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ABSTRACT: A novel composite consisting of transition-metal
oxide and reduced graphene oxide (rGO) has been designed as a
highly promising anode material for lithium-ion batteries (LIBs).
The anode material for LIBs exhibits high-rate capability,
outstanding stability, and nontoxicity. The structural character-
ization techniques, such as X-ray diffraction, Raman spectra, and
transmission electron microscopy, indicate that the material adopts
a unique core−shell structure with NiFe2O4 nanoparticles situated
in the center and an rGO layer coated on the surface of NiFe2O4
particles (denoted as NiFe2O4/rGO). The NiFe2O4/rGO material
with a core−shell structure exhibits an excellent electrochemical performance, which shows a capacity of 1183 mA h g−1 in the first
cycle and maintains an average capacity of ∼1150 mA h g−1 after 900 cycles at a current density of 500 mA g−1. This work provides a
broad field of vision for the application of transition-metal-oxide materials in electrodes of lithium-ion batteries, which is of great
significance for further development of lithium-ion batteries with excellent performance.

1. INTRODUCTION
As human beings increasingly rely on various types of energy-
driven equipment, researchers have paid more attention to the
evolution of energy storage and conversion devices.1−4

Lithium-ion batteries (LIBs) are one of the most competitive
systems because of their high theoretical capacity, security, low
cost, nontoxicity, etc.5,6 Although LIBs with a graphite anode
that have been commercialized show low operating voltage and
outstanding cycling stability, a low theoretical capacity of about
372 mA h g−1 of graphite is far below the demand of large
facilities.7−9 Therefore, exploring a new anode material with
higher capacity and better structural stability is a priority.
Transition-metal oxides (TMOs) have been proved to be

very promising anode materials because they can deliver
reversible capacities almost 3 times higher than the specific
capacity of graphite materials, as well as for their low cost.10

However, transition-metal-oxide materials exhibit poor rate
capability and drastic capacity fading because of low
conductivity and large volume expansion during cycling.
Various strategies have often been applied to solve these
problems. The particle size of TMOs can be controlled
through a series of chemical methods, promoting electro-
chemical processes and maintaining structural integrity.11−14

Carbon materials can also be introduced to fabricate
composites, which can buffer the volume expansion of
TMOs during the cycling and increase electronic conductiv-
ity.15−17 Graphene oxide (GO)/MoS3 has been prepared
through a facile method that shows the highest specific
capacity of 685 mA h g−1 after 1000 cycles at 2 A g−1.18 In
addition, materials with nanostructures such as a hollow

structure or a core−shell structure through material engineer-
ing can achieve excellent electrochemical performances. For
example, core−shell porous nanocubic Mn2O3/TiO2, which
was synthesized as a high-performance anode for LIBs,
achieved a cycling capacity of 936 mA h g−1 after 100 cycles
at a charging/discharging rate of 200 mA g−1.19

Among various TMO anode materials, NiFe2O4 has been
considered as an appealing electrode material for LIBs because
of high theoretical capacity (915 mA h g−1). Previous studies
have reported a reversible capacity of ∼900 mA h g−1 exhibited
by the NiFe2O4 anode material.20,21 The Coulombic efficiency
is as low as 34.8 and 98.5% for the 1st and 30th cycles,
respectively.22 However, similar to other TMOs, the NiFe2O4
anode material also exhibits poor electronic conductivity and
fast capacity fading during cycling.23 To overcome these
insufficiencies, structural and morphological modifications on
oxide materials were carried out by researchers.24−26 A hollow
NiFe2O4 material exhibits a stable discharge capacity of 840−
850 mA h g−1 at a current density of 200 mA g−1.24 NiFe2O4
nanofibers exhibit an outstanding capacity of 1000 mA h g−1

after 100 cycles with a high Coulombic efficiency of 100%.25

The sandwich-structured graphene−NiFe2O4−carbon nano-
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composite has been prepared via a hydrothermal method,
followed by carbon coating, which exhibits an exceptional cycle
stability of 1195 mA h g−1 after 200 cycles at 500 mA g−1.26

