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Objectives: Cerebrovascular reactivity (CVR) measures the ability of cerebral blood vessels to change their diam-
eter and, hence, their capacity to regulate regional blood flow in the brain. High resolution quantitative maps of
CVR can be produced using blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in com-
bination with a carbon dioxide stimulus, and these maps have become a useful tool in the clinical evaluation of
cerebrovascular disorders. However, conventional CVR analysis does not fully characterize the BOLD response
to a stimulus as certain regions of the brain are slower to react to the stimulus than others, especially in disease.
Transfer function analysis (TFA) is an alternative technique that can account for dynamic temporal relations be-
tween signals and has recently been adapted for CVR computation.We investigated the application of TFA in data
on children with sickle cell disease (SCD) and healthy controls, and compared them to results derived from con-
ventional CVR analysis.
Materials andmethods:Data from62pediatric patientswith SCD and 34 age-matchedhealthy controlswere proc-
essed using conventional CVR analysis and TFA. BOLDdatawere acquired on a 3 TeslaMRI scannerwhile a carbon
dioxide stimulus was quantified by sampling the end-tidal partial pressures of each exhaled breath. In addition,
T1 weighted structural imaging was performed to identify grey and white matter regions for analysis. The TFA
method generated maps representing both the relative magnitude change of the BOLD signal in response to
the stimulus (Gain), aswell as the BOLD signal speed of response (Phase) for each subject. These were compared
to CVRmaps calculated from conventional analysis. The effect of applying TFA on data from SCD patients versus
controls was also examined.
Results: The Gain measures derived from TFA were significantly higher than CVR values based on conventional
analysis in both SCD patients and healthy controls, but the difference was greater in the SCD data. Moreover,
while these differences were uniform across the grey and white matter regions of controls, they were greater
in white matter than grey matter in the SCD group. Phase was also shown to be significantly correlated with
the amount that TFA increases CVR estimates in both the grey and white matter.
Conclusions:We demonstrated that conventional CVR analysis underestimates vessel reactivity and this effect is
moreprominent in patientswith SCD. By using TFA, the resulting Gain and Phasemeasuresmore accurately char-
acterize the BOLD response as it accounts for the temporal dynamics responsible for the CVR underestimation.
We suggest that the additional information offered through TFA can provide insight into themechanisms under-
lying CVR compromise in cerebrovascular diseases.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Blood-oxygen level dependent (BOLD) MRI is a simple and effective
approach for non-invasively imagingdynamic changes in cerebral blood
flow (CBF) at high temporal resolution. Since its introduction, BOLD has
become a standardized clinical sequence that has enabled the investiga-
tion of brain function and physiology in health and disease. One recent
and notable application of BOLD imaging is the quantification of
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cerebrovascular reactivity (CVR), which characterizes the physiological
capacity of the cerebral vasculature to modulate blood flow and can be
used to assess vascular dysfunction in the brain (Spano et al., 2013). As
such, CVR is a clinically relevant parameter that is closely associated
with cerebral autoregulatory function (Salinet et al., 2015).

CVRmeasures can be acquired by administering a vasoactive stimu-
lus, such as carbon dioxide (CO2) gas, to the subject during a BOLD scan.
By performing a linear temporal correlation between the BOLD signal
time-course and partial pressures of CO2 (PCO2) traces sampled from
the subject, detailed CVR maps of the brain can be generated. Previous
studies combining BOLD imaging and a CO2 stimulus have demonstrat-
ed that thesemaps can identify regional and global deficits in CBF regu-
lation across a wide range of disorders, including traumatic brain injury,
intracranial stenosis, moyamoya, and sickle cell disease (Mandell et al.,
2008; Mikulis et al., 2005; Mandell et al., 2011; Fierstra et al., 2010;
Chan et al., 2014; Han et al., 2011; Kim et al., 2016; Kosinski et al.,
2015). In addition, the use of novel computer-controlled gas sequencers
has enabled rapid and accurate targeting of PCO2 levels (Slessarev et al.,
2007), resulting in highly reproducible CVR results in both adults and
children (Kassner et al., 2010; Leung et al., 2016). However, recent in-
vestigations into the temporal dynamics of the BOLD response to a
CO2 stimulus have highlighted potential limitations to our understand-
ing and interpretation of CVR (Hetzel et al., 2003).

