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Abstract: Urinary bladder cancer is a common malignancy, being characterized by
substantial patient mortality and management cost. Its high somatic-mutation frequency and
molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto,
methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone
of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated
patients will eventually develop chemoresistance, which severely reduces their survival expectancy.
Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer,
as compared to other epithelial tumors, targeted therapies against chromatin aberrations in
chemoresistant clones may prove beneficial for the disease. “Acetyl-chromatin” homeostasis is
regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases
(HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes,
with each family member being differentially expressed in normal urinary bladder tissues. Since a
strong association between irregular HDAC expression/activity and tumorigenesis has been
previously demonstrated, we herein attempt to review the accumulated published evidences that
implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most
extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical
trials are also described. Interestingly, it seems that HDACis should be preferably used in
drug-combination therapeutic schemes, including radiation.
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1. Epidemiology—Risk Factors

Cancer of the urinary bladder is a highly prevalent disease, and is closely associated with
substantial morbidity, mortality and cost. It is the 9th most frequent malignancy and the 13th most
common cause of death, worldwide. In the year 2012, more than 429,000 cases of bladder cancer were
diagnosed and more than 165,000 deaths were recorded, globally [1,2]. For 2018, it has been estimated
that over 80,000 patients in the United States of America will develop urinary bladder cancer [3,4].
Disease incidence increases with age, with men being affected in a comparatively higher percentage
than women, following an approximate 3:1 average ratio. Developed countries are nearly three times
more vulnerable to bladder cancer than under-developed countries, with North America and several
European, Western Asia and Northern African countries exhibiting the highest age-standardized
incidence. Intriguingly, although rates of the disease are higher in white populations, as compared to
other ethnicities, survival seems worse for black individuals. Variations in regional mortality could
presumably be attributed to the differential access to health care systems, and disparate protocols and
facilities utilized for diagnosis and treatment [1,2,5–10].

The most common risk factor for bladder cancer is cigarette smoking, with tobacco being estimated
to be responsible for almost half of all cases [11,12]. Ambient air pollution, such as the one derived from
combustion chemicals, has been also suggested to influence bladder cancer risk, while occupational
exposure to certain mutagens in industrial areas has been long associated with development of the
disease. Urban living, and diets low in fruit and vegetable are additionally linked to increased
incidence of bladder cancer [12,13]. Interestingly, a genetic predisposition to bladder cancer has been
previously reported, involving genes that control carcinogen metabolism, such as N-acetyltransferase
2 (NAT2). Moreover, genome-wide association studies (GWAS) have identified sequence variants that
can increase susceptibility to the disease, with alterations in the urea transporter SLC14A1 gene being
characteristic examples [5,14–23].

2. Classification—Genomic Landscapes—Drug Resistance

In North America and Europe, more than 90% of bladder cancers belong to urothelial
carcinomas. These tumors are graded according to their cellular properties and staged using the
Tumor-Node-Metastasis (TNM) system, which describes their invasion competence (Tis-T4). The low
grade, non-muscle-invasive bladder cancer (NMIBC) infrequently acquires invasion features, but
can usually recur, following an approximate 5-year survival rate of 90%. In contrast, the high grade,
muscle-invasive bladder cancer (MIBC; stage T2 and above) often progresses to metastasis, presenting
an unfavorable patient prognosis with a five year survival rate of less than 50%. Since therapy protocols
have not advanced for many years, new systemic strategies are necessitated to be promptly developed
for the clinical management of the disease [5,24–26].

Among the studied malignancies, bladder cancer is presented with one of the highest
somatic mutation frequencies, bearing a median value of more than five mutations per megabase.
MIBC genome carries a number of gene aberrations that resemble critical ones of other solid tumors.
Particularly, loss of function of key tumor suppressors compels cancer cells to evade cell cycle control
and apoptosis, and to also deregulate major signaling pathways. Accordingly, the TP53 and Rb1 genes
are frequently mutated, while regulators of their cognate pathways are also altered, with MDM2
amplification and CDKN2A deletion being two representative paradigms, respectively. Other tumor
suppressor genes being inactivated by mutation in MIBC, are the ones encoding the ARID1A, TXNIP,
ELF3, NFE2L2, FBXW7, APC, CDKN1A, EP300, TSC1, PTEN, ATM, KMT2D, KLF5 and TSC2 proteins.
The MIBC-specific molecular signature also contains mutation-driven activation of several oncogenes,
including the E2F3, PIK3CA, FGFR3, HRAS, ERBB3, CCND1, RXRA, HER2/ERBB2, EGFR, FGFR1,
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KRAS and AKT1 ones. In contrast to MIBC, NMIBC is genomically stable, with chromosome 9 deletion
representing the most common copy number aberration. This leads to CDKN2A and TSC1 loss,
and thus subsequent perturbation of the Rb-/p53- and mTOR-dependent pathways, respectively.
Additional tumor suppressor genes are also inactivated in NMIBC, containing, among others, the
KDM6A, STAG2, RBM10, CREBBP and ERCC2 ones. The NMIBC-specific genomic landscape is also
characterized by activating mutations in several key oncogenes (e.g. TERT, FGFR3, PIK3CA, HRAS,
KRAS and AKT1), with TERT and FGFR3 exhibiting the highest frequency among all. Interestingly, a
powerful, multiplatform analysis has recently identified 5 MIBC subtypes that may stratify response
to different treatments. The new subtypes have been characterized as: (a) luminal-papillary (35%;
FGFR3 mutations), (b) luminal-infiltrated (19%; EMT (epithelial to mesenchymal transition) markers),
(c) luminal (6%; KRT20 and SNX31), (d) basal-squamous (35%; CD274/PD-L1 and CTLA4) and (e)
neuronal (5%; neuroendocrine and neuronal genes). Additional integrative analyses could further
refine this novel MIBC subtyping, and notably support the current research for personalized targeted
therapies [4–6,24,27–30].

The mortality rate of patients being affected by urothelial carcinoma has not essentially changed over
the past 30 years, thus reflecting the limitations of applied therapeutic protocols. Regimens containing
platinum-based agents, such as the MVAC (methotrexate-vinblastine-adriamycin-cisplatin) and GC
(gemcitabine-cisplatin) ones, represent the backbone of first-line systemic chemotherapy for patients
suffering from advanced-stage urothelial carcinoma. Despite the initial chemosensitivity, chemoresistance
will eventually develop in the majority of patients, resulting in a median, overall, survival between
13 and 19 months. In the second-line therapy, cisplatin-resistant urothelial carcinomas can be treated with
immune-checkpoint inhibitors (e.g. avelumab, atezolizumab and nivolumab), but the clinical benefits
remain limited, as more than 60% of the patients die after 12 months. It seems that chemotherapy-resistant
urothelial carcinoma has undergone a dynamic and extensive clonal-evolution program, with critical
changes in its mutational landscape being accumulated during and after chemotherapy. Hence, capture
and quantification of heterogeneity in a urothelial tumor’s molecular architecture, will enable the early
identification and targeting of key molecular events occurring during a tumor’s evolutionary trajectory,
favoring the emergence of chemotherapy-sensitive and immune-responsive clones. Given that the ARID1A,
CREBBP, EP300, KDM6A and KMT2D genes encode chromatin modifiers, epigenetic alterations may
hold a central position in the therapy-resistance map of urothelial carcinoma. In accordance, chromatin
regulation genes are more frequently mutated in MIBC than in other epithelial cancers examined so far,
thus suggesting the strong potential of targeted therapy for chromatin abnormalities in chemoresistant
clones [5,6,24,25,29,31–40].

3. Chromatin Remodeling—Acetylation versus Deacetylation—HATs

Eukaryotic DNA is tightly wrapped around a cluster of eight proteins called core histones, in order
to form nucleosomes, the fundamental units of chromatin. Several post-translational modifications of
histones, such as ubiquitylation, phosphorylation, methylation and acetylation, are critical components
of the epigenome (which literally means “above” genome), with “acetyl” marks, besides being
classified among the most abundant modifications, also providing a large collection of druggable
proteins that control the “acetyl-genome” dynamics and functions. Acetylation neutralizes the positive
charge of lysine, thus weakening the charge-dependent interactions between nucleosomal DNA
and histones. As a result, chromatin becomes structurally more relaxed, and DNA accessibility
to the transcription machinery is increased. In general, hyper-acetylated histones are associated
with transcriptionally active genes, whereas hypo-acetylated histones are mechanistically linked to
transcriptionally repressed genes (Figure 1). Interestingly, acetylation of lysine 16 on Histone 4 (H4K16)
seems to play an important role in chromatin folding regulation and transition from heterochromatin
(high compaction) to euchromatin (low compaction) form. Histone acetylation is a highly dynamic
process being regulated by two enzyme family members, operating in an opposite fashion: The histone
acetyltransferases (HATs) and the histone deacetylases (HDACs). HATs use acetyl-CoA as co-factor
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to catalyze the transfer of “acetyl” molecule to the ε-amino group of lysine side chain on histone
N-terminal tails. In contrast, HDACs oppose the HAT effects and reverse lysine acetylation status, to
restore the lost positive charge and stabilize local chromatin in a compact architecture (Figure 1) [41–46].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 35 

 
Figure 1. Graphic presentation of the acetylation and deacetylation processes. They can be 
implemented by the respective functions of HAT and HDAC enzymes, which regulate (among others) 
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inactive) or open (transcriptionally active) architecture of nuclear chromatin. HAT(1): PDB 2p0w; 
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and KAT8 for H4K16. Notably, KAT8 is widely distributed in the genome, and seems to be recruited 
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Figure 1. Graphic presentation of the acetylation and deacetylation processes. They can be implemented
by the respective functions of HAT and HDAC enzymes, which regulate (among others) the
acetyl-lysine load of nucleosomal histones, thus controlling the compact (transcriptionally inactive)
or open (transcriptionally active) architecture of nuclear chromatin. HAT(1): PDB 2p0w; HDAC(1):
PDB 4bkx [47,48].