In this study, we successfully synthesized a NiFe2O4/
reduced graphene oxide (rGO) composite with a core−shell
structure via a facile chemical process. The as-prepared
NiFe2O4 material adopts a particle size of 18−20 nm, which
is beneficial for the participation of NiFe2O4 in electrochemical
reactions. The rGO network is considered to serve as a
conductor of electrons and provide pathways for Li-ion
diffusion to improve the electronic and ionic conductivities.
More importantly, rGO on the surface of NiFe2O4 could act as
a protective layer to form a unique core−shell structure, which
can ease the volume changes of NiFe2O4 during cycling.
Therefore, as an anode material for LIBs, the NiFe2O4/rGO
composite exhibits improved lithium-storage performances.
After 900 cycles, the NiFe2O4/rGO composite still exhibits an
average capacity of ∼1150 mA h g−1 at 500 mA g−1. The
findings provide wide insights into the utilization of transition-
metal-oxide materials for electrodes in lithium-ion batteries,
which is of vital importance to further developing LIBs with
excellent performances.

2. RESULTS AND DISCUSSION
The fabrication method of the NiFe2O4/rGO composite
utilized in this study is schematically illustrated in Figure 1.

Transition-metal nitrate and citric acid were mixed and heated
to obtain NiFe2O4. NiFe2O4 and reduced graphene oxide
(rGO) were then placed in ethanol for an ultrasonic process
before a hydrothermal reaction. The NiFe2O4/rGO composite
with a core−shell structure was prepared through a self-
assembly treatment using a hydrothermal method.
The structural information of the NiFe2O4/rGO material

was characterized by X-ray diffraction (XRD). Figure 2a shows
the XRD patterns of NiFe2O4 and the NiFe2O4/rGO
composite. In the representative XRD pattern, all of the
diffraction peaks can be well indexed to the cubic inverse
spinel-type NiFe2O4 (JCPDS card No. 54-0964). These
characteristic diffraction peaks of NiFe2O4 at 18.428, 35.701,
37.320, 37.630, 43.383, 53.814, 57.293, and 63.021°
correspond to the crystal planes of (111), (220), (311),
(222), (400), (422), (511), and (440). The formation of a
pure compound can be confirmed as no other phases or
impurity peaks could be found. In addition, the XRD pattern of
the NiFe2O4/rGO composite is similar to that of NiFe2O4 and
all of the characteristic peaks of NiFe2O4 are well preserved,
indicating that the NiFe2O4 phase was maintained intact in the
chemical reaction where the rGO material was deposited on
the surface of NiFe2O4. A new broad peak appears at about 26°
for the NiFe2O4/rGO composite, which corresponds to the
(002) characteristic peak of rGO. The structure of NiFe2O4/

rGO was also determined by Raman spectroscopy, as shown in
Figure 2b. The Raman spectrum of the rGO exhibits two peaks
at 1346 and 1582 cm−1, which represent the D and G modes of
amorphous carbon, respectively. The D band corresponds to
the presence of defects, and the G band indicates ideal
graphitic sp2 carbons.27−29 The ratio of D and G band
intensities (ID/IG) is considered to indicate the degree of
disorder in a carbon structure. As shown in Figure 2b, the ID/
IG ratio of NiFe2O4/rGO is 1.10. This result indicates that
rGO has a lower degree of graphitization, which is conducive
to the intercalation and diffusion of Li+ ions.29−31 On
comparing the Raman spectra of NiFe2O4 and NiFe2O4/
rGO, there are some other peaks recognized for NiFe2O4/rGO
in the range of 400−700 cm−1, which were attributed to the
spinel structure of NiFe2O4.