Conventional CVR analysis methods are designed to be sensitive to
magnitude differences in theBOLD response, but assume that its tempo-
ral dynamic properties are consistent across the entire brain. However,
changes in blood gasesmay affect the greymatter (GM) before reaching
the white matter (WM) tissue as a consequence of their relative vascu-
lar hierarchy (Thomas et al., 2014). In addition, regionally specific CBF
response delays have been noted between different populations (e.g.
native-born high altitude versus native sea level residents (Yan et al.,
2011)) and reductions in CVR have been shown to correlate with longer
regional arterial transit times (Poublanc et al., 2013). Such temporal dis-
crepancies are not accounted for in conventional CVR analysis. Another
important consideration is the rate at which the vasculature can alter
blood flow. The dynamic response to a stimulus requires a transient pe-
riod of vasodilation or constriction before CBF reaches steady state
(Hetzel et al., 2003). In a study on patients with steno-occlusive disease,
the rate of BOLD signal increase in response to CO2 step change was
modeled with an exponential function, demonstrating significantly
slower rise times in the affected hemisphere compared to healthy tissue
(Poublanc et al., 2015). The combination of these temporal factors can
lead to CVR maps exhibiting artificially reduced CO2 reactivity because
conventional CVR is calculated as a linear temporal correlation without
correcting for delayed responses and slowed dynamics in different
tissues.

Delayed and slowed vascular dynamics may have significant impli-
cations for the assessment of CVR in pathologies such as sickle cell dis-
ease (SCD). SCD is a genetic disorder affecting the oxygen carrying red
blood cells in the body, resulting in abnormal blood flow and vascular
complications (Switzer et al., 2006). In children, SCD is associated with
an increased risk of silent infarction and overt ischemic stroke due to
the combination of severe anemia, vasculopathy, and endothelial dys-
function (Switzer et al., 2006; Ohene-frempong et al., 2016). CVR has
been shown to be reduced in this population (Kim et al., 2016;
Kosinski et al., 2015), suggesting that the inability of the vasculature
to dilate may be a primary factor leading to ischemic damage in the
brain (Wang, 2007). However, the physiological mechanisms behind
this impairment has not been fully explored and it is currently unknown
whether low CVR in SCD is truly representative of exhausted
vasodilatory capacity caused by chronic hyperaemia, or a result of de-
layed and/or slower hemodynamic responses in the brain.

To investigate the temporal characteristics of BOLD CVR measures
obtained in children with SCD, transfer function analysis (TFA) can be
used. TFA is a technique that has previously been applied to the correla-
tion of cerebral autoregulationmeasures such as arterial blood pressure
and blood flow velocity (Zhang et al., 1998; Tzeng et al., 2012; Claassen
et al., 2016). Instead of computing CVR using a linear temporal correla-
tion, the BOLD and CO2 data time-series are analyzed in the frequency
domain. As a result, the magnitude (Gain) of a response to a stimulus
is calculated independently of any temporal offset (Phase) between
the measured waveforms. Duffin et al. (2015) proposed the application
of TFA to BOLD CVR data to demonstrate that conventional methods
generally underestimated CO2 reactivity as regions of slow response
are erroneously characterized as low or negative reactivity. Hence, the
quantification of themagnitude response as well as identification of re-
gions of significantly delayed or slowed responses may provide addi-
tional insights into the function of cerebral vessels that are not evident
in conventional CVR measures alone. However, current published data
is limited to a small sample of healthy controls and patients with severe
regional vasculopathy (Moyamoya) (Duffin et al., 2015), and quantita-
tive group comparisons remain unfeasible due to the insufficient subject
numbers and inherent heterogeneity of the impairment under
investigation.