There have been identified nine mammalian nuclear HATs, with structurally defined
acetyltransferase domains and histone lysine-specific acetylation activities, mainly organized in pairs:
GCN5/KAT2A and PCAF/KAT2B (pair I); CREBBP (CBP)/KAT3A and EP300/KAT3B (pair II);
MOZ (MYST3)/KAT6A and MOZ2 (MYST4)/KAT6B (pair III); TIP60/KAT5 and MOF (MYST1)/KAT8
(pair IV); and HBO1 (MYST2)/KAT7 (KAT: lysine (K) acetyltransferase; alternative nomenclature) [49].
For example, KAT3A and B show strong preference for H3K18 and 27, KAT2A and B for H3K9, and
KAT8 for H4K16. Notably, KAT8 is widely distributed in the genome, and seems to be recruited at
gene loci for their transcriptional activation. Similarly, KAT3A and B can occupy gene enhancers, via
a transcription factor-mediated recruitment, to induce H3K27 acetylation, and thus open chromatin
and activate transcription. Altogether, to locally remodel chromatin from an inactive to an active state,
covalent marks (acetyl-lysines) are required to be established by molecular “writers” (HATs), while the
reverse process is controlled by the actions of molecular “erasers” (HDACs) that alleviate (epi)genome
from the chemical load (acetylation). In between “writing (W)” and “erasing (E)”, there is also a step of
(“acetyl”) “reading (R)”, during which chromatin marks (acetyl-lysines) can be recognized by proteins
carrying a region of approximately 110 amino acids called bromodomain. The dynamic interplay
among these processes (“WRE”) modifies chromatin architecture, reprograms gene expression and
provides cellular identity [41,42,44,45,50–62].
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4. HDACs: Taxonomy—Activity

Mammalian genomes contain 11 HDAC family members, which are divided into four
“phylogenetic” classes: HDAC1, 2, 3 and 8 (class I); HDAC4, 5, 7 and 9 (class IIa); HDAC6 and
10 (class IIb); and HDAC11 (class IV). Another group of deacetylases, the SIRTUINS (SIRTs), compose
the class III (SIRT1-7) of the deacetylase super-family. Enzymes that belong to class I, II (a and b) and
IV require a divalent metal ion (Zn2+) for catalysis, while SIRTs function as NAD+-dependent enzymes,
carrying protein deacetylase and ADP-ribosylase activities, as well [42,45,63–68].

Class I HDACs: Class I members are ubiquitously expressed, with the exception of HDAC8 that
follows a muscle-specific pattern of expression. HDAC1 and 2 are mainly localized in the nucleus,
while HDAC3 shuttles between cytoplasm and nucleus. HDAC1 and 2 serve as critical components
of the SIN3A, NuRD and CoREST transcriptional complexes that are being recruited to promoters
by DNA binding proteins in order to induce gene-specific transcriptional silencing. Interestingly,
HDAC3 is detected in distinct complexes, such as in N-CoR-SMRT, whereas no complex has been
hitherto identified for HDAC8. All four enzymes are essentially implicated in cell proliferation and
survival. For example, HDAC1 and 2 can normally repress p21WAF1/CIP1 and p57KIP2 (CDK inhibitors)
expression, thus regulating the G1- to S-phase transition of the cell cycle [63–67,69–72].

Class IIa HDACs: Class IIa members are presented with rather restricted and tissue-specific
expression profiles. HDAC5 and 9 are enriched in brain, heart and muscles, HDAC4 in skeleton
growth plates and brain, and HDAC7 in thymocytes and endothelial cells. In response to their
phosphorylation by protein kinases (e.g. CaMK and PKD), they bind to the 14-3-3 anchor protein(s)
and shuttle from the nucleus to cytoplasm. Hence, MEF2 transcription factor is dissociated from the
HDAC-dependent complex and subsequently interacts with the HAT EP300, converting itself from
a transcriptional repressor to a transcriptional activator. Class IIa HDAC deacetylase functions are
minimal, and their transcription repressive activities partly derive from the recruitment of class I
HDACs (e.g. HDAC3), and also from the interaction with the HP1 and CTBP transcriptional repressors.
Interestingly, a substitution of a critical tyrosine to histidine in the catalytic pocket of class IIa HDACs
seems to account for their significantly reduced catalytic activities (as compared to the class I HDAC
respective ones). Most likely, the intrinsic catalytic domains of class IIa HDACs are not required for
the repression process to occur [63–67,73–84].

Class IIb HDACs: Despite our poor knowledge regarding its function, HDAC10 seems able to
promote angiogenesis in endothelial cells. However, it is the other class IIb member, HDAC6, that is
considered as the major cytoplasmic deacetylase in mammalian cells. HDAC6 differs from the other
HDACs, since it carries 2 deacetylase domains and a C-terminal Zn2+-finger. Among the targets being
directly deacetylated by HDAC6, there have been recognized two cytoskeletal proteins, the α-Tubulin
and Cortactin, which play important roles in cell mitosis and migration, respectively. HSP90 and
IFNαR, also, represent genuine targets of the HDAC6 enzyme for direct deacetylation. In addition,
HDAC6, together with HDAC9 and SIRT1, can mediate the FOXP3 deacetylation, thus controlling
T(reg) cell development and immunosuppressive activity [45,63–67,85–93].

Class IV HDACs: HDAC11 expression is enriched in the brain, heart, muscles, kidney and testis.
It contains a central deacetylase domain flanked by small N- and C-terminal extensions. Although it
is predominantly localized in the nucleus, HDAC11 co-precipitates with the cytoplasmic HDAC6.
Notwithstanding the development-dependent and region-specific expression profiles having been
observed in mouse brain, its function remains poorly understood. Interestingly, HDAC11 has been
critically implicated in the regulation (suppression) of IL-10 expression in antigen presenting cells.
Moreover, its key role in the control of metabolism and obesity has been recently reported [63–65,67,94–97].

Class III HDACs: SIRT1 is predominantly nuclear, and is expressed in the majority of mammalian
tissues. It is activated upon nutrient deprivation, and, besides histones, is able to deacetylase
transcription factors (e.g. p53) and signaling proteins (β-Catenin), thereby altering their activities.
SIRT1 is associated with an increase in lifespan and memory, and presents beneficial effects in metabolic
syndrome, neurodegeneration and cancer [45,64,66–68,98–100]. SIRT2 acts in the cytoplasm and
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deacetylases α-Tubulin, thus playing a redundant role with HDAC6 in microtubule homeostasis.
SIRT2 also deacetylases and regulates the APC/C complex that is required for cell-cycle progression
and exit from mitosis. It has been also reported to critically contribute, via a G6PD deacetylation
and activation process, to glucose homeostasis [64,67,68,101–104]. SIRT3 is a mitochondrial protein
that shares the highest structural similarity with SIRT2. It is considered as the major mitochondrial
deacetylase, and can be upregulated during calorie restriction or fasting. ACS2 has been shown
to serve as one of its important substrates, even though SIRT3 is suggested to play a broad
role in the modulation of global mitochondrial lysine acetylation. Notably, it acts as a pivotal
regulator of metabolism and oxidative stress (drives Krebs cycle, fatty acid oxidation and urea
cycle) [64,67,68,105–110]. SIRT4, a mitochondrial enzyme, presents a weak deacetylase function,
but possesses a strong ADP-ribosyltransferase activity. In contrast to other SIRT family members
that are activated upon energy-deprivation conditions, SIRT4 expression increases at higher levels
under nutrient-enriched settings. It can inhibit glutamine catabolism via ADP-ribosylation and
repression of GLUD1 (GDH/GLUD), a rate-limiting enzyme in glutamine catabolism [67,68,111–113].
SIRT5 predominantly resides in the mitochondrial matrix, and, although it carries an extremely weak
deacetylase activity, it can efficiently catalyze the removal of glutaryl-, malonyl- and succinyl-groups
from modified (“acylated”) lysines on target proteins. SIRT5 regulates a number of protein substrates
critically implicated, among others, in glycolysis, fatty acid oxidation, TCA cycle, ketone body
formation, nitrogenous waste management and ROS detoxification. It also critically contributes to stress
response and cardiac physiology [64,67,114–118]. SIRT6 is a nuclear protein possessing a deacetylase
activity against various substrates, while it is critically involved in the regulation of telomeric chromatin
during the S-phase of cell cycle. SIRT6 has proved able to suppress multiple HIF1α target genes
known to control glycolysis, and to also co-repress MYC transcriptional activity that functions
as an essential modulator of ribosome homeostasis. It is tightly associated with chromatin, and
regulates gene expression, genomic stability, glucose metabolism and inflammation [64,67,68,119–123].
SIRT7 also resides in the nucleus, and carries a deacetylase function against several targets involved
in the regulation of transcription and metabolism, with p53 protein being a characteristic example.
Interestingly, upon endoplasmic reticulum stress, MYC recruits SIRT7 onto promoters of ribosomal
genes, co-repressing their transcriptional expression. In accordance, SIRT7 loss mitigates MYC
repression, and leads to metabolic deregulation. SIRT7 is enriched in the nucleolus, and facilitates RNA
polymerase I activation to control ribosomal RNA expression. Furthermore, hepatic SIRT7 seems to
regulate lipid metabolism in the liver in an ubiquitin/proteasome-dependent manner [67,68,124–128].

