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Abstract: Glyoxal is considered to be the most likely substitute for formaldehyde to synthesize resin
adhesives for wood bonding due to its reactivity, structural characteristics, being non-toxic, low
volatility, and acceptable cost. Regrettably, the performance of the resin synthesized using glyoxal
to directly replace all formaldehyde is not totally satisfactory, especially as it has almost no water
resistance. This makes such a simple alternative fail to be suitable for industrial production. To
prepare an environment-friendly glyoxal-based adhesive with good bonding performance, the work
presented here relies first on reacting citric acid and hexamethylene diamine, producing a polyamide,
with glyoxal, and then crosslinking it, thus synthesizing a thermosetting resin (namely CHG) adhesive
and applying it for plywood bonding. The plywood prepared exhibits excellent dry and wet shear
strength, which are better than GB/T9846-2015 standard requirements (≥0.7 MPa), and even after
being soaked in hot water at 63 ◦C for 3 h, its strength is still as high as 1.35 MPa. The CHG resin
is then potentially an adhesive for industrial application for replacing UF (urea-formaldehyde) and
MUF (melamine-urea-formaldehyde) adhesives for wood composites.

Keywords: polyamide; wood adhesives; glyoxal; plywood; water resistance

1. Introduction

Wood adhesives are critical components in the manufacture of wood-based prod-
ucts, such as particleboard, plywood panels, fiberboard, and other wood composites.
They determine the performance of bonded products. Among the wood adhesives used,
formaldehyde-based resins such as urea-formaldehyde (UF), phenol-formaldehylde (PF),
melamine-formaldehyde (MF), and their co-condensed resin are the dominant resins [1–3].
However, their drawback is that formaldehyde has been classed as toxic and carcinogenic,
and so is formaldehyde emission. Thus, for decades, research in the field of wood adhesives
has focused on the improvement and modification of the synthesis of formaldehyde-based
wood adhesives (for example UF resin) to improve their performance and reduce formalde-
hyde emission [4,5]. At the same time, the development of green adhesives has also drawn
much attention and is strongly progressing, substantial research on this having already
been carried out [3,6–11].

Using glyoxal to completely replace formaldehyde to synthesize glyoxal-based resin
is an attractive approach to prepare more green adhesives. This is due to its features of
non-volatility and low or no toxicity compared with formaldehyde [12]. Some research on
the application of urea-glyoxal (UG) resin for plywood and particleboard has already been
carried out, but because of the low condensation of UG, resulting in an undesirable perfor-
mance, it is not adaptable to wood bonding [13]. The partial substitution of formaldehyde
was then achieved by Deng et al. by a co-condensed urea-glyoxal-formaldehyde (UGF)
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resin with good bonding results for plywood, thus improving the degree of polymerization
of the resin [14]. As this still entails the use of a much smaller proportion of formaldehyde,
the problem of its emission persists. Consequently, melamine was selected to react with
glyoxal to prepare a melamine-glyoxal (MG) resin, because its reactivity is higher than that
of urea, and as it has a higher number of reactive sites, thus rendering it easier to obtain
branched structures and an improved performance. Unfortunately, although such an MG
resin has a branched structure and is used in particleboard preparation, the internal bond
strength of the particleboard bonded with it having been effectively improved and comply-
ing with the standard requirements, the panels’ water absorption and thickness swelling
were still not satisfactory [15]. By co-condensing melamine, glyoxal, and glutaraldehyde to
obtain a melamine-glyoxal-glutaraldehyde (MGG’) resin and advantageously using ionic
liquids as hardeners to decrease its energy of curing, the water resistance of the resin has
been improved [16]. However, the high viscosity of this resin makes it suitable only for
plywood production and not for particleboard and fiberboard, which is a great limitation.