The purpose of this study was therefore to investigate the applica-
tion of TFA in a population with known systemic cerebrovascular com-
promise, namely children with SCD (Kim et al., 2016; Kosinski et al.,
2015), and compare thesemeasures to those of healthy controls.Wehy-
pothesize that the separation of magnitude and phase contributions
using TFAwill correct any potential underestimation of CVR in both pa-
tients and healthy controls. In addition, the extent to which CVR is
corrected using TFA will correlate with the corresponding Phase calcu-
lated by TFA. We also hypothesize that TFA will have a greater effect
on patient data compared to controls, suggesting that the cerebral
blood vessels in children with SCD are slower to respond to a CO2

stimulus.
2. Materials and methods

2.1. Subjects and ethical approval

This is a retrospective study of CVR and structural MRI data acquired
from 62 pediatric SCD patients (age 10 to 18 years) and 34 agematched
controls. The SCD group consisted of patients with HbSS or HbSβ0 and
had no history of overt stroke or other neurological impairments. The
procedures in the described study conform to The Code of Ethics of
the World Medical Association (Declaration of Helsinki) and were ap-
proved by the Research Ethics Board of The Hospital for Sick Children.
All patients and healthy controls provided informed written consent
prior to participating in the study.
2.2. Experimental protocol

CO2 stimulus: Prior to imaging, subjects were fitted with a breathing
mask connected to a computer-controlled gas sequencer (RespirAct,
Thornhill Research Inc., Toronto, Canada) (Slessarev et al., 2007). The
gas sequencer precisely controls the flow and concentration of oxygen
(O2) and CO2 gas delivered to the mask while simultaneously sampling
the exhaled end-tidal partial pressures of O2 (PETO2) and CO2 (PETCO2).
Measurements of PETCO2 have been shown to be an effective surrogate
for quantifying a hypercapnic stimulus as it closely correlates to arterial
blood gas levels (Ito et al., 2008). The subjects wear the mask while in
the MRI during the CVR measurement, in which the sequencer alter-
nates between 60 s of targeted normocapnia (PETCO2 = 40 mmHg)
and 45 s of targeted hypercapnia (PETCO2 = 45 mmHg) for a total of
8 min, as illustrated in Fig. 1a. PETO2 was maintained at 100 mmHg for
the duration of the CVR measurement. The mean PETCO2 in
normocapnia for all subjects was 39.9 ± 1.1 mmHg and in hypercapnia
was 44.4±1.2mmHg.Mean PETO2wasmeasured at 104.6±4.0mmHg
in normocapnia and 106.1 ± 4.2 mmHg in hypercapnia.



Fig. 2. Representative slices from a CVRConv, CVRGain, and Phase map for a) a 11 year old female with SCD and b) a healthy 12 year old female control subject.
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Fig. 1. a) The targeted end-tidal values of the CVR protocol shown in grey, and the corresponding sampled PETCO2 and PETO2 waveforms for a single subject are overlaid in red and blue,
respectively. b) Examples of the BOLD response to CO2 step change for an SCD patient and a healthy control subject. The BOLD signal was averaged over the entire greymatter (black line)
and white matter (grey line) and plotted over time. A low pass filter was performed on the data to reduce signal fluctuations due to background and physiological noise. The blue shaded
region represents the periods of normocapnia, and the orange shaded region indicates the administration of the hypercapnic stimulus. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Table 2
Comparison of average Phase inWM and GM between SCD patients and healthy controls.
Negative Phase indicates that the BOLD signal lags behind the CO2 waveform. Values are
expressed as mean Phase ± standard deviation in units of radians.

Phase SCD patients Healthy controls p-Value

GM −0.387 ± 0.142 −0.390 ± 0.121 0.907
WM −0.525 ± 0.173 −0.485 ± 0.139 0.248
WM - GM −0.138 ± 0.137 −0.095 ± 0.101 0.107
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2.2.1. MRI protocol
Imaging for the study was performed on a 3 Tesla clinical MRI

(MAGNETOM Tim Trio, Siemens Healthcare, Erlangen, Germany) with
a 32-channel phased array head coil. CVR data were acquired using a
BOLD scan that was run in synchrony with the aforementioned CO2

stimulus (Fig. 1b). The BOLD pulse sequence was a single-shot gradi-
ent-echo EPI with the following parameters: TR = 2000 ms, TE =
30ms, FOV=220 × 220mm,matrix=64× 64, slices= 25, slice thick-
ness = 4.5 mm, flip angle =90°, volumes = 240, time = 8:04 min. In
addition, a 3D T1-weighted anatomical image was acquired for co-reg-
istration and tissue classification: TR = 2300 ms, TE = 2.96 ms,
FOV = 256 × 240 × 192 mm, voxel = 1.0 mm3 isotropic, flip
angle =9°, GRAPPA = 2, time = 5:03 min.