Exploration of The Human Protein Atlas [129] and especially the part of tissue-restricted proteome
expression (Tissue Atlas) [130,131] can unveil the urinary bladder-specific map of all HDAC family
member expression landscapes (Figure 2). Based on an integrated “omics” approach that involves
immunohistochemical staining and deep RNA sequencing, the expression levels of each HDAC
deacetylase have been measured and quantified in normal human bladder tissues. Remarkably, there
has been detected a big range of HDAC expression among the 18 family members (as evidenced
by an RNA sequencing strategy), with HDAC1 and nine being presented with the highest (37.5)
and lowest (0.6) median RPKM (reads per kilo base per million mapped reads) values, respectively
(Figure 2). Hence, a significant increase in HDAC9 and/or a notable reduction in HDAC1 cellular
contents, may both lead to tissue pathologies and especially to urothelial bladder malignancies.
Most likely, the significantly different expression profiles of HDAC enzymes, directly reflect the
differential contribution of their respective target genes and protein substrates to urinary bladder
development, physiology and disease, including NMIBCs and MIBCs.
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Figure 2. Quantification of HDAC expression levels in normal human urinary bladder tissues (n = 11),
via employment of an RNA sequencing approach, with the median RPKM (reads per kilo base per
million mapped reads) value for each member of the family being indicated on the right side of the
respective horizontal line [129].

5. HDACs: Deregulation—Oncogenesis

5.1. Aberrant Recruitment

The strong association of aberrant HDAC activity with tumorigenesis has been well demonstrated
in acute promyelocytic leukemia (APL). APL is characterized by leukemic cell arrest at the
promyelocytic stage of myeloid differentiation, mechanistically caused by the production of fusion
proteins, with PML-RARα being detected in the majority of examined cases. Normally, RARα acts as a
transcription factor, which can heterodimerize with RXR and bind to DNA, while in the absence of
retinoic acid (its cognate ligand) it can recruit HDAC-containing complexes to transcriptionally repress
genes. Retinoic acid induces a conformational switch and release of HDAC-dependent repressing
complexes, promoting the interaction of RARα with transcriptional co-activators, including HATs,
to activate genes. In APL disease, RARα fusion proteins retain the ability to bind to DNA of target
promoters, but cannot respond to physiological doses of retinoic acid and, thus, HDAC-carrying
complexes remain associated with retinoic acid target genes, causing their constitutive transcriptional
silencing. Strikingly, the repression effects are further reinforced by fusion protein oligomerization,
that leads to an increased stoichiometric interaction with HDAC-containing complexes and the
recruitment of additional chromatin modifiers, such as DNA and histone methyl-transferases. Similarly,
the AML1-ETO oncogenic fusion protein identified in t(8;21) AML (acute myeloid leukemia) patients
has the capacity to recruit the HDAC1, 2 and/or 3 family members, thereby repressing AML1 target
gene expression, which ultimately results in the prevention of myeloid differentiation and induction of
cellular transformation [42,66,132–139].
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5.2. Aberrant Signaling

A molecular link between mitogenic signaling and altered HDAC activity is provided by
the RAS-MAPK/ERK-HDAC4 axis. Expression of oncogenic RAS (or, constitutively active ERK1
serine/threonine kinase) causes a significant increase in the number of cells that contain HDAC4 in the
nucleus, a compartmentalization process that is associated with kinase activity. In the same direction,
an ERK kinase-mediated phosphorylation of HDAC6 is able to promote cell migration via a tubulin
deacetylation mechanism. Threonine 1031 and serine 1035 of HDAC6 can be phosphorylated by ERK1
in vitro, while serine 1035 is phosphorylated in response to activation of the EGFR-RAS-ERK signaling
pathway in vivo. Therefore, the RAS-ERK-HDAC4/6 axis may critically contribute to cancer initiation,
progression and metastasis. Interestingly, phosphorylation of HDAC1 at the critical serine 421 by the
NLK serine/threonine kinase (an atypical MAPK family member) results in reduced β-Catenin/LEF1
promoter activation, thus indicating the proficiency of NLK-HDAC1 axis to downregulate WNT
signaling, which is vital for the prevention of aberrant proliferation of non-transformed, primary,
fibroblast cells. Likewise, the c-ABL (ABL1/ABL) protein kinase can induce tyrosine phosphorylation
of HDAC2, affecting (upregulating) both its stability and repression activity in neurons. Given the
major importance of the oncogenic fusion protein BCR-ABL (carries aberrant tyrosine kinase activity)
in t(9;22) CML (chronic myeloid leukemia) patients, a pivotal role of aberrant HDAC2 function
in CML pathogenesis is herein suggested to occur. Remarkably, the JNK kinase (a typical MAPK
family member)-dependent phosphorylation of HDAC3 is associated with a five times upregulation
of its enzyme activity and three to 16 times increase in HDAC inhibitor selectivity for HDAC3
in triple-negative breast cancer cells, as compared to luminal subtypes. These findings highlight
how HDAC phosphorylation affects HDAC inhibitor binding and selectivity, and underscore the
significance of JNK-HDAC3 axis in -breast- cancer clinical management and therapy [66,140–146].

5.3. Aberrant Expression

Besides their aberrant (oncogenic) recruitment and signaling, individual HDACs are also
subjected to altered expression in a tumor-specific fashion. For example, HDAC1 is over-expressed
in breast, gastric and prostate carcinomas, while elevated HDAC2 levels have been detected in
cervical and colorectal cancers [65,135,147–151]. In addition, strong HDAC8 expression is associated
with neuroblastoma tumorigenesis, while HDAC5 and 9 are significantly upregulated in high-
versus low-risk medulloblastoma [135,152,153]. Similarly, acute lymphoblastic leukemia (ALL) is
characterized by increased contents of HDAC3 and 7, as compared to a normal bone marrow
collection [135,154]. However, HDAC over-expression does not always serve as a negative prognostic
biomarker for the disease. Indeed, better prognosis in patients carrying estrogen receptor-positive
breast cancer is correlated with elevated HDAC6 levels, thus indicating that acetyl-lysine load
may not necessarily ensure clinical sensitivity to chemotherapeutic drugs [135,155]. It must be the
tumor-dependent mutational landscape, and its specific cross-talk with a certain HDAC family member
that compel each deacetylase to act either as tumor inducer or as tumor suppressor. Interestingly,
SIRT1 seems to play a tumor suppressor role, since it is downregulated in several types of cancer,
including prostate cancer, ovarian cancer, liver cancer and glioblastoma, with its over-expression
in mice delaying the development of KRASG12V-driven lung adenocarcinomas [68,156,157]. In the
same direction, liver-specific knockout of HDAC3 gene leads to hepatocellular carcinoma, while
reduced HDAC1/2 enzyme activity causes neoplastic transformation of immature T cells concomitant
with increased MYC levels [134,158–160]. Intriguingly, a MYC-dependent expression of HDAC2
enzyme can be induced upon loss of the APC tumor suppressor in colorectal tumorigenesis, while
crossing of HDAC2 mutant with tumor-prone APCmin mice is able to produce significantly lower, as
compared to APCmin mice (with unimpaired HDAC2), tumor rates [134,151,161], strongly indicating
the prominent contribution of specific mutational signatures and tumor settings to the modulation
of HDAC2 oncogenic, or onco-repressive function. Most likely, a similar mechanistic principle can
be applied to all HDAC family members. In accordance, HDAC1 has remarkably proved to play a
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dual role in tumorigenesis (e.g. APL); onco-suppressive in early stages and oncogenic in established
tumors [162].