In order to prepare a glyoxal-based resin with suitable viscosity with wide applicability
to different wood composites, a polyamide prepolymer has been synthesized by reacting
citric acid and hexamethylene diamine, then crosslinking this by condensing it with glyoxal
to obtain a green resin adhesive, namely CHG. This is due to the amine and amide groups
in the polyamide being able to react with the aldehyde groups by a Schiff reaction and
polycondensation [17]. Polyamides are a universal plastic material and have been widely
used in various industrial applications. The most common polyamide is nylon, exten-
sively used for engineering plastics in machinery, automobiles, electrical appliances, textile
equipment, chemical equipment, aviation, metallurgy, and other fields [18–20]. Polyamides
are also used as adhesives or hot-melt adhesives, but these have relatively rarely been
reported. In particular, polyamides are rarely reported as thermosetting adhesives for wood
panels industrial production. The main reason for this is that general polyamide plastic
products possess linear molecular structures and cannot form cured solids by thermal
curing reactions [18,19]. Therefore, in the work presented here, citric acid was reacted
with hexamethylenediamine to obtain a branched polyamide with thermosetting potential.
Then, this polyamide was cross-linked with glyoxal to improve the branch abundance and
to obtain a thermosetting resin usable as a wood adhesive. Various ratios of glyoxal to
polyamide were tested in this work to prepare a CHG resin with outstanding bonding
properties, and this resin can be suitable for the industrial manufacture of wood composites.

2. Materials and Methods

Citric acid (99.0%, Ar) and hexamethylene diamine (99.0%, Ar) are from Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China; Glyoxal 40 wt.% in water, Shanghai Zhanyun
Chemical Co., Ltd., Shanghai, China.

2.1. CHG Adhesive Resins Preparation

The CHG adhesive resins synthesis was as follows: 24.65 g of hexamethylene diamine
(HDM) and 29.23 g of water were mixed in a flask at room temperature by magnetic stirring,
and then 31.52 g of citric acid solid was added slowly; after this, the mixture was heated
to 100 ◦C in an oil bath for 2 h, and then the temperature was reduced to 60 ◦C, and
glyoxal was added for another 30 min reaction to obtain the CHG resin then to be used
for plywood bonding(as shown in Figure 1). According to the previous work [21], the
proportion of glyoxal was based on 0.6, 0.8, 1.0,1.2, 1.4, 1.8 and 2.2 times the molar mass of
hexamethylene diamine, respectively. Correspondingly, the prepared resins were named
CHG-0.6, CHG-0.8, CHG-1.0, CHG-1.2, CHG-1.4, CHG-1.8 and CHG-2.2.
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Figure 1. Schematic representation for the preparation of CHG resin and its using for wood bonding.

2.2. FTIR Spectrometry

Fourier transform infra-red (FTIR) analysis with a Shimadzu IRAffinity-1 spectrom-
eter was used to confirm the relevant structures present. The reference spectrum used a
potassium bromide tablet (ACS, ACROS Organics) as blank. An equivalent potassium
bromide tablet was mixed with 5% w/w of the powdered samples for analysis. A 32-scan
transmission spectrum at a 2.0 resolution was then obtained, and the wave number ranged
between 400 and 4000 cm−1.

2.3. Characterization by ESI-MS (Electrospray Ionization Mass Spectrometry)

The preparation for analysis of the samples was performed by diluting with deion-
ized water a 10 µL resin solution down to 1.0 mL. A quadrupole time-of-flight (Q-TOF)
high-resolution mass spectrometer (Q-TOF liquid chromatography/mass spectrometry
(LC/MS) 6540 series, Agilent Technologies, Santa Clara, CA, USA) coupled with electro-
spray ionization (ESI) was used for analysis. A Mass Hunter Workstation software was
used for data acquisition. A positive ESI mode was used for detection. The optimized
MS parameters were: voltage of the fragmentor set at 135 V, with the capillary at 3500 V
and a 65 V setting for the skimmer; for drying (300 ◦C, 8 L min−1) and nebulizing (30 psi),
nitrogen gas was employed.

2.4. Differential Scanning Calorimetry

Differential Scanning calorimetry was used in the work presented here for the CHG
adhesives. The analysis was carried out with a DSC spectrometer (NETZSCH DSC 204 F1,
Selb, Germany) at a 10 ◦C/min heating rate with the test temperature ranging between
30 ◦C and 250 ◦C, using a NETZSCH Proteus Analysis software(NETZSCH, Selb, Germany)
for data analysis.

2.5. Dynamic Thermomechanical Analysis (DMA)

A NETZSCH DMA-242 thermal analyzer was used to test the CHG resins. Each
adhesive sample was placed within a sandwich of 50 mm × 10 mm × 3 mm3 of two plies
of poplar wood. The sandwiches so assembled were tested in the 30–250 ◦C range at a
10 ◦C/min heating rate. The test was carried out in non-isothermal three-point bending
mode at a 10 Hz frequency with a 60µm strain amplitude and 1.5 N dynamic force. A
NETZSCH Proteus software was used for data analysis.