2.2.2. Data analysis
MRI data and sampled PETCO2 waveformswere transferred to an in-

dependent workstation for post-processing and TFA. The BOLD data se-
ries were first corrected for motion using MCFLIRT (Jenkinson et al.,
2002). TFA was performed by computing the voxel-wise frequency re-
sponse function between the principal harmonic of the BOLD data and
its corresponding PETCO2 time series, as previously described by Duffin
et al. (2015). The resulting maps, which were generated by selecting a
frequency of 0.01 Hz to reflect the temporal period (1/frequency) of
the CO2 stimulus paradigm, consists of an absolute magnitude (Gain)
and a complex argument (Phase) calculated for each voxel. The Gain
based measure of CVR (CVRGain) represents the magnitude of the
power transfer between the stimulus and the response at 0.01 Hz, and
the Phase represents a combined measure of the delay and dynamics
of the response relative to the stimulus reference point. The reference
at which the delay between the stimulus and response equals zero
was manually chosen by aligning the mean BOLD signal across the en-
tire brain with the PETCO2 waveform. The CVRGain and Phase maps gen-
erated for each subject were co-registered to the T1-weighted
anatomical images using FSL-FLIRT (Jenkinson and Smith, 2001). Next,
GMandWMmasks of each subjectwere computed from the T1-weight-
ed anatomical data using FSL-FAST (Zhang et al., 2001) to calculate re-
gional averages.

Conventional CVR (CVRConv) maps computed from a linear temporal
correlationwere also created for comparison. The BOLD and PETCO2 data
were temporally aligned as before, and each voxel value was defined by
the linear regression slope: CVRConv = %ΔBOLD/ΔPETCO2, where
%ΔBOLD is the relative change in BOLD signal andΔPETCO2 is the change
in end-tidal CO2. These maps were co-registered to the T1-weighted
data and averaged over GM and WM regions, in the same manner as
the CVRGain and Phase maps.

To compare differences between SCD patients and healthy controls,
a Student's t-testwas performed on theGMandWMphase between the
two groups. In addition, the change in value betweenmean CVRConv and
CVRGain in GM and WM was calculated and compared between groups
to illustrate how TFA results compensate for regional temporal delays.
Differences in change were computed using a z-test (Cohen, 1988).
Table 1
Comparison of CVRConv and CVRGain in grey matter (GM) and white matter (WM) within
SCD and Control groups. The ratio of CVR between WM and GM is also included to show
that transfer function analysis has a significantly greater effect in the WM than GM for
SCD patients. Values expressed as mean CVR ± standard deviation in units of %ΔBOLD/
mmHg.

SCD patients Healthy controls

CVRConv CVRGain p-Value CVRConv CVRGain p-Value

GM 0.098
± 0.034

0.142
± 0.054

4.48 ×
10−7

0.188
± 0.052

0.263
± 0.049

6.54 ×
10−8

WM 0.068
± 0.023

0.106
± 0.033

1.40 ×
10−11

0.116
± 0.029

0.162
± 0.028

7.08 ×
10−9

WM/GM 0.705
± 0.122

0.796
± 0.237

7.21 ×
10−3

0.659
± 0.083

0.653
± 0.085

0.469
The role of Phase in the TFA correction of CVR estimates was further in-
vestigated by performing a linear regression analysis between the rela-
tive change in calculated CVR and the Phase delay computed by TFA. A
p-value of less than 0.05 was considered statistically significant.