6. “HDACing” Bladder Cancer

Class I HDACs are the most extensively characterized members of the family in urothelial
bladder cancers. The ability of, siRNA-mediated, HDAC1 and 2 double knockout to cause significant
impairment in cell proliferation and clonogenic growth, and to also induce apoptotic death of urothelial
carcinoma cell lines strongly indicate the critical contribution of class I HDAC member activities to
disease initiation and progression [163]. In accordance, in a small-scale study, HDAC1 mRNA was
expressed at notably higher levels in urinary bladder cancer versus normal tissues, while the cognate
protein was intensively compartmentalized in the tumorigenic, but not control, nuclei [164,165].
A similar scale collection of patients could also reveal upregulated HDAC1 mRNA levels in the
malignant state, as compared to the healthy one [165,166]. Furthermore, examining a larger cohort
of urothelial bladder cancer patients, 40%, 42% and 59% of the tumors were presented with high
levels of HDAC1, 2 and 3 protein expression, respectively, with HDAC1 and 2 family members
being associated with higher tumor grades, and HDAC1 being tied in with a trend towards poorer
prognosis [165,167]. Interestingly, in a similar size patient collection, a statistically significant HDAC1,
2, 3 and 8 over-expression was observed for bladder tumors, as compared to normal mucosas, with
HDAC1 and 3 being downregulated in deeply invasive and advanced tumors, and HDAC3 being
increased in patients characterized by improved survival [165,168]. The utilization of HDAC1 as
diagnostic biomarker and druggable target for bladder cancer is further reinforced by the prominent
elevation of its mRNA contents in clinically cancerous tissue biopsies versus healthy tissue biopsies,
recently reported in a study of 88 patients [169]. In the same direction, a small number of samples
derived from human bladder cancers and adjacent non-malignant tissues were analyzed via a cDNA
microarray technology, unveiling the differential expression and upregulation of HDAC2 gene in
metastatic advanced Egyptian bladder cancer [170]. Likewise, several urothelial cancer cell lines
(e.g. RT4, RT112 and T24) seem to carry increased levels of HDAC2 mRNA, as compared to normal
uroepithelial cells obtained from healthy human ureters. Notably, HDAC8 mRNA was also presented
with elevated levels in a distinct collection of cell lines, while HDAC8 gene proved to follow an
upregulated pattern of activity in tumor versus control specimens [165,171]. However, not any
significant association of HDAC2 and 8 transcript levels with malignancy grades or stages of the disease
could be observed [168]. Intriguingly, the siRNA-mediated HDAC8 knockout could not impair the
viability of urothelial cancer cell lines in a therapeutically useful manner, thus questioning its capacity to
serve as a promising and powerful drug target for bladder cancer [172]. Regarding the HDAC3 family
member, its expression profiles seem rather varying among the performed studies (including cells and
biopsies), therefore necessitating the development of more specific and efficient detection tools, such
as novel antibodies with improved abilities for immunohistochemical applications [165,167,168,171].
Nevertheless, an urothelial tumor cell-specific cross-talk between, still elusive, oncogenic signals and
HDAC3 gene transcription cannot be excluded. The bladder cancer cell line-dependent regulation of
HDAC1 gene (and its cognate protein product) [163,165,171] seems to further support the functional
interactions of certain tumorigenic determinants with HDAC transcription machineries, in specific
settings of malignancy.

All HDAC expression landscapes have been molecularly mapped in a number of urothelial
bladder cancer cell lines being typified by different malignancy grades and stages [165,171].
Despite their moderately varying expression profiles, the class IIa HDAC family members 4, 5 and 7
were presented with a notable tendency of transcriptional downregulation in cancerous environments,
while HDAC9 mRNA was shown with upregulated levels in 5/18 of the examined cell lines, indicating,
again, the importance of specific oncogenic components to the control of each HDAC expression and
activity. Accordingly, but unlike HDAC2 and 8, protein levels of HDAC4 and 7 were found generally
reduced in malignant versus normal uro(epi)thelial cells. However, no statistically significant difference
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of HDAC9 mRNA contents was observed in 24 bladder cancer specimens when compared to 12 control
(morphologically normal) tissues. The mechanistic complexity of HDAC9-mediated deacetylation
of bladder cancer cell substrates is further underlined by patterns of decreased HDAC9 expression
being derived from publicly available microarray data. In contrast, using the same platform, HDAC2,
3 and 8 were presented with a proclivity towards tumor-dependent augmented transcription, thus
indicating the differential contribution of each HDAC enzyme to bladder cancer development [165,171].
With respect to HDAC4, and using bladder cancer tissue arrays coupled to an immunohistochemical
protocol, the frequency of HDAC4-positive tissues (but not of HDAC2-positive ones) was significantly
higher in the tumor than normal specimens, with the HDAC4 protein levels (in contrast to HDAC1
and 2 ones) being also elevated in a certain collection of bladder cancer cell lines [165,173]. It seems
that different HDAC family members can be deregulated by different oncogenic cues, indicating the
molecular heterogeneity of “acetyl-signatures” in urothelial tumors, a phenomenon that may likely
drive clonal evolution, and cause drug resistance and therapy failure.

Hitherto, only a few studies investigating the expression patterns of class IIb HDAC enzymes in
bladder cancer have been published. It has been shown that a significant number of bladder cancer
cell lines are characterized by downregulated HDAC6 mRNA levels, although the cognate protein is
presented with a notably varying expression among them [165,171,174]. Intriguingly, in one cohort of
patients, a moderate HDAC6 over-expression was observed in urothelial cancer versus control (normal)
tissues, while in 1/6 (publicly available) microarray data reports, elevated transcriptional activity
of the gene was also detected. However, these findings could not be confirmed in the remaining
five microarray studies and in a different cohort of bladder cancer patients, as well [165,171,174].
Importantly, the siRNA-mediated reduction of HDAC6 protein contents in bladder cancer cells
could not induce apoptotic death and diminished viability [174]. Altogether, it seems that bladder
carcinomas may not critically depend on HDAC6 expression for cell survival and growth. Nevertheless,
an HDAC6-driven deacetylation process may still operate in selected settings of urothelial tumors
carrying specific oncogenic signatures. Regarding HDAC10, the second gene member of this class,
it has been previously presented with varying mRNA expression profiles in a selected collection of
bladder cancer cell lines, although a tendency towards its moderate upregulation in carcinoma versus
normal urothelial tissues has been also observed [165,171,174].

The class IV family member HDAC11 represents a poorly investigated enzyme in urothelial
bladder cancer. Again, examination of several bladder cancer cell lines, being typified by distinct
malignancy grades and stages, revealed varying patterns of HDAC11 gene activity, with 10/18 lines
carrying decreased, 5/18 unchanged and 3/18 elevated mRNA levels [165,171]. Similarly to other
histone deacetylases, HDAC11 transcriptional expression may be critically controlled by specific
oncogenic networks differentially operating in each bladder cancer cell line examined. Since its
depletion seems sufficient to cause death in neuroblastoma, breast, ovarian, prostate and colon cancer
cell lines [175,176], HDAC11 could likely function as a major regulator of solid tumors survival and
progression, thus holding strong promise to serve as a druggable determinant for bladder cancer
targeted therapy.

To elucidate the role of SIRT1, a key member of class III HDAC enzyme family, in urothelial
tumorigenesis, its levels of expression in clinical cancer samples were appropriately measured and
quantified. In one report, using publicly available data sets, its expression levels were downregulated in
bladder carcinomas versus normal tissues, suggesting a tumor suppressor function for the disease [68,156].
However, in another study, a notable SIRT1 upregulation in bladder cancer (as compared to matched
control) tissues was observed, thus indicating its oncogenic role in urothelial malignancies. In accordance,
SIRT1 knockout has proved able to suppress bladder cancer cell proliferation, viability and migration,
and also reduce the EMT program potency [177]. It seems that depending on the molecular signature
of a given urothelial bladder tumor and its micro-environment, SIRT1 deacetylase may act either as a
repressor or as an inducer of the disease. In the same direction, a specific siRNA-mediated targeting
of SIRT2 mRNA, combined with a tubacin-induced inhibition of HDAC6 family member, resulted in
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significant suppression of bladder cancer cell migration and invasion capacities, strongly supporting their
(SIRT2 and HDAC6) cooperative actions and tumor promoting roles in urothelial malignancies [178].
Similarly, the ability of SIRT3 to partially abrogate p53 activity to enact growth arrest and senescence in a
bladder carcinoma cell system [179] points out the oncogenic properties of SIRT3 in urothelial tumors. In
contrast, the SIRT4 mitochondrial family member can repress tumor formation, with its mRNA expression
levels being notably reduced (relative to normal tissues) in a number of malignancies, including bladder
cancer [112,113], therefore rendering SIRT4 a promising druggable biomarker for the disease. Likewise,
SIRT6 also acts as a tumor suppressor gene, since its over-expression can inhibit proliferation of bladder
cancer cells, while its expression (as detected by an immunohistochemical approach) decreases (in radical
cystectomy samples) with progression of urothelial bladder cancer from T2 to T4 stage [180]. On the
other hand, SIRT7 has been previously presented with an upregulated transcriptional activity in bladder
carcinomas versus matched normal tissues, with the high-grade and stage tumors being characterized
by elevated SIRT7 expression levels, as compared to the low-grade and stage ones [181], thus indicating
the enzyme’s critical oncogenic role in urothelial bladder tumorigenesis. The siRNA-mediated SIRT7
downregulation that causes increased apoptosis, and reduced proliferation and motility of bladder cancer
cells [181] further supports the tumor promoting capacity of SIRT7 deacetylase for the disease.