32,33 The T2g(1) mode at 191 cm−1

corresponds to the translational drive of the tetrahedron, in
which the Ni/Fe metal cations are tetrahedrally coordinated
with oxygen atoms. At 319 cm−1, the Eg mode is related to the
symmetric bending of the oxygen anions with respect to the
Ni/Fe metal cations.31 The T2g(2) mode at 478 cm−1 is
considered to be the asymmetric stretching of the Fe/Ni and O
bond at octahedral sites, while the T2g(3) mode at 546 cm−1 is
the result of the asymmetric bending of oxygen anions with
tetrahedral and octahedral metal cations.32 The A1g mode at
606 cm−1 belongs to the symmetric stretching of oxygen
anions along Ni−O and Fe−O bonds, as shown Figure S1.34,35

The X-ray photoelectron spectroscopy (XPS) of NiFe2O4/
rGO was carried out to study the chemical states of transition-
metal cations, as shown in Figure 3. The Ni 2p spectrum shows
two characteristic peaks at 855.1 and 872.5 eV and two
satellites peaks at 862.0 and 878.0 eV owing to Ni 2p1/2 and
Ni 2p3/2,36 which imply that Ni exists as Ni2+.37 The
characteristic peaks of the Fe 2p spectrum at 713.2 and 726.9
eV are attributed to Fe 2p3/2 and Fe 2p1/2, and there are two
satellites peaks at 718.2 and 733.1 eV.36,38 These signs confirm

Figure 1. Schematic illustration of the synthesis process of NiFe2O4/
rGO.

Figure 2. XRD patterns of NiFe2O4/rGO (black line) and NiFe2O4
(red line) (a), and Raman spectra of NiFe2O4/rGO (red line) and
rGO (black line) (b).
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the existence of Fe3+ ions in the composite. The results of the
XPS spectra correspond well to the observations in the XRD
pattern of the composite, indicating the formation of the
NiFe2O4 phase. The thermogravimetric analysis (TGA) curve
for NiFe2O4/rGO is shown in Figure S2, which is tested in the
range of 50−600 °C at the rate of 5 °C/min in air. Graphene
burns at a temperature between 400 and 600 °C in air.14

Therefore, the NiFe2O4/rGO nanocomposite is composed of
∼10 wt % rGO and ∼90 wt % NiFe2O4.
The morphology of the NiFe2O4/rGO composite has been

determined by transmission electron microscopy (TEM).
Figures S3a−c show the TEM images of NiFe2O4. The
NiFe2O4 nanoparticles show an average size of 20 nm. Such a
small particle renders more contact area between the anode
and the electrolyte, thus improving the participation of
NiFe2O4 in electrochemical process. The selected area electron
diffraction (SAED) pattern of NiFe2O4 (Figure S3d) shows a
ring-like diffraction pattern, revealing a polycrystalline
structure of NiFe2O4. Figure 4 shows the HRTEM images of
NiFe2O4/rGO at low and high magnifications. Compared with
Figure 4c, it is obviously shown in Figure 4d that the NiFe2O4
particles are embedded in rGO and there is a shell with a
thickness of ∼5 nm coating on the surface of NiFe2O4
particles, confirming the formation of a core−shell-structured
NiFe2O4/rGO. Figure 4e exhibits a ring-like diffraction pattern,
which could reveal the polycrystalline structure of NiFe2O4/
rGO. As shown in Figure 4f, all small grains show a single-
crystal structure, with obvious crystal lattice fringes. The crystal
plane spacing is 0.294 nm, corresponding to the (220) plane of
spinel NiFe2O4. The element distribution in the core−shell
structure of NiFe2O4/rGO is also demonstrated by the energy-
dispersive X-ray spectroscopy (EDS), as shown in Figure 4. It
can be definitely observed from the distribution of Ni, Fe, O,
and C elements that Ni, Fe, and O atoms are uniformly
concentrated in the center of the particles, confirming the
existence of the NiFe2O4 phase, whereas the C atoms are

dominantly situated on the circumference of the particles,
which undoubtedly indicates the formation of a heterogeneous
core−shell NiFe2O4/rGO structure observed in Figure 4d.
To explore the electrochemical performances of core−shell