3. Results

All data were successfully analyzed with the TFA method and visual
inspection of the maps did not reveal any anomalous results to be ex-
cluded (e.g. abnormally high or low values). The mean age at the date
of MRI scanning was 14.6 ± 2.6 years for the SCD group (30 males, 32
females) and 15.0 ± 4.7 years for controls (17 males, 17 females).
Haematology results from the patients' most recent clinic visit showed
a mean haematocrit of 0.275 ± 0.041, which is significantly lower
than the expected values in healthy controls (Daniel, 1973). The average
time interval between the blood sample analysis and imaging was
32.7± 45.2 days, with 3 patients whose clinic visit andMRI were great-
er than 160 days apart. The average interval is 24.3 ± 23.4 days if the 3
outliers are removed. Representative slices from the CVRConv, CVRGain,
and Phasemaps of an example SCDpatient and an example healthy con-
trol are provided in Fig. 2. The figure shows qualitatively that CVRGain

maps have overall higher values for both subjects.
A quantitative summary of group results comparing CVRConv to

CVRGain are provided in Table 1. In both SCD and control groups, the dif-
ference between Gain and CVR is significant in GM andWM. However,
by examining the ratio between WM and GM, it becomes evident that
TFA has a significantly greater effect on SCD patients compared to con-
trols. The increase is particularly more pronounced in the WM of SCD,
which is also subtly visible in the CVR maps in Fig. 2. This observation
corresponds to the representative Phasemaps displaying larger regions
of high temporal lag in patientWM compared to controls. Table 2 com-
pares mean Phase values between groups. The GM is the dominant
source of signal and, hence, is used as the reference for phase alignment.
As such, Phase values in the GM for both groups are very similar and
only the relative temporal lag in theWMPhase can be observed. Taking
the average relative difference between WM and GM Phase, a greater
distinction between patient and control groups exists but the results
were not statistically significant, which is unexpected as Phase was
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Fig. 3. Scatter plot showing the non-linear relation when comparing the difference
between WM and GM. ΔPhase is calculated as the mean Phase difference between the
WM and GM of each subject. The GM/WM ratio of the CVR increase due to TFA
(CVRGain/CVRConv) is plotted along the x-axis.
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predicted to be closely associated with the change in CVR caused by ap-
plying TFA. A possible explanation for this discrepancy is that phase
change is calculated as a difference, whilemagnitude change is calculat-
ed as a ratio. This effect is shown in Fig. 3, where the relation between
WM to GM Phase difference (ΔPhase) and the CVRGain/CVRConv ratio is
plotted. There appears to be a logarithmic pattern in the patient data,
resulting in a subset of points where a minor increase in ΔPhase is
met by a significant increase in CVR ratio. In the control data, the
range of ΔPhase remains confined in the ‘linear’ range and the logarith-
mic pattern is not observed.

Fig. 4 plots the CVRConv versus CVRGain in both patients and controls.
A linear least squares fit has been overlaid to illustrate the different ef-
fect of TFA on the two groups. In bothGMandWM, thefit for the patient
data has a significantly steeper slope than for controls, suggesting that
CVR estimates in SCD patients are more strongly affected by the TFA
processing method. These results are outlined in Table 3.

The influence of Phase on the underestimation of CVR is illustrated in
Fig. 5. A strong linear correlation is observed between the increase in
mean CVR using the TFA method and the corresponding measured
Phase lag in both the GM (r = 0.72, p = 1.2 × 10−16) and WM (r =
0.55, p = 6.2 × 10−9). There is no statistically significant difference in
slope between the patient and the control group or between GM and
WM (p N 0.2).

4. Discussion

The present study demonstrates the application of the TFA method
in pediatric patients with SCD, a population with systemic cerebrovas-
cular impairment. This method is an extension of conventional CVR cal-
culations as it accounts for and quantifies the temporal dynamic
component of the CBF response to a hypercapnic stimulus across differ-
ent tissue regions. Using data acquired from BOLD MRI in combination
with a CO2 step stimulus, we report group results of TFA in children
with SCD and healthy controls, and contrast them to conventional CVR
maps.

In our cohort of pediatric subjects, we observed that patients with
SCD have significantly lower CVR than healthy controls, which is in
agreement with previous literature in children and adults (Kim et al.,
Table 3
Linear fit parameters (slope ± standard deviation) of CVRGain versus CVRConv. The p-values in
provided.

