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Korean ginseng (Panax ginseng) is associated with a variety of therapeutic effects, including antioxidative,
anti-inflammatory, vasorelaxative, antiallergic, antidiabetic, and anticancer effects. Accordingly, the use
of ginseng has reached an all-time high among members of the general public. However, the safety and
efficacy of ginseng in transplant recipients receiving immunosuppressant drugs have still not been
elucidated. Transplantation is the most challenging and complex of surgical procedures and may require
causation for the use of ginseng. In this regard, we have previously examined the safety, immunological
benefits, and protective mechanisms of ginseng with respect to calcineurin inhibitor-based immuno-
suppression, which is the most widely used regimen in organ transplantation. Using an experimental
model of calcineurin inhibitor-induced organ injury, we found that ginseng does not affect drug levels in
the peripheral blood and tissue, favorably regulates immune response, and protects against calcineurin
inhibitor-induced nephrotoxicity and pancreatic islet injury. On the basis of our experimental studies and
a review of the related literature, we propose that ginseng may provide benefits in organ transplant
recipients administered calcineurin inhibitors. Through the present review, we aimed to briefly discuss
our current understanding of the therapeutic benefits of ginseng related to transplant patient survival.
� 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Korean ginseng (Panax ginseng Meyer) has been spent widely as
a medicinal and general health supplement for a diversity of dis-
eases worldwide [1,2]. It is one of the most highly regarded herbs in
the Orient, where it is used to promote health and general body
vigor and prolong life span. The generic name “Panax” originates
from the Greek word “panacea,” which denotes “cure all diseases,”
and true to its name, ginseng has been certified to have wide me-
dicinal uses, including beneficial effects in diabetes, hypertension,
inflammatory diseases, and cancer [3e5], and as an immune
modulator [6e9]. Nevertheless, although the therapeutic potential
of ginseng has been studied extensively, its effects in transplant
recipients taking immunosuppressant drugs remain undetermined.
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With respect to transplantation, a calcineurin inhibitor
(CNI)-based immunosuppression with cyclosporin A (CsA) and
tacrolimus (Tac) is the most widely used regimen in current
clinical practice, because this regimen can markedly decrease
acute rejection rates and provides excellent early outcomes.
However, calcineurin [10e12] lacks T cell specificity, and in
addition to its immunosuppressive effects, inhibition by CNIs
can induce toxicity [13]. Indeed, the notable side effects asso-
ciated with the administration of CNIs can hinder the survival
of long-term kidney graft and patient, and cause major addi-
tional morbidity [14]. This is the case not only in kidney
transplantation but also with respect to the transplantation of
nonrenal solid organs and in many other diseases requiring
therapy with these drugs [15]. Thus, both the nephrotoxic and
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general toxic effects of CNIs are a major concern in clinicians,
pathologists, and scientists [16e18].

In recent years, ginseng has been shown to have attractive
beneficial effects in transplantation-related animal models, such as
those for ischemia-reperfusion injury, CsA-induced renal fibrosis,
and diabetes mellitus [19e22]. In this paper, we review the litera-
ture on ginseng studies that have focused on experimental disease
modeling related to the use of CNIs in transplantation. We sum-
marize the safety, immunological benefits, and efficacy of ginseng
with respect to the underlying molecular and cellular mechanisms
(Fig. 1). This review provides a succinct assessment of our current
understanding of the pharmacological benefits of ginseng that
conduce to graft survival.

2. Safety aspects

Transplant patients are generally placed on a regimen of two to
three immunosuppressive drugs to prevent graft rejection, along
with a wide range of additional drugs for the treatment of other
underlying diseases, and to counteract the side effects of CNI
treatment. However, as the number of medications patients
consume increases, there is a concomitant increase in the likeli-
hood of potentially detrimental drug interactions, and indeed, such
interactions have been reported in the literature since the begin-
ning of CsA utilization (1986: Erythromycin; early 1990s; Ketoco-
nazole; 1993 grapefruit interaction). Polypharmacy is an accepted
part of a transplant patient’s everyday regimen. Furthermore, in
addition to the inevitability of drug interactions in transplant pa-
tients, the main concern when using CNIs is their relatively narrow
therapeutic windows.

Two main mechanisms that affect the maintenance of thera-
peutic CNI levels are the activities of the drug-metabolizing enzyme
cytochrome P-450 3A4 (CYP3A4) and the drug efflux pump P-
glycoprotein (P-gp) [23,24]. Most transplant physicians are well
aware of the fact that, by interfering with the activities of CYP3A4
and P-gp, some conventional medications may affect the pharma-
cokinetic profile of CNIs. To date, however, the question of whether
ginseng can elicit similar effects on CNIs remains unanswered.

