infiltrating immune
cells with the largest number, represent a force to be considered for
successful cancer therapy (169). The TME affects the functions of
TAMs partially through epigenetic modifications, and the
investigation of such intercellular communication would lead to
the discovery of more promising therapeutic targets for cancer
immunotherapy targeting macrophages.
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