SCD patients

Slope p-Value

GM 1.314 ± 0.103 4.31 × 10−19

WM 1.173 ± 0.103 1.25 × 10−16
2016; Kosinski et al., 2015; Nur et al., 2009). Themost noticeable differ-
ence after application of TFA is that the CVRGain values are higher than
CVRConv in both the patient and control groups. This finding occurs be-
cause CVRGain values are insensitive to potential temporalmisalignment
of the BOLDand CO2waveforms, and regional differences in the speed of
response (Duffin et al., 2015). In addition, focusing the analysis on a sin-
gle harmonic frequency (0.01 Hz) removes spurious higher frequency
signal fluctuations. CVRGain therefore serves as a more accurate repre-
sentation of the vessels' capacity to increase or decrease CBF. Mean-
while, the temporal dynamic aspect of the CBF response is
represented by Phase. As Fig. 2 illustrates, the region of greater Phase
lag (dark colours) is more prevalent in theWM of the SCD subject com-
pared to the control. This phase difference coincides with a further re-
duction in WM CVRConv relative to CVRGain. As outlined in Table 1, the
ratio of WM/GM CVRGain is significantly higher than the CVRConv ratio
in the patient group (p=0.007), while the corresponding ratios in con-
trols are relatively unchanged (p = 0.469).

The differences in CVR ratios suggest that the transient BOLD re-
sponse in the WM of SCD is significantly slower compared to that in
controls, which is exemplified in Fig. 2b. While we observed that the
mean Phase lag between GM and WM in the SCD group is also greater
than in controls, the difference between the two groups was only ap-
proaching statistical significance (p = 0.107). This may be because the
calculation of the WM to GM CVR ratio results in a non-linear relation
that is not reproduced when computing the WM to GM Phase differ-
ence, as illustrated in Fig. 3. As a result, a significant difference between
measures of CVR ratiosmay not necessarily translate to a significant dif-
ference in Phase change. However, as demonstrated in Fig. 5, which ex-
amines GM and WM data separately, the calculated Phase is directly
correlated to amount by which the TFA corrects the underestimation
of CVR. Therefore, the Phase information in combination with the
CVRGainmaps from TFA does provide amore robust and accurate under-
standing of CVR impairment in SCD.

In Table 2, the lack of Phase difference between groups in theGM is a
consequence of the methodology used to set the reference. The refer-
ence is individually determined for each subject by temporally shifting
the data to maximize the coherence between BOLD and CO2 signals.
An alternative approach would be to align the BOLD and CO2 signal
dicating the significance of each correlation as well as the difference between slopes are

Healthy controls Change in slope

Slope p-Value p-Value

0.748 ± 0.108 7.40 × 10−8 1.38 × 10−4

0.707 ± 0.116 8.09 × 10−7 3.46 × 10−3



-1.0

-0.8

-0.6

-0.4

-0.2

0.0
0 1 2 3

P
h

as
e 

(r
ad

)

CVRGain/ CVRConv

Patient

Control

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
0 1 2 3

P
h

as
e 

(r
ad

)

CVRGain/ CVRConv

Patient

Control

a) b)

Fig. 5. Scatter plots demonstrating the relation between Phase and the CVRGain/CVRConv ratio in the a) GM and b)WM. Subject data points are identified as either Patients (■) or Controls
(◊). In both plots, the effect of TFA on CVR estimates is linearly correlated with the Phase lag detected by TFA.

629J. Leung et al. / NeuroImage: Clinical 12 (2016) 624–630
transitions to determine the Phase reference, similar to the
normocapnia-hypercapnia boundaries indicated in Fig. 1b. By doing
so, a statistically significant Phase difference between SCD patients
and healthy controls may potentially be revealed in both GM and WM.
However, this strategywould involve visuallymatching thewaveforms,
which is subjective and introduces operator dependent bias. Therefore,
themore systematic approach of utilizing coherencewas chosen for our
analysis.