Ginsenosides, which are the active components of ginseng, are
widely agreed to be responsible for both the pharmacological ac-
tivity and drug interaction potential of ginseng. Although preclin-
ical papers have evaluated the influence of various ginsenosides on
CYP, glucuronidation, and drug transport activity, the results ob-
tained in these investigations have been mostly inconclusive, due
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Fig. 1. Conceptual summary of experimental studies using ginseng and calcineurin i
to differences in the ginseng products used and the adopted
methodologies. Moreover, the findings of drug interaction studies
in humans have tended to be inconsistent and have largely yielded
results that are either negative or suggestive of only weak in-
teractions [25].

We have previously reported on the beneficial effect of red
ginseng in chronic CsA-induced renal injury in mice [19]. In
humans, 50 ~ 100 mg/kg of ginseng is the manufacturer’s rec-
ommended dose, but this dose may differ from that needed for
protective action in an experimental mouse model of CsA ne-
phropathy. Therefore, as a preliminary study, we determined the
optimal dose of red ginseng in our mouse model. We subse-
quently examined the effects of three different doses of red
ginseng (200, 400, and 800 mg/kg), and 200 and 400 mg/kg of
ginseng showed beneficial effects without changing the CsA
level, while the highest dose (800 mg/kg) was found to increase
the CsA level in the blood and kidney tissues compared with
treatment with CsA only. Furthermore, the highest dose of
ginseng enhanced the expression of markers for oxidative stress
and the level of fibrosis compared with the CsA only and CsA plus
200 or 400 mg/kg red ginseng-treated groups. From this study,
we found the protective dose of ginseng in an experimental
mouse model of CsA nephropathy. In regards to safety, impor-
tantly, we can conclude that the use of large doses of ginseng
with CsA increases the side effects of CsA by increasing the CsA
levels in the blood and kidneys.

Because little research has been done on drug interactions be-
tween CNIs and ginseng, we predicted the drug interactions by
searching the literature for known substrates and inhibitors of
metabolic enzymes. Other studies using human liver
microsomes have shown that Rd is generally able to interact with
drugs that are metabolized by CYP2C9 and CYP3A4, whereas
CYP2C9 and CYP3A4 are suppressed by Rb1, Rb2, Rc, and Rd [26]. In
contrast, clinical studies involving healthy volunteers (who
received 25 mg/kg/day of ginseng) found that ginseng does not
affect a number of CYP isoforms, including CYP3A4, CYP1A2,
CYP2E1, and CYP2D6, although a slight inhibition of CYP2D6 has
been demonstrated in elderly individuals [27,28]. There has been
no established interaction between ginseng and CNIs, but there is
sufficient possibility based on the literature. In spite of the gener-
ally favorable findings for ginseng, the possibility that the combi-
nation of ginseng and CNIs may cause adverse effects in tissues
cannot be ruled out. Therefore, the evidence indicates that ginseng
can be considered for use in renal transplant recipients taking CNIs,
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but patients should be carefully monitored for possible adverse
reactions [19].
3. Immunological benefits

Subsequent to kidney transplantation, the alloimmune re-
sponses induced by the activation of CD4þ T cells mediate most of
the allograft rejections [29]. Therefore, most immunosuppressants
have been originated to suppress the activation and differentiation
of effector CD4þ T cells to prevent the induction of the alloimmune
responses [30,31]. In current clinical practice, the first choice im-
munosuppressants are CNIs (particularly Tac), and 99.1% of
immunosuppressant protocols are CNI-based [32]. This is because
CNIs have been shown to be more effective in inhibiting the in-
duction of acute rejection episodes and improving 1-year allograft
survival than the azathioprine and steroids [33,34].

In contrast, however, the use of CNIs has not significantly
improved long-term allograft survival when compared with that
achieved in the azathioprine era [14,35]. Chung et al [32] reported
that Tac suppresses T helper type (Th) 1, Th2, and regulatory T
(Treg) cells in a Tac level-dependent manner, although it does not
inhibit Th17 cells, even at high concentrations. Accordingly, current
Tac-based immunosuppression is inadequate for the suppression of
Th17 cells in kidney transplant patients, and thus, dysregulation of
Th17 and Tregs may be related to the development of chronic
allograft dysfunction.

Ginseng is well known as an immune modulator [6e9], and the
roots (primarily), stems, and leaves of ginseng, along with their
various extracts, have been used for keeping immune homeostasis
and promoting resistance to illness or microbial infection via im-
mune system effects. Ginseng has recently received attention as a
potential therapy for the prevention of autoimmune immune dis-
ease [36e39]. In this respect, ginseng is known to promote the
generation of immunosuppressive Tregs through the activation of
the transcription factor forkhead box protein P3 and has been
demonstrated to have a favorable effect on a mouse model of
autoimmune encephalomyelitis and multiple sclerosis. Interest-
ingly, Jhun et al [40] have examined that ginseng could attenuate
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Fig. 2. Schematic diagram summarizing the predicted mechanisms whereby ginseng in
regulation of Th17 and Treg cells during cyclosporin A-induced immunosuppression. Th17,
arthritis in an experimental mice model of collagen-induced
arthritis through suppression of Th17 differentiation via prevent-
ing the phosphorylation of signal transducer and activator of
transcription (STAT) 3 and reciprocally increasing Treg populations.