NiFe2O4/rGO, a cyclic voltammetry (CV) test was conducted.
The CV curves of the initial four cycles are shown in Figure 5a,
which has been tested at a scan rate of 0.2 mV s−1 at the
potential window of 0.01−3.00 V vs Li/Li+. The cathodic peak
of the first cycle started at 0.75 V, which is related to the
formation of a solid−electrolyte interface (SEI) film and the
reduction of NiFe2O4 during the first discharging process (eq
1).39 The weak wide peak at about 1.5 V may be the result of
insertion of Li+ ions into the NiFe2O4/rGO electrode. The two
broad anodic peaks at 1.6 and 1.8 V are attributed to the
formation of NiO and Fe2O3 according to eqs 2 and 3 in the
subsequent anodic scans, respectively.27,40,41 After one cycle,
all reduction peaks moved slightly toward a higher potential,
implying that there was a loss of capacity because of the
formation of the irreversible phase in the first cycle.42

Meanwhile, the CV curves of NiFe2O4/rGO in the second
and third cycles almost overlap, indicating the excellent
reversibility of the electrochemical reactions.

+ + → + ++ −NiFe O 8Li 8e Ni 2Fe 4Li O2 4 2 (1)

+ → + ++ −Ni Li O NiO 2Li 2e2 (2)

+ → + ++ −2Fe 3Li O Fe O 6Li 6e2 2 3 (3)

The charge/discharge curves of NiFe2O4/rGO were
obtained between 0.01 and 3.00 V at 500 mA g−1. As shown
in Figure 5b, the initial charge−discharge curves exhibit two
obvious plateaus at 1.70 and 0.75 V, which correspond well to
the above CV results. The discharge plateau was replaced by a
slope from 1.00 to 0.80 V in the subsequent cycle,
corresponding to the irreversible reaction such as the
formation of an SEI film. Furthermore, the charge/discharge
platform is well maintained with the same shape after 50 cycles,
indicating the outstanding reversibility of electrochemical
reaction.
Figure 5c shows electrochemical impedance spectra of

NiFe2O4 and NiFe2O4/rGO. All of the Nyquist plots consist of
a slope line and a semicircle. The slope line is related to the Li+

diffusion in the fibrous framework (Zw), and the semicircle
corresponds to the charge-transfer resistance (Rct).

43 The fitted
results show that the Rct (54 Ω) of the NiFe2O4/rGO
electrode is much lower than that of the NiFe2O4 electrode
(154 Ω) and the diffusion coefficient of NiFe2O4/rGO (1.42 ×
10−12 cm2 s−1) is higher than that of pure NiFe2O4 (6.64 ×
10−13 cm2 s−1), which indicates that the electronic conductivity
and ion mobility of the composite can be improved by coating
rGO on NiFe2O4. Figure 5g shows the cycling performance of
NiFe2O4/rGO at 500 mA g−1. The NiFe2O4/rGO anode
shows a first discharge capacity of 1183 mA h g−1, which is
much larger than the reversible capacity (∼900 mA h g−1)
reported previously.20,21 The excess capacity may be related to
the formation of SEI at the electrode/electrolyte interface
caused by electrolyte reduction. The exposed vacancy defects
of rGO also render more Li storage, resulting in extra capacity
contribution.44 In addition, excess oxygen in the anode could
also react with some lithium, leading to extra capacity.28,45 The
first charge capacity is 842 mA h g−1 with a low Coulombic
efficiency of 71.2%. The loss of capacity during charge process

Figure 3. Fe 2p high-resolution XPS spectra of NiFe2O4/rGO (a),
and Ni 2p high-resolution XPS spectra of NiFe2O4/rGO (b).
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can be attributed to the irreversible decomposition of the SEI
and the incomplete conversion reaction.45,46