2.6. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was used to test the thermal stability of the cured CHG
adhesives in the 30 ◦C to 750 ◦C range at a 5 ◦C/min heating rate and under nitrogen
atmosphere. The mass of each tested sample was 5.5 mg, and the TGA equipment used
was a Q50 TGA (TA Instruments, New Castle, DE, USA).
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2.7. Preparation and Testing of Plywood

Three-layer plywood panels bonded with CHG resins were prepared in the laboratory
by a hot-pressing process using 180 ◦C temperature and 1.0 MPa pressure hot pressing for
5 min. The glue spread used was of 240 g/m2, and the thickness of poplar (Populus tremu-
loides) veneers used here was 2 mm. The dry shear strength and wet strength after 24 h
soaking in cold water and 3 h in 63 ◦C hot water were tested to evaluate the performance of
CHG adhesives. The prepared plywood samples were stored under conditions of 20 ◦C and
12% r.h. for 2 days; then, 10 samples were cut for measurement averaging and finally tested
according to China National Standard GB/T 14074-2006 and GB/T17657-2013 [22,23]. The
bond strength was determined from the shear strength according to the equation: shear
strength (MPa) = maximum force (N)/bonded area (mm2).

3. Results and Discussion
3.1. LC-MS Analysis of CHG Resin

Soft ionization technique-based ESI-MS spectrometry shows directly the peaks of the
molecular weights (MW) of the compounds formed, in particular, when these differ in
MW [24]. The combination of FTIR analysis and chemical theory provision allows the
deduction of the possible structures of the molecular species formed. The mass spectrome-
try results of the CHG-0.8 adhesive, shown in Supplementary Information Figure S1a–c,
indicate the species obtained by reacting citric acid with hexamethylene diamine and then
crosslinked with glyoxal. First, what cannot be avoided is the small molecular weight
chemical species formed from the addition reaction of glyoxal with the remaining hex-
amethylenediamine, as can be observed for the peak at 174 Da. However, considerable
evidence of the formation of the amide structures derived from the reaction of citric acid
and hexamethylenediamine is obtained (as shown in Supplementary Information Table S1),
certifying that the CH polyamide has been formed in the first stage of the preparation
process.

Many research works already testify that amide groups can react well with the alde-
hyde groups from glyoxal leading to Schiff bases [17,25–27]. This is also confirmed by the
CHG-0.8 results from LC-MS (in Supplementary Figure S1) with the assignment of the
probable structures shown in Table S1. A predominant nucleophilic addition involving the
CH polyamide resin with glyoxal appears to occur according to the structures determined
for many of the oligomers formed, as indicated by the 349 Da and 504 Da peaks. Structural
chain branching of the same type can also occur, as a number of the CH polyamide amide
groups may well react with several glyoxal molecules, as, for example, for a 1061 Da
structure, namely:
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The cross-linking of the polyamide by glyoxal forms the final hardened tridimensional
network of the resin. Coincidentally, structural branching of the oligomers formed ensures
that the adhesive possesses excellent bonding properties [12].

Certainly, it needs to be clearly pointed out that a higher ratio of glyoxal addition of the
CHG resin results in a more abundant branched structure, which is very easily predictable,
although not all these CHG resins were analyzed by LC-MS. The rich branched structure
of resin can ensure good bonding properties [12], which can be verified in the following
bonding performance of resins. But it is not the case that the more glyoxal addition the
better, as excess glyoxal may also lead to a decline in the bonding performance, which will
be explained in the subsequent discussion.