Our results also highlight how CVRGain maps compare to CVRConv

across different subject groups. As plotted in Fig. 4, the TFA approach
has a greater effect on CVR estimates (greater slope) in SCD patients
compared to healthy controls in both GM andWM. This is an important
finding as it demonstrates that the temporal dynamics of the BOLD re-
sponse is slower in SCD and is partially responsible for the reduction
in measured CVRConv. From a clinical perspective, it becomes necessary
to investigate whether CVRGain alone is a reliable predictor of ischemic
injury in SCD, or if the Phase lag also represents a significant component
of the impaired cerebrovascular reserve which could lead to tissue
ischemia.

The limitations of conventional CVR analysis have been known for
many years and various other techniques have also been employed to
account for the temporal characteristics of the BOLD response.
Blockley et al. (2011) proposed a sinusoidal stimulus paradigm so that
the calculation of CVR will default to a single frequency analysis.
While this approach removes the transient phase of the BOLD response,
it necessitates the use of sophisticated equipment to control the stimu-
lus, which may not be feasible in most clinical settings. Moreover, the
quantification of transient period in response to a step function stimulus
may be of clinical value. More recently, Poublanc et al. (2015) intro-
duced the concept of parsing the BOLDdata into a steady state and a dy-
namic regime. This enabled the fitting of the transient rise and fall of the
BOLD signal within the dynamic regime into a hemodynamic response
function characterized by an exponential function with a time constant
Tau. However, the use of a single exponential function to model the
BOLD response to a stimulus has not yet been validated.We chose to im-
plement TFA in our study for its simplicity and robust nature, and be-
cause it is a concept that is already well recognized in the analysis of
cerebral hemodynamics (Zhang et al., 1998).

The primary issue with CVR imaging in a population such as sickle
cell disease is that the BOLD signal does not directly measure blood
flow change andmay be confounded by low haematocrit (or Hb) levels.
However, an fMRI study by Zou et al. (2011) showed the BOLD signal
was not correlated to Hb concentration in children with SCD. They pro-
posed that any reduction in theBOLD response due to lowHb ismet by a
corresponding increase in CBV, that balances the net total Hb count in a
given voxel. A separate study using positron emission tomography in
adults with chronic renal failure, CO2 reactivity measurements were
shown to be significantly correlated to haematocrit (Kuwabara et al.,
2002). Their findings suggest that reductions in BOLD-CVR are primarily
driven by physiological impairment irrespective of Hb concentration.

One fundamental aspect of this experiment that deviates from the
original CVR TFA study is the CO2 stimulus paradigm. In designing a
CVR protocol for children, the target PETCO2 during hypercapnia step
was programmed to 45 mmHg, which is considerably lower than the
50 mmHg described by Duffin et al. (2015) The cycles of hypercapnia
were also shorter (45 s) as younger subjects are less tolerant to
prolonged periods of increased CO2. Despite these differences, we
were able to generate clear maps of Phase differences that correspond
well to anatomical features of the brain. This suggests that a smaller
CO2 increase and reduced exposure to hypercapnia can still produce
reasonable data for TFA. However, the potential errors that may accu-
mulate from such changes cannot be estimated without a direct com-
parison between the two stimuli. We note that the results presented
in this study are based onwhole-brain GMandWMaverages to demon-
strate differences between groups, and that subsequent research may
focus on more detailed examinations of the brain to determine specific
regional properties of sickle cell and other cerebrovascular diseases.

Future studiesmay also consider TFA acrossmultiple harmonics. The
choice to focus the analysis on a single frequency (0.01 Hz) was based
on the period of our CO2 stimulus paradigm (~100 s). Higher order har-
monics were discarded in order to remove noise and simplify the inter-
pretation of the CVR data. However, there may be valuable information
in these other frequencies that have yet to be investigated but such en-
deavours are beyond the scope of this study. Additional research
outlining the applications of multiple frequency analysis is needed be-
fore it can be reliably implemented in clinical studies.

In conclusion, we present the first group analysis data showcasing
how CVR results differ between TFA and conventional analysis tech-
niques in children with SCD compared to healthy controls. The CVRGain

and Phase values computed from TFA represent the two components
that comprise CVRConv. As such, they can reveal clinically relevant infor-
mation that CVRConv alone does not provide. These aspects should be
considered in future studies and analyses involving CVR in subjects
with SCD as well as other cerebrovascular diseases.
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