A comprehensive analysis of 412 MIBCs that have been thoroughly characterized by multiple
platforms of The Cancer Genome Atlas (TCGA) [47] has revealed the patient-specific mutational load
and deregulated expression of all 18 HDAC family members [28,165,182,183]. The HDAC-dependent
somatic mutation frequency is low, and ranges from 0.2-2.4%, with SIRT1, HDAC9 and HDAC6
presenting the highest measured values among all (Table 1). Remarkably, the positively and negatively
charged respective amino acids R and E are those residues that participate with the highest substitution
(X to R/E and R/E to X; X: any amino acid) frequencies among all 20 ones being observed in the TCGA
mutational MIBC landscapes. This likely suggests the critical roles of HDAC-driven electrostatic
interactions in the acetylation/deacetylation processes, and their prominent contribution to bladder
cancer initiation, progression and metastasis. Intriguingly, examining the HDAC genetic alterations,
including expression changes, heterogeneous patterns are obtained even within a single family member.
For example, the ability of HDAC1, 2 and 3 deacetylases to be either upregulated or downregulated
in a patient-dependent manner (Figure 3) indicates the decisive role of a tumor’s specific mutational
signature to tightly control each HDAC enzyme’s expression and activity. Interestingly, a notable
degree of selectivity with respect to the type of genetic change(s) being carried by a particular HDAC
family member is also observed in this MIBC patient cohort. As a paradigm, HDAC4 is subjected to
deep deletion more frequently, when compared to the rest of the 17 genes of the family, while HDAC9
and 11 show the highest percentage of amplification incidents among all examined members (Figure 3).
It must be the synergistic aberrant actions of the patient-dependent deregulated HDACs and their
target substrates that drive the MIBC pathological phenotype(s).

Table 1. Collection of mutations detected in the 18 HDAC family members, using a cohort of 412 patients
being affected by bladder cancer (MIBC). All data were provided by the TCGA consortium [28,47].

The Cancer Genome Atlas (TCGA)—Bladder Cancer

Family Member Protein Change Mutation Type Somatic Mutation Frequency

HDAC1 Q364*, M64I, L276I, Y204S N, M, M, M 1.0%
HDAC2 E204K, H180R, R446K M, M, M 0.7%
HDAC3 F8L M 0.2%
HDAC8 E23K, R361Q, V175M M, M, M 0.7%
HDAC4 E587Q, D54N, S290F M, M, M 0.7%
HDAC5 Q468*, Q88L, E620K, E591Q, E614K, S886C N, M, M, M, M, M 1.2%
HDAC7 D937N, G36Afs*11, M828I, P320Rfs*3 M, FS del, M, FS del 1.0%

HDAC9 H935L, Q710H, E49*, S1038F, S3T,
G1022Afs*22, G133V, L411V, S522F M, M, N, M, M, FS del, M, M, M 2.2%

HDAC6
R236L, H1115R, G344E, G1014W, E333Q,
E432Q, E562D, W705*, D1128H, R480C,

T260A, V874F

M, M, M, M, M, M, M, N, M, M,
M, M 2.2%

HDAC10 S545C, A434V, R411H M, M, M 0.7%
HDAC11 R206H, N47H, D282H, V19M, H35Q M, M, M, M, M 1.2%
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Table 1. Cont.

The Cancer Genome Atlas (TCGA)—Bladder Cancer

Family Member Protein Change Mutation Type Somatic Mutation Frequency

SIRT1 H471Y, A139del, Y650D, Q632H, E230K,
D197H, S550*, E609A, G618E, E164K

M, IF del, M, M, M, M, N, M, M,
M 2.4%

SIRT2 R346Q, R163C M, M 0.5%
SIRT3 H217R, G161R M, M 0.5%
SIRT4 S208*, L227V, S302C N, M, M 0.2%
SIRT5 R44Q, L246V, E125K M, M, M 0.7%
SIRT6 E139K, E131Q M, M 0.5%
SIRT7 A258Cfs*31, E203K, E203K, R289W FS ins, M, M, M 1.0%

*: Stop codon; N: Nonsense; M: Missense; FS: Frameshift; del: Deletion; IF: Inframe; ins: Insertion.
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Figure 3. Presentation of genetic alterations being carried by the 18 members of HDAC deacetylase
family, using the “cBioPortal” for Cancer Genomics platform that includes 412 bladder cancer (MIBC)
patients [28,47], with all information being derived from the publicly available database of TCGA
consortium (the Z-score threshold for both mRNA and protein expression was set at 1.5).

7. Drugging the Bladder Cancer “Acetyl-proteome”: HDAC Inhibitors

The epigenetic dysregulation of tumor suppressor genes is considered as an alternative to gene
mutations mechanism of cancer pathogenesis. Therefore, epigenetic modification-related enzymes, such
as HDACs, can and have already been successfully used as cancer therapeutic targets, since epigenetic
control seems to be reversible, and the engaged regulatory proteins can be targeted using small
molecules [134]. HDACs are critical mediators of gene expression and their aberrant activity is
associated with key oncogenic events [135] (also, see the aforementioned Sections 5 and 6). Interestingly,
high-throughput genome analyses revealed that chromatin regulatory genes are more frequently mutated
in bladder cancer, compared to other malignancies [29,39] (also, see the aforementioned Section 2).
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Therefore, histone deacetylase inhibitors (HDACis) have been employed as promising small-molecule
anti-cancer drugs for bladder cancer therapy (Figure 4).
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Figure 4. Graphical presentation of the most extensively investigated HDAC inhibitors (HDACis)
in bladder cancer. Data were retrieved from the ChEMBL database [184] and visualized via PyMol
bioinformatics platform [185].

HDACis are typically characterized by a molecular structure being comprised of a surface
recognition motif (CAP), a zinc-binding group (ZBG) and a linker domain connecting the CAP and
ZBG motifs. HDACis’ common mechanism of action is to bind to the catalytic pocket of HDAC and
chelate the critical zinc ion required for the catalytic function of the enzyme (Figure 5) [186–190].
HDACis are generally classified by their chemical structure, target selectivity/specificity and
inhibitory concentrations which range from nM (nano-molar) to mM (milli-molar) scales [134,186,187].
Regarding their chemical class, HDACis are categorized as: (a) hydroxamic acids (e.g. belinostat,
givinostat, panobinostat, trichostatin A, tubacin and vorinostat), (b) benzamides (e.g. entinostat
and mocetinostat), (c) short-chain and aromatic fatty acids (e.g. sodium butyrate and valproic
acid), and (d) cyclic peptides (e.g. apicidin, romidepsin and trapoxin) [191,192]. Moreover, based
on their target specificity, HDACis are typified as: (i) pan-HDACs (e.g. belinostat, panobinostat,
sodium butyrate, trichostatin A, valproic acid and vorinostat), (ii) Class I (e.g. entinostat and
romidepsin), and (iii) HDAC6 (e.g. tubacin and tubastatin) [134,165,193]. In terms of the required
HDACis-concentration range, for the in vitro inhibition of HDAC activities, the hydroxamate and cyclic
tetrapeptide compounds serve as the most potent inhibitors, since they function at low micro-molar or
even nano-molar scales. In contrast, benzamides inhibit HDACs at micro-molar concentrations, while
the short-chain fatty acid compounds usually require milli-molar doses [186,187,194]. A prominent
feature of HDACis is their high degree of selectivity for killing cancer cells [195,196]. The exact
mechanism remains still unclear, but it seems that normal cells activate repair pathways enabling
them to respond more efficiently to damage caused by HDACis; e.g. by reversible cell-cycle arrest and
enhanced DNA-damage repair [163,197]. The anti-neoplastic efficacy of HDACis has been explored in
a number of human malignancies, but the present review article will discuss only the most widely
investigated HDACis in urothelial bladder cancer (Figure 4).
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Figure 5. HDACis’ common mechanism of action. Based on (A) the experimentally determined
structure of human HDAC2 (magenta) in complex with vorinostat (PDB ID: 4LXZ [198]),
docking experiments were carried out for the herein reviewed inhibitors, by suitably engaging the
AutoDock Vina bioinformatics platform [199]. Docking results of (B) romidepsin, (C) valproic acid, (D)
trichostatin A, (E) entinostat, (F) belinostat and (G) panobinostat (green) with HDAC2 indicate that
HDACis share a common pattern of structural recognition and molecular mechanism to convey HDAC
inhibition. The crystal structure of HDAC2 and the results of docking experiments were visualized via
PyMol [185].

7.1. Romidepsin

Romidepsin (FK228, depsipeptide, FR901228) is a Class I-specific HDACi, which belongs to
the chemical class of cyclic peptides (Figures 4A and 5B). Under the trade name Istodax (Celgene,
NJ, USA), it has been approved by the FDA (Food and Drug Administration) for treatment of
advanced cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphoma (PTCL) [190,200,201].
Treatment of bladder cancer-cell lines with romidepsin resulted in a dose- and time-dependent
growth inhibition, cell-cycle arrest, elevated p21WAF1 levels via a p53 independent pathway and
apoptosis induction [202]. A time-dependent, tumor-growth suppression was also observed after
romidepsin administration in xenograft and orthotopic bladder-cancer in vivo models [202]. Similarly,
exposure of bladder cancer-cell lines, with distinct HDAC1 and 2 expression profiles, to romidepsin
resulted in significantly reduced proliferation, inhibition of clonogenic growth, disturbed cell-cycle
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progression, and induction of a mixed apoptotic and necrotic cell death [163]. Interestingly, this study
identified romidepsin as the most potent HDACi in bladder cancer-cell lines, as compared to givinostat,
entinostat and mocetinostat [163]. These anti-tumor effects of romidepsin can be further enhanced by
co-administration of the new compound 2’,3’-di-methoxy-cinnamoyl-azide (DMCA) [203]. In the same
direction, a cocktail of romidepsin and JQ1, an inhibitor of bromodomain-containing acetylation-reader
proteins, presented synergistic effects in inhibiting cell-cycle progression, suppressing clonogenic
growth and inducing caspase-dependent apoptosis [204]. A quantitative proteomics approach
indicated that the suppressed cell growth and induced cell death observed in the 5637 bladder
cancer-cell line, in response to treatment with romidepsin, vorinostat and trichostatin A, is mediated
through modulation of protein expression involved in cell cycle, chromatin modification, apoptosis,
autophagy, ROS generation and DNA-damage repair [205]. Oncogenic HRAS activation seems to
be tightly associated with the promotion of tumorigenesis in human bladder cancer. Remarkably,
treatment of J82 bladder cancer cells that carry oncogenic HRAS with romidepsin leads to increased
apoptosis (controlled by ERK-pathway activation and ROS production), as compared to the
parental J82 cells that host wild-type RAS genes. These observations strongly suggest a potential
value of romidepsin in developing anti-cancer therapeutic regimens against RAS-related bladder
cancers [206–208].