However, there is a drastic capacity fading of NiFe2O4/rGO
during the initial 85 cycles due to the practical structural
destruction caused by electrolytic grinding during the cycle,
which was observed previously in the NiFe2O4-based anode
material.28,40 In subsequent cycles, the reversible capacity of
the NiFe2O4 electrode gradually increases, which may be
attributed to the formation of the SEI film and activation of
NiFe2O4/rGO during the lithium insertion/extraction proc-
ess.45 After 900 cycles, a relatively stable reversible capacity of
∼1150 mA h g−1 could be achieved with the Coulombic
efficiency close to 100%, indicating the stabilization of the SEI
film between the electrode and the electrolyte.40,45 Figure S5
exhibits the cycling performance of NiFe2O4. A stable capacity
of 105 mA h g−1 has been observed after a fast capacity fading.
Compared to the NiFe2O4 electrode, the NiFe2O4/rGO
electrode exhibits improved cycling performance. The
enhanced cycling stability of NiFe2O4/rGO could be attributed
to the following two reasons: (1) rGO as a shell layer can adapt
to the volume change during the cycling process and alleviate

the pulverization and aggregation of NiFe2O4; (2) the rGO
network can effectively increase the electronic conductivity of
NiFe2O4, facilitating the rapid transfer of electrons.47,48

Figure 5d shows the CV diagrams at different scan rates (0.2
to 1.8 mV s−1). With increase in the scan rate, the intensity of
peaks at 0.75 and 1.70 V increases. In addition, the oxidation
peak moves toward a higher voltage and the reduction peak
moves toward a lower voltage with increase of the scan rate,
indicating the higher electrochemical polarization for
NiFe2O4/rGO. The Nyquist plots of the NiFe2O4/rGO
nanoparticles after different cycles (the 1st and the 20th) are
shown in Figure 5f. On comparing the Nyquist plots of the
NiFe2O4/rGO composite after cycles, the Rct value increases
from 17 Ω for the initial electrode to 54 Ω for the 20th cycle.
The diffusion coefficients of NiFe2O4/rGO (initial) and
NiFe2O4/rGO (after 20 cycles) are 1.42 × 10−12 and 5.24 ×
10−11 cm2 s−1, respectively. This drastic change may be
attributed to the activation of electrode materials and
enhanced transport properties of NiFe2O4/rGO. In combina-
tion with the results of the cycling performance, this trend in

Figure 4. TEM images of NiFe2O4/rGO (a, b, and d); TEM image of NiFe2O4 (c); SAED pattern of NiFe2O4/rGO (e); HRTEM image of
NiFe2O4/rGO (f); from top to bottom: elemental mapping images showing the elemental distribution of Ni, Fe, O, and C and the overlapped
image (g).
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Figure 5. (a) Cyclic voltammetry curves of the NiFe2O4/rGO electrode. Scan rate: 0.2 mV s−1; voltage range: 0.01−3.00 V. (b) Galvanostatic
charge/discharge profiles of the NiFe2O4/rGO electrode. Voltage range: 0.01−3.00 V; current density: 500 mA g−1. (c) Nyquist plots of the
NiFe2O4 (red) and NiFe2O4/rGO (black) electrodes. (d) CV curves of the NiFe2O4/rGO electrode at different scan rates. (e) Rate capabilities of
NiFe2O4/rGO. (f) Nyquist plots of NiFe2O4/rGO at the 1st and 20th cycles. (g) Charge/discharge capacity and Coulombic efficiency of the
NiFe2O4/rGO electrode at 500 mA g−1.
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resistance is attributed to the formation of the SEI layer and
the activation of NiFe2O4.
To further study the rate capacity of the NiFe2O4/rGO

electrode, the electrode has been evaluated at different rates, as
shown in Figure 5e. At a rate of 0.1 A g−1, the discharge
capacity reaches ∼1745.8 mA h g−1. At high rates of 0.2, 0.5, 1,
and 2 A g−1, the discharge capacities still remain at values of
804.2, 553.2, 376.3, and 272.4 mA h g−1, respectively. The
discharge capacity of 467.9 mA h g−1 was recovered when the
rate was returned to 0.1 A g−1. These results show that the
NiFe2O4/rGO composite with a core−shell structure has great
potential as a high-rate anode material for LIBs.