3.2. FTIR Analysis of CHGs

The FTIR spectrum of the solid CHG adhesives is shown in Figure 2. The O-H and
N-H stretching vibrations are represented by the wide 3100–3600 cm−1 band. The C-H
deformation is represented by both the 2930 and 2860 cm−1 bands. The peak at 1770 cm−1

is attributed to a C=O group from carboxyl that can be in the extremity of the CH molecule
structures. C=O stretching is represented by the 1700 cm−1 band, and to the C=O stretching
vibration of the -CO-NH- grouping is assigned the 1645 cm−1 peak, the shift of which to
a lower wavenumber being due to the amino group influence [28]. The absorption peak
of the N-H group appears at 1553 cm−1, which can be seen in the CH curve, while here,
only a faint peak is observed in the CHG-0.6 resin. This is due to the Schiff base and
polycondensation reaction between glyoxal and amino groups, so that it is consumed. As
the proportion of glyoxal increases to 0.8 mol (curve CHG-0.8 in Figure 2) or more, the
N-H stretching vibration peak has almost disappeared. It can be inferred from this that the
synthesized CH polyamide and glyoxal react fully, thus consuming all or almost all the
available –NH- groups, leading to more branched structures, thus ensuring a good bond
strength [29]. The peak at 760 cm−1 belongs to the bending vibration of O-H bonds, and
the evident strengthening of this peak can be observed by comparing the CHG resins to the
CH polyamide. This occurs because of the formation of new hydroxyl groups during the
reaction of glyoxal with the CH resin amide groups. It also contributes to the evidence that,
in CHG resins, a high level of cross-linking has occurred due to the reaction of glyoxal with
the CH polyamide.
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3.3. Bonding Performance of Resins

Figure 3 shows dry, 24 h cold water soaking and 3 h in 63 ± 2 ◦C shear strengths of
the CHG-bonded plywood panels. First, Figure 3 shows the totality of the CHG adhesives,
showing a good dry shearing strength, as they are all higher than the standard requirement
of China National Standard GB/T9846-2015 (≥0.7 MPa), which is suitable for CHG resins
in all proportions in this work. More satisfying is the wet strength of the plywood test
results. Both 24 h cold water soaking strength and 3 h 63 ◦C hot water strength of the
boards bonded by CHG resins with a proportion of glyoxal from 0.6 to 1.4 satisfy the
standard requirement of 0.7 MPa or higher. With the progressive increase in the proportion
of glyoxal, the bonding performance of the synthesized resin, especially the plywood wet
shear strength, shows a weakening trend, which may be caused by excessive addition of
glyoxal. This is because the linear oligomerization with hydrophilic group hydroxyls can
be formed from the glyoxal by aldol condensation, which reduces the water resistance of
the resin [12]. Regardless, the results of all CHG resins are clearly better than the widely
used urea-formaldehyde (UF) adhesives with regard to bonding strength, especially for
water resistance, judging from the 24 h cold water or 63 ◦C hot water wet shear strength
test results.
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3.4. DMA Analysis of CHGs

The plywood bonding performance test results attest that too much glyoxal reduces
the properties of the synthesized CHG resins. Thus, dynamic thermomechanical analysis
was only used to test four CHG resins prepared by glyoxal additions of 0.6, 0.8, 1.0, and 1.2,
the results being shown in Figure 4. Intuitively, all curing by DMA of CHG resins show
an increase in Young’s modulus as a function of an increase in temperature, starting at
around 200 ◦C. This means that CHG resin can begin to cure quickly at this temperature
and provide bond strength to the test specimen, but it also indicates that CHG resins
require a higher curing temperature. Comparing the four curves in Figure 4, it is indicated
that, from CHG-0.6 to CHG-1.2, as the proportion of glyoxal increases, the initial curing
temperature of the CHG resin decreases. Because of the high reactivity between glyoxal
and the CH polyamide (as the reaction shown in Scheme 1), increasing the ratio of glyoxal
makes the cross-linking reaction more effective and is thus sufficient to reduce the initial
curing temperature of CHG resins.
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The strength of the test specimen can be reflected by the Young’s modulus in the DMA
result, this correlation having been shown already several times in the literature [29–31];
thus, the Young’s modulus, in particular, its peak value, is an important object of inves-
tigation by DMA analysis. Apparently, CHG-0.8 and CHG-1.0 reflect higher modulus
values than the other two resins, this being consistent with the result that CHG-0.8 and
CHG-1.0 have a better bond strength than CHG-0.6 and CHG-1.2 in the plywood test
results. In addition, it is also evident from the DMA curves that the curing temperature to
be used for such CHG adhesives is relatively higher than that commonly used today for
equivalent panels bonded with traditional adhesives such as urea-formaldehyde resin and
phenol-formaldehyde resin [32,33].