Efficient adenoviral (Ad) infection, which is commonly used as a delivery system in gene-therapy
protocols, requires the presence of coxsackievirus and adenovirus type-5 receptor (CAR). CAR,
typically, is a cell-adhesion molecule linked to cell motility and tumor invasiveness [209],
and its decreased expression in bladder cancer is associated with cancer-cell growth [210,211].
Romidepsin administration in a panel of bladder cancer-cell lines significantly induced CAR expression
and acetylated Histone H3, and resulted in marked enhancement of transgene expression after
adenoviral infection. Hence, romidepsin and Ad-CMV-p53 combination proved capable to cause
a significant tumor inhibition in vitro and in vivo, thus suggesting that a pre-treatment step of tumor
cells with romidepsin may increase the efficiency of adenoviral gene-therapy vectors [212].

7.2. Valproic Acid

Valproic acid (VPA) is a pan-HDACi of the short-chain fatty acids chemical class
(Figures 4B and 5C) and an FDA-approved treatment option for epilepsy and bipolar disorder.
Although it is not FDA-indicated for the treatment of cancer, valproic acid has been extensively studied
for its potential therapeutic use in various malignancies, including bladder cancer. Valproic acid
administration in T24, TCCSUP, HT1376 and RT4 bladder cancer-cell lines caused a dose-dependent
increase in acetylated Histone H3 and p21WAF1 expression, and a decrease in invasion rate (except RT4),
but had no effect in migration capacity. Moreover, valproic acid significantly inhibited tumor growth of
T24 xenograft models [213]. Exposure of HT1376 and 5637 bladder cancer cells to valproic acid resulted
in a dose-dependent inhibition of cell survival and increased sub-G1 cell population, probably due
to elevated levels of p21WAF1 protein expression [164]. Time- and dose-dependent growth-inhibiting
actions of valproic acid against RT4, TCCSUP, UMUC3 and RT112 bladder cancer-cell lines have also
been observed. Valproic acid enhanced the acetylation of Histones H3 and 4, decreased HDAC3 and
4 protein expression, upregulated p27KIP1 and reduced the cell-cycle regulators Cdk1, 2 and 4, and
Cyclin B, D1 and E [214]. Valproic acid significantly blocked adhesion of TCCSUP and RT112 bladder
cancer cells to collagen, under flow conditions, by altering their integrin expression pattern, therefore
suggesting a promising option for the prevention of tumor dissemination [215].

XPC is a DNA-damage recognition protein required for the initiation of the nucleotide-excision
repair (NER) process and reduced levels of XPC protein have been reported in tumors derived
from bladder cancer patients. Valproic acid administration in T24 and 5637 bladder cancer cells
induced transcription of XPC gene, while prior treatment of these cells with valproic acid enhanced
cisplatin-induced activation of caspase-3 [173]. In another study, exposure of UMUC3 and T24 bladder
cancer-cell lines to valproic acid and vorinostat led to decreased proliferation and increased expression
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of thrombospondin-1, a natural inhibitor of angiogenesis [216]. The effectiveness of valproic acid was
greatly enhanced in human bladder cancer cells, when it was combined with the DNA-damaging
agent mitomycin C, likely due to the augmented cytotoxic activity of mitomycin C in response to
chromatin-structure ”relaxation“ caused by valproic acid [217]. Similarly, elevated bladder cancer
cell-growth inhibition was achieved when valproic acid was combined with mitomycin C, cisplatin
and adriamycin, in vitro and in vivo [218]. Notably, valproic acid has been recently demonstrated
to reduce the resistance of bladder cancer cells to the mTOR inhibitor temsirolimus, by suppressing,
among others, the Cdk2/Cyclin A axis [219]. Interestingly, valproic acid has also been shown to
upregulate CAR in T24 bladder cancer cells, thus supporting the idea of valproic acid addition to
adenoviral-mediated cancer gene-therapy protocols [220]. Finally, regarding the pharmacokinetics and
whole-body distribution of valproic acid, an in vivo study revealed its relatively long half-life time,
very low brain uptake, high heart and liver uptake, and its accumulation in the bladder [221].

7.3. Vorinostat

Vorinostat (SAHA: suberanilohydroxamic acid) is a pan-HDACi that belongs to the class of
hydroxamic acids (Figures 4C and 5A) and under the trade name Zolinza (Merck & Co., Inc.,
NJ, USA) was the first HDAC inhibitor approved by the FDA for treatment of CTCL [190,222].
Vorinostat administration in T24 bladder cancer cells resulted in cell proliferation inhibition,
accumulation of acetylated Histones H3 and 4, and elevated expression levels of p21WAF1 mRNA
and protein, an induction that may be regulated, at least in part, by histone acetylation in chromatin
associated with the promoter and coding regions of p21WAF1 gene [223]. Microarray studies in T24
bladder cancer cells after vorinostat and trichostatin A treatment demonstrated an upregulation in gene
expression for p21WAF1, Hep27, Histone H2B, TRPM2, Gelsolin, α-Tubulin, Glutaredoxin and Metallothionein
1L, and a repression in Thymidylate Synthase, CTP synthase, APRIL and TRP gene expression [224].
In another study, exposure of urothelial cancer-cell lines to vorinostat resulted in a dose-dependent
decline of cell viability, a prominent G2/M arrest, a p21WAF1 upregulation, a Thymidylate Synthase
downregulation and an induction of Caspase 3/7 activities [171]. In bladder cancer cells, elevated
Nuclear Receptor Co-repressor 1 (NCOR1) expression generates an epigenetic lesion that is associated
with increased cellular invasiveness and attenuated anti-proliferative receptor responses. Targeting
the epigenetic lesion with vorinostat significantly enhanced anti-proliferative receptor sensitivity, in
cell lines with elevated NCOR1, and significantly altered genome-wide transcriptional responses [225].
Finally, in a recent study, the examination of 59 urothelial cancer patients revealed higher Notch3
contents in bladder tumor tissues, as compared to control (non-cancerous) samples. This Notch3
over-expression was associated with poor prognosis and shorter overall patient survival. Treatment
of T24 bladder cancer cells with vorinostat upregulated Notch3 protein-acetylation levels, decreased
Notch3 expression, reduced proliferation and induced cell-cycle arrest, thus indicating the integration
of vorinostat in bladder cancer therapeutic schemes [226].

7.4. Trichostatin A

Trichostatin A (TSA) is a pan-HDACi that belongs to the chemical class of hydroxamic
acids (Figures 4D and 5D). TSA administration in a panel of bladder cancer-cell lines led to
a concentration-dependent growth inhibition, elevated p21WAF1 transcript contents, Plakoglobin
upregulation, and cell death [227]. Similar results of cell growth inhibition, increased p21WAF1 mRNA
expression, G1 cell-cycle arrest and apoptotic cell death were obtained in BIU-87 cells, in response to
treatment with TSA [228]. Cao et al. (2015) revealed that the TSA-induced apoptosis in T24 bladder
cancer cells is related to TRPM2 (Transient Receptor Potential Cation Channel, Subfamily M, Member
2) upregulation, which is caused by increased H3K9Ac enrichment within the TRPM2 promoter [229].
In another study by Wang et al. (2017), TSA administration initially activated the intrinsic apoptotic
pathway associated with phosphorylated Akt inhibition and mitochondrial membrane-potential
loss, followed by downregulation of the Sp1-Survivin pathway at the late phase of treatment [230].
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In vivo TSA administration in mice bearing EJ and UMUC3 bladder cancer xenografts led to a 70%
tumor growth suppression and absence of detectable toxicity [227]. Using T24 bladder cancer cells,
Ou et al. (2007) showed that the TSA-induced histone hyper-acetylation is associated with a significant
decrease in global gene methylation. Interestingly, TSA could restore the transcription of certain
methylated genes, such as E-cadherin and RARβ2, thus suggesting a reversible cross-talk between
histone acetylation and DNA demethylation processes [231]. As it has been previously reported by
Yoon et al. (2011), TSA proved able to synergistically enhance the anti-tumor effects of cisplatin and to
re-sensitize the T24R2 cisplatin-resistant bladder cancer cells, by potentiating cisplatin-mediated S- and
G2/M-phase cell-cycle arrest and Caspase-dependent apoptosis [232]. TSA could also synergistically
enhance the gemcitabine-induced cell-cycle arrest, activation of Caspase-dependent apoptosis and
suppression of NFκB and Akt signaling [233]. Furthermore, TSA was capable to decrease migration
ability and phosphorylated AKT (Ser473) expression in bladder cancer cells, and to inhibit TGIF
(TG-Interacting Factor), whose over-expression is correlated with poor prognosis and chemoresistance
to gemcitabine [234]. These data suggest the use of TSA specifically, and HDACis in general,
as combination agents to overcome resistance and enhance the anti-tumor actions of cisplatin
and gemcitabine in patients with advanced bladder cancer. Accordingly, pre-treatment with TSA,
against TRAIL-resistant T24 bladder cancer cells, followed by incubation with TRAIL, resulted in
a marked increase of TRAIL-induced apoptosis, due to upregulated TRAIL-R2 expression, thus
indicating the combination of TSA and TRAIL as a promising alternative treatment for urothelial
bladder cancer therapy [235]. As mentioned above, CAR expression is commonly downregulated
in bladder tissue tumors [210,211]. TSA administration in CAR-negative bladder cancer-cell lines
caused a significant elevation of CAR expression, leading to enhanced adenoviral-mediated gene
transfer [236]. Notably, El-Zawahry et al. (2006) verified the increased CAR contents in T24 bladder
cancer cells, in response to TSA treatment [237]. Most importantly, the TSA-induced CAR upregulation
augmented the efficacy of adenovirus-expressing TRAIL (AdTRAIL) to activate apoptosis [235,237].
Interestingly, TSA was presented as able to generate a strong pro-apoptotic phenotype, by reducing
the expression of cFLIP and Bcl-XL anti-apoptotic proteins [237].