3. CONCLUSIONS

In conclusion, the NiFe2O4/rGO composite with a unique
core−shell structure has been successfully prepared through a
facile chemical process. The NiFe2O4/rGO electrode exhibits
excellent cycling and rate performances as an anode material
for LIBs. The rGO coating layer on the surface can not only
benefit for the increase of electronic conductivity but also
suppress the volume change during the charge/discharge
processes. The introduction of the rGO layer onto NiFe2O4
provides an exceptional specific capacity of ∼1150 mA h g−1

after 900 cycles at 500 mA g−1 with a high Coulombic
efficiency of 100%, which is significantly improved when
compared with that of NiFe2O4 nanoparticles. The EIS
measurements show that the charge-transfer resistance of
core−shell NiFe2O4/rGO is smaller than that of the NiFe2O4
nanoparticles. The excellent lithium-storage properties of the
core−shell NiFe2O4/rGO electrode may be ascribed to the
core−shell structure and the small size of NiFe2O4 particles,
which can effectively improve the electronic conductivity of the
electrodes and accommodate the change of volume during the
lithium-ion insertion/extraction process. Thus, the NiFe2O4/
rGO composite has great potential in the development of Li-
ion batteries.

4. EXPERIMENTAL SECTION

4.1. Material Synthesis. In the preparation process, 4.08 g
of Fe(NO3)3·9H2O, 1.10 g of Ni(Ac)2·9H2O, and 3.04 g of
anhydrous citric acid were dissolved in 20 ml of anhydrous
ethanol solution and stirred at room temperature for 0.5 h.
Then, the reaction mixture was continuously stirred for 2 h at
60 °C and then heated at 110 °C for 24 h to obtain a
homogeneous mixture. NiFe2O4 was obtained by placing the
mixture in a muffle oven at 5 °C min−1 to 450 °C for 5 h.
Reduced graphene oxide (rGO) purchased from Alab
(Shanghai) Chemical Technology Company (thickness: <1
nm; diam: 1−100 μm) was placed in 20 ml ethanol according
to the proportion of ultrasonic for 1 h. The mixture was placed
in a Teflon high-pressure reactor for hydrothermal reaction at
180 °C for 12 h. The product was washed with ethanol three
times and dried in 60 °C for 24 h.
4.2. Material Characterization. The microstructures and

morphologies of the materials were determined using a
transmission electron microscope (TEM, JEM, 2011F). The
crystal structures were evaluated using a powder X-ray
diffraction (XRD) meter (Smart Lab 9KW) with Cu Kα
radiation. Raman spectroscopy was performed using a Thermo
DXR Microscope with 532 nm excitation laser wavelength.
PHI 5000 Versa Probe, ULVAC-PHI with an Al Kα X-ray
source (1486.6 eV), was used to measure X-ray photoelectron

spectroscopy (XPS). The TGA curves were obtained using a
SHIMADZU DTG-60H thermo balance in air with a 5 °C
min−1 heating rate from 50 to 600 °C.

4.3. Electrochemical Measurements. Active materials,
super P, and poly(vinylidene fluoride) (PVDF) (weight ratio:
8:1:1) were mixed in NMP to obtain a slurry. Then, the slurry
was coated onto the Cu foil and dried at 80 °C for 12 h in a
vacuum oven. The electrolyte was 1.0 M solution of LiPF6 in
the mixture of EC/DEC (1:1 by volume). The cells were
assembled in a glovebox filled with Ar. The galvanostatic
charge/discharge tests were conducted on a LANHE electro-
chemical workstation with a potential window of 0.01−3.00 V
(vs Li+/Li). Cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) measurements were conducted
at the EC-Lab electrochemical workstation. CV was tested at a
scan rate of 0.2 mV s−1 in a voltage range of 0.01−3.00 V. The
CV of NiFe2O4/rGO at various scan rates was also tested in a
voltage range of 0.01−3.00 V. In the EIS measurement, the
amplitude of the AC signal is 0.2 mV and the frequency is
between 100 kHz and 0.01 Hz.
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