3.5. DSC Analysis CHGs

In the present research work, DSC has also been used to analyze the thermal curing
behavior of CHG resins, with the test results shown in Figure 5. Comparing the curves
of CHG-0.6 and CHG-0.8, it can be observed that the peak resins’ curing temperatures
are 118 ◦C and 105 ◦C, respectively, which means that the curing temperature of a CHG
resin will decrease with the increase in the proportion of the glyoxal used. However, as
the ratio of glyoxal increases to 1.0 to obtain the CHG-1.0 resin, the glyoxal level will
be excessive in the resin, making the curing temperature of CHG-1.0 higher than that of
CHG-0.8, although the increase is not so significant. Further increases in the proportion of
glyoxal to obtain CHG-1.2 resin raise its curing temperature to 127 ◦C, which may be due to
the aldol condensation of the glyoxal in excess (Scheme 2) [12]. These formed aldol-derived
oligomers possess lower reactivity with CH molecules, thus leading to an increase in the
curing temperature of the entire resin system. Moreover, aldol condensation also produced
linear oligomeric hydroxyls with a hydrophilic group; these substances reduced the water
resistance of the resin.
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In general, as the proportion of glyoxal increases, the curing temperature trend of the
synthetic CHG resins changes from an increase to a decrease. This is one of the explanations
for the change in the performance of the adhesive.

3.6. TG Analysis CHG Resins

In order to evaluate the thermal stability of the synthesized green CHG-0.6, CHG-
0.8, CHG-1.0, and CHG-1.2 cured resins, they were tested by thermogravimetric analysis,
and the results are shown in Figure 6. The weight loss as a function of the increase in
temperature of the four resins evaluated is similar. The inference of this observation is that,
notwithstanding the molar ratio differences in glyoxal in the resin formulations, similar
reaction products are obtained. A rather limited weight loss is observed in the 30–150
◦C range representing Region I. This loss should be due to the elimination/evaporation
of water and of lower molecular weight compounds, and the water lost being adsorbed
on the surface of the solid resin powder [34]. The 150–380 ◦C range named as Region
II is attributed to the dehydration of the hydroxyl groups formed during the reaction of
glyoxal with the CH amide groups. Region III is the stage in which the main loss occurs
and thus where the adhesive cross-linked network is destroyed due to the cleavage of
the polymer chains and their decomposition [24,34,35]. The final remaining solid in the
region IV is charcoal, with values in CHG-0.6, CHG-0.8, CHG-1.0 and CHG-1.2 of 16.5%,
9%, 12.6% and 13%, respectively. The solid CHG-0.8 resin has the least residual carbon, and
thus the glyoxal has the most complete reaction with the CH polyamide. This results in a
higher proportion of hydrogen, oxygen and nitrogen in the resin solids, thus causing the
gasification of N, H and O or water lost during network cracking.
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4. Conclusions

This work presents a new glyoxal-based green adhesive used for wood bonding by
co-reacting citric acid, hexamethylenediamine and glyoxal to synthesize CHG resins. Since
no formaldehyde was used throughout the preparation process, CHG can be considered
an environmentally friendly adhesive. LC-MS and FTIR results confirm the cross-linking
reaction between glyoxal and the synthetic polyamide, and good thermal stability of this
obtained resin can also be observed by TGA analysis. The CHG resin exhibited a good
water and moisture resistance and equally remarkable bond strength, when glyoxal’s molar
ratio to hexamethylene diamine is 0.8:1. CHG bonded plywood dry strength, with 24 h
cold water and 63 ◦C hot water soak wet strengths of 1.63 MPa, 1.37 MPa and 1.35 MPa,
respectively, thus satisfying the requirement of the China National Standard GB/T 9846-
2015 (≥0.7 MPa), and indicates that such a resin is greatly competitive as a substitute for
the existing UF resin adhesives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14142819/s1. Table S1. Oligomers identified by LC-MS
mass spectrometry of the CHG-0.8 resin; Figure S1. LC-MS results of CHG-0.8 resin (a–c).

Author Contributions: Q.Z. and G.X. contributed to performing the experiments, and Q.Z. wrote
the paper. X.X. conceived the idea, supervised the team, and revised the manuscript. A.P. revised
and proofread the manuscript. H.L. and G.D. analyzed part of the data. All authors have read and
agreed to the published version of the manuscript.
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