7.5. Entinostat

Entinostat (MS275) is a Class I HDACi, which belongs to the chemical group of benzamides
(Figures 4E and 5E). In a study of Qu et al. (2010), entinostat and TSA proved to significantly inhibit
the growth of T24 bladder cancer cells, by inducing cell-cycle arrest in G0/G1-phase and activating
apoptosis. They could significantly increase the acetylation contents of Histone H3, induce p21WAF1

mRNA expression and downregulate Cyclin A mRNA levels [238]. In another study that mainly
focused on adhesion-related proteins, the entinostat, TSA, apicidin and valproic acid were applied
in a panel of bladder cancer-cell lines. All four HDACis caused a dose-dependent inhibition of cell
growth, upregulation of γ-Catenin in highly invasive lines, and increased Gelsolin, but decreased
Desmoglin protein expression in poorly and moderately invasive lines. Entinostat-treated cells were
also characterized by an upregulation of α-Catenin in highly and moderately invasive lines, and of
E-cadherin in cell lines with moderate and poor invasive potential, thus suggesting the efficacy of
entinostat to suppress tumor growth and invasion [239]. Exposure of T24 bladder cancer cells to
entinostat and vorinostat led to an EMT reversal (MET; mesenchymal to epithelial transition), and
epithelial-differentiation restoration, by recovering E-cadherin and ErbB3 expression, and increasing
anoikis [240]. Lee et al. (2016) suggested that Kaposi’s sarcoma-associated herpesvirus (KSHV), which
is detected at high frequencies in patient-derived bladder cancer tissues, may be related to drug
resistance of bladder cancer cells infected with KSHV. Treatment of KSHV-infected TCCSUP bladder
cancer cells with entinostat and vorinostat proved capable to significantly increase the cisplatin-induced
cytotoxicity, therefore indicating a potential therapeutic role of HDACis against drug-resistant bladder
cancer cells being originated from KSHV infection [241].
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7.6. Belinostat

Belinostat (PXD101) is a pan-HDACi, which belongs to the class of hydroxamic acids
(Figures 4F and 5F) and under the trade name Beleodaq (Spectrum Pharmaceuticals, CA, USA) has
been recently approved by the FDA for treatment of relapsed or refractory PTCL [242,243]. The first
study of belinostat administration in a panel of human urinary bladder cancer-cell lines (5637, T24,
J82 and RT4) unveiled its capacity to induce cell growth inhibition and cell-cycle arrest. Belinostat
could decrease bladder tumor growth in a HRAS transgenic-mouse model, with lack of detectable
toxicity, and also induce p21WAF1 expression [244]. A new method of nanoparticle-mediated belinostat
release, with nanoparticle’s surface having been modified with the novel cell-penetrating polymer
PGON (polycationic PGON likely helps the nanoparticles to adhere on the bladder wall and open
cellular junctions), demonstrated the greatly enhanced cell penetration in the urothelium of mouse
bladder and human ureter, and higher load, of belinostat, as compared to chitosan-functionalized
nanoparticles. Remarkably, these belinostat-encapsulated nanoparticles induced prolonged HDAC
inhibition in vitro and in vivo, and suppressed bladder tumor growth in a xenograft model, therefore
reducing the need for frequent belinostat dosing [245]. Most importantly, a limited phase-II study of
belinostat administered in combination with carboplatin and/or paclitaxel in patients with transitional
carcinoma of the bladder has shown promise, although the final results are awaited [246].

7.7. Panobinostat

Panobinostat (LBH589) is a pan-HDACi, which belongs to the class of hydroxamic acids
(Figures 4G and 5G) and under the trade name Farydak (Novartis, Basel, Switzerland) has been
approved by the FDA as a combination therapy agent, along with bortezomib and dexamethasone,
in patients with recurrent multiple myeloma (MM), who have received at least two prior treatment
regimens, including bortezomib and an immunomodulatory agent [247]. Panobinostat was found
to act as an efficient radio-sensitizer in RT112 bladder cancer cells, and was associated with the
downregulation of the homologous recombination-related proteins MRE11, NBS1 and RAD51 [248].
The post-transcriptional downregulation of MRE11 and the production of a truncated MRE11 form,
which is degraded by the proteasome, are mediated through cIAP2 function [249]. Interestingly,
panobinostat exhibited a comparatively greater radio-sensitizing effect in RT112 bladder cancer cells
that were knocked down for Ku80, and since muscle-invasive bladder tumors contain reduced Ku-DNA
binding activities, panobinostat could serve as an important radio-sensitizer in bladder cancer [248].

7.8. Tubacin

Tubacin (Tubulin acetylation inducer) is a highly potent and selective HDAC6 inhibitor that
belongs to the class of hydroxamic acids (Figure 4H) and is characterized by a stronger activity
than tubastatin A and ST-80, the other two HDAC6-specific inhibitors hitherto available [174,250].
HDAC6 has been previously shown to act synergistically with SIRT2, in promoting bladder cancer-cell
migration and invasion, by targeting the cytoskeletal protein Cortactin in the cell line BLX211.
Tubacin administration at micro-molar concentrations, combined with the siRNA-mediated knockout
of SIRT2, caused the suppression of cell migration and invasion, thus indicating tubacin as a promising
therapeutic agent for bladder cancer therapy [178]. In contrast, HDAC6-specific inhibition through the
HDACis tubacin, tubastatin A and ST-80 across a panel of urothelial cancer-cell lines, including bladder
cancer ones, revealed only moderate efficacies in the induction of cell-cycle arrest or cell viability
reduction, and exerted only minor effects on migration and invasion, hence suggesting that growth
and survival of urothelial cancer cells may not critically depend on HDAC6 function [174]. However,
in a recent study, HDAC6 inhibition in RT112 bladder cancer cells by tubacin resulted in induction of
apoptosis and proliferation arrest, which was associated with the downregulation of FGFR3, MYC and
Cyclin D1, and DNA-damage induction. Notably, tubacin was well-tolerated and could significantly
impede RT112 tumor growth in xenoplant assays [250].
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Conclusively, although HDAC inhibition seems to serve as a promising strategy for bladder
cancer therapy, accumulated evidences suggest that for maximizing the anti-tumor effects of HDACis,
these may not be used as monotherapy agents, but in combination with other already established
drugs and therapeutic schemes, including radiation.

8. Clinical Trials

Hitherto, four different HDACis have been approved by the FDA for cancer therapy. In 2006,
vorinostat was the first HDACi to be approved for the treatment of progressive, persistent or recurrent
CTCL, following two systemic therapies [222]. Similarly, romidepsin was licensed in 2009 for the
treatment of CTCL patients, who have received at least one prior systemic therapy [251]. The use of
belinostat against relapsed or refractory PTCL was approved by the FDA in 2014 [243], while more
recently, in 2015, panobinostat, in combination with bortezomib and dexamethasone, was also
approved for the treatment of MM patients following at least two prior regimens [252].

The principle in using HDACis as, small-molecule, anti-cancer drugs is their capacity to increase
core histones’ acetylation, hence strongly triggering an open-chromatin state, and consequently the
high accessibility of DNA-targeting agents. In this regard, the mode-of-action of HDACis mainly
includes cell-cycle arrest, terminal differentiation and cell death in transformed cancer cells, but
not in normal cells, which are presented as either insensitive or capable to effectively overcome
the drug-induced stress. Additionally, HDACis can also exert their tumor-suppressing activities
by inhibiting angiogenesis and/or modulating immune responses [65,253,254]. Numerous different
clinical trials (423 as of January 2019; [255]) of HDACis for the therapeutic treatment of human
malignancies have been completed, or are ongoing (recruiting, active-not-recruiting, enrolling and
not-yet-recruiting status). Considering the limited therapeutic effect of HDACis as monotherapy in
several solid tumors, the majority of current trials are focused on the synergistic effects of HDACis in
combination with other anti-cancer agents/drugs, or radiotherapy protocols [254,256].

Combination schemes of HDACis with agents targeting DNA damage-response (DDR) pathways
or topoisomerase inhibitors have been reported to effectively increase DNA damage, cell-cycle arrest
and death of cancer cells, as compared to monotherapy. Interestingly, HDACis have been documented
to induce DNA double-strand breaks (DSBs), as well as to attenuate DDR, through reduction of ATM
and p53 activities, specifically in cancer cells [257,258]. Similarly, ongoing clinical trials are currently
evaluating the effectiveness and safety of (a) the combination of olaparib (a PARP inhibitor) with
vorinostat in relapsed/refractory and/or metastatic breast cancer (NCT03742245), as well as (b) the
high-dose cocktail chemotherapy (vorinostat, gemcitabine, busulfan and melphalan, either with or
without rituximab) in patients with non-Hodgkin’s or Hodgkin’s lymphoma, who are receiving an
autologous stem-cell transplant (NCT03259503). Remarkably, a completed phase-I clinical study
(NCT00246103), combining valproic acid and epirubicin (a Topoisomerase-II inhibitor) unveiled the
well-tolerated character of the administered scheme, and the advanced clinical response rate of patients
with solid tumors [259]. In the same direction, several trials are evaluating the clinical behavior of
HDACis and doxorubicin (a Topoisomerase-II inhibitor) combinations. In this regard, a phase-I/II
trial of belinostat with doxorubicin in soft tissue sarcoma patients (NCT00878800) demonstrated its
superior median time to disease progression related to doxorubicin monotherapy [260]. On the other
hand, a completed phase-I trial of vorinostat combined with doxorubicin (NCT00331955) showed poor
clinical benefits [261].

The ability of HDACis to attenuate DDR leads to an enhanced radio-sensitivity of cancer cells, with
favorable results having been reported by the combination of HDACis with radiotherapy [262]. In the
clinical setting, phase-I trials have proved that HDACis can be safely administered with radiotherapy,
including (a) vorinostat in patients with advanced or metastatic NSCLC (NCT00821951; [263]) and
non-metastatic pancreatic cancer (NCT00983268; [264]), and (b) panobinostat for the treatment of
prostate, esophageal and head/neck cancers (NCT00670553). Furthermore, a phase-II single group
trial of valproic acid with temozolomide and external beam radiation for the treatment of glioblastoma
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(NCT00302159) showed that the combination scheme was well-tolerated by the patients, and also
presented an improved therapeutic outcome [265].

Focusing on platinum-based chemotherapy, phase-I trials of belinostat or vorinostat, in
combination with carboplatin and paclitaxel, in patients with solid tumors, underscored the
well-tolerance of the scheme, along with notable benefits in patients’ response rates [266,267].
In accordance, a phase-II clinical trial of carboplatin and paclitaxel, with or without vorinostat,
in advanced NSCLC demonstrated the improved response and survival outcome of the patients
being treated with carboplatin-paclitaxel-vorinostat, as compared to the carboplatin-paclitaxel only
treated cohort (NCT01413750; [268]). Unfortunately, the subsequent phase-II/III trial (NCT00473889) in
advanced NSCLC (stages IIIB/IV) did not confirm the clinical benefit of vorinostat co-administration.

Additionally, numerous phase-I trials have also focused on the combination of HDACis with
Receptor Tyrosine Kinase (RTK)-targeted agents, including sorafenib (a multi-kinase inhibitor of
MAPK pathway) and gefitinib (an EGFR inhibitor). Interestingly, an ongoing phase-I/II single
group trial (NCT00918333) on the combination of everolimus (an mTOR inhibitor) with panobinostat
for the treatment of recurrent MM, non-Hodgkin’s and Hodgkin’s lymphoma has already shown
the absence of severe adverse effects. However, a phase-Ib/IIa trial on the combination of
trastuzumab (a HER2-targeted monoclonal antibody, blocking the downstream PI3K-AKT pathway)
with panobinostat in HER2-positive metastatic breast cancer did not prove a clinical benefit for the
patients (NCT00567879).

Immune-checkpoint inhibitors represent one of the most widely examined categories of
anti-cancer agents nowadays and are already approved by the FDA for cancer therapy. Several studies
have pointed out the ability of HDACis to regulate immune responses, and their combination with
immune-checkpoint inhibitors has been presented to improve clinical outcomes [269,270]. In this
regard, the HDACi entinostat has been reported to target myeloid-derived suppressor cells, and to
improve the anti-tumor efficacy of PD-1 blockage in lung, renal and breast carcinomas [271,272].
Among several ongoing trials of immune-checkpoint inhibitors in combination with HDACis,
pembrolizumab (anti-PD-1) have been evaluated along with (a) vorinostat against advanced renal
and urinary bladder carcinomas (NCT02619253) and (b) entinostat for the treatment of metastatic
melanoma of the eye (NCT02697630), while nivolumab (anti-PD-1), in combination with azacytidine
and entinostat, was evaluated for the treatment of metastatic NSCLC patients (NCT01928576). Finally,
a phase-I/II single group study of entinostat with aldesleukin (recombinant Interleukin-2) in metastatic
kidney cancer (NCT01038778) highlighted the favorable response rate and survival outcome of the
patients [273].

Urothelial Bladder Carcinoma

Focusing on urothelial bladder carcinoma (Table 2), vorinostat has been evaluated as a
monotherapy agent for the treatment of patients with locally recurrent or metastatic cancer of
the urothelium, in a phase-II single group study (NCT00363883). However, the clinical benefit on
patient outcome was limited, while serious adverse effects were highlighted in 43% of the patients,
thus resulting in termination of the trial. Moreover, administration of mocetinostat as a single agent in
patients with inactivating mutations or deletions in the CREBBP and/or EP300 acetyltransferase genes,
previously treated for locally advanced or metastatic urothelial bladder carcinoma, has been studied in
a completed phase-II trial (NCT02236195). This trial represents the first genomic-based approach for
the identification of patients that are suitable (or more likely to benefit) for treatment with HDACis;
however, severe toxicities were observed, compromising the overall clinical therapeutic success [274].
On the other hand, the combination of belinostat with carboplatin or paclitaxel in a phase-I/II single
arm study (NCT00421889), evaluating safety, pharmacodynamics and efficacy, revealed complete or
partial responses in four out of 15 bladder cancer patients enrolled. Finally, vorinostat is currently being
evaluated, in combination with pembrolizumab, in an ongoing phase-I/Ib study, against advanced
renal or urothelial cell carcinoma (NCT02619253).
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Table 2. Clinical trials of HDACis in urothelial bladder cancer (BlCa: Bladder Cancer) [255].

HDACi
Agent

Combined
Agent Phase Status Patients Outcome Identifier

Vorinostat - Phase-II Terminated
Locally recurrent, or

metastatic cancer of the
urothelium

Limited clinical benefit;
Serious adverse effects

(43%)
NCT00363883

Mocetinostat - Phase-II Completed

BlCa patients with
inactivating mutations or
deletions in the CREBBP

and/or EP300
acetyltransferase genes

Severe toxicities; Limited
clinical efficacy NCT02236195

Belinostat Carboplatin or
paclitaxel Phase-I/II Completed BlCa patients

Complete or partial
responses in 4 out of 15
BlCa patients enrolled

NCT00421889

Vorinostat Pembrolizumab Phase-I/Ib Ongoing Advanced urothelial
cell carcinoma NCT02619253

9. Conclusions

The cellular “acetyl-proteome” and especially “acetyl-chromatin” have emerged as major
druggable landscapes for human malignancies. Targeting the plethora of molecular “writers” (HATs)
and “erasers” (HDACs), along with their cognate substrates, opens a new therapeutic window for the
disease. However, the presumable tissue-specific expression and/or activity of HAT/HDAC family
members necessitate their cancer cell-dependent molecular profiling before treatment. In the same
direction, given the heterogeneity of a solid tumor, different sub-populations may express distinct
HAT/HDAC gene combinations with variable oncogenic activities. To further complicate things,
there could be more than one family member able to modulate the “acetyl-load” of a given target,
while many substrates might be specifically targeted by only one (HAT/HDAC) member. Moreover,
presumable operation of redundant responses, during which changes in one protein’s acetylation
levels are compensated by critical changes in a different protein, most likely stiffen and worsen our
comprehension, and view of the system’s functionality. These are most likely some of the reasons
justifying the “failure” of HDACi-mediated monotherapy to meet its promise, since only combination
schemes are presented beneficial for the patients. A new generation of HAT/HDAC-specific inhibitors
and novel cocktail-drug/radiation protocols are expected to overcome the existing limitations, and
offer the desired therapeutic success for several human malignancies.

In recent years, HDACs have emerged as key players to cellular homeostasis. Deregulation of
these enzymes ultimately leads to several malignancies, including bladder cancer, by various
mechanisms. This review brings together important information about HDACs and their specific
inhibitors, with some of them already being tested in clinical trials, demonstrating potential for treating
urothelial cancers. The knowledge gathered in this study regarding HDACis, provides insights
necessary for directing future research in this field.
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