However, little is currently known with respect to how the
immunological functions of ginseng influence the status of trans-
plant patients taking immunosuppressants. In this regard, Heo et al
[21] investigated the influence of cotreatment of ginseng with CsA
on a CD4þ T cells population and the ability of these cells to pro-
voke cytokines after stimulation with alloantigen or T cell receptor,
which served to mimic the conditions characterizing rejection.
They found, however, that the cotreatment with red ginseng and
CsA had no significant effect on the differentiation of naïve T cells to
Th1 or Th2 cells or their ability to produce related cytokines.

The same authors also examined the reciprocal regulation of
Th17 cells and Tregs, whereby the relative activation of STAT3 and
STAT5 directly dictates the outcome of IL-17 production in CD4þ T
cells [41] during treatment with CsA and red ginseng. Interestingly,
they found that the population of Th17 cell and STAT3, which is its
transcription factor, were dramatically decreased by red ginseng
and that the CsA-induced inhibition of Treg differentiation was
significantly recovered by red ginseng.

These results thus provide evidence that supplementation with
ginseng can confer a degree of immunological safety in CNI-based
immunosuppression, and that ginseng plays as an immune regu-
lator via the reciprocal regulation of Th17 and Treg cells (Fig. 2).
These findings accordingly suggest a rationale for the treatment of
ginseng in transplant and immune disorder patients taking CNIs.
4. The protective mechanism of ginseng

Chronic allograft injury, the main cause of kidney transplant
failure, is a frequent occurrence and often results in the need for
dialysis. Renal allograft failure is the most common reason for end-
stage kidney disease and is a factor associated with 25% to 30% of
patients waiting for kidney transplants [42]. CNI nephrotoxicity is a
major contributor to chronic allograft injury, and almost all renal
transplant recipients exhibit chronic CsA-induced nephropathy
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within10 years of the commencement of CNI treatment [43]. The
use of CNIs in kidney transplant recipients is also associated with
higher incidences of hypertension and dyslipidemia and an
increased risk of cardiovascular events [16,44]. Overall, CNI-related
complications can lead to poor long-term outcomes in kidney
transplant recipients.

Oxidative stress is a common pathway underlying chronic CNI-
induced nephropathy [45e47]. High levels of oxidative stress
induced by chronic CsA administration have been demonstrated to
cause structural and functional kidney impairment via the induc-
tion of free radical species in the kidney, which, in turn, may pro-
mote apoptotic and autophagic cell death [48e50]. Given that
oxidative stress can be an important contributor to the pathogen-
esis of chronic diseases, the ability of ginseng and its constituent
ginsenosides to improve disease symptoms via antioxidant mech-
anisms is of particular interest. However, the influence of ginseng
on chronic CNI-induced oxidative renal injury has yet to be studied
in depth. In this review, we describe the few studies that have
investigated the effects of ginseng on chronic CNI-induced renal
injury in general.

In a study using an experimental mousemodel and a cell culture
system, Doh et al [19] investigated the effect of red ginseng on
chronic CsA-induced nephropathy. This study demonstrated the
protective effect of red ginseng against CsA-induced renal injury in
mice and treatment was associated with decreased blood urea ni-
trogen, interstitial inflammation, fibrosis, and apoptosis. Moreover,
in vitro and in vivo results revealed that the antioxidant effect of
ginseng is associated with a hold in the progression of chronic CsA-
induced nephropathy. These findings provided the first evidence of
a protective effect of ginseng against CsA-induced renal injury.

Lim et al, performed further experiments to elucidate the
mechanism of protection of ginseng for damage caused by CNI
treatment. It is known that prolonged oxidative stress caused by
CNI treatment causes excessive autophagosome formation, as an
adaptation to stress, as well as lysosomal dysfunction [49,51]
(Fig. 3). The excessive autophagosomes resulting from CNI treat-
ment are not effectively degraded due to the impaired lysosomal
Fig. 3. Schematic diagram summarizing the predicted mechanism whereby ginseng
tacrolimus augments autophagosome formation as an adaptation to stress and lysosomal dy
autophagic clearance (lysosomal degradation and autophagosome fusion with lysosomes). Th
these circumstances, ginseng treatment improves the autophagic clearance function by enh
inhibitor.
function (autophagosome fusion with lysosomes and lysosomal
degradation). The resulting accumulated autophagosomes in cells
lead to autophagic cell death [52]. Under these circumstances,
in vivo and in vitro studies showed that ginseng treatment atten-
uated excess CsA-induced autophagosome formation as measured
by autophagosome markers (a phospholipid-conjugated form of
microtubule-associated protein light chain 3 and beclin-1) and
protected lysosome function [51]. These results showed that the
antioxidative effect of ginseng might contribute to reducing CNI-
induced autophagic cell death (Fig. 3).

Abundant evidence indicates that oxidative stress also plays a
central role in the process of biological aging [53]. In this regard,
Klotho has recently been identified as an antiaging gene that is
expressed primarily in the kidneys [54,55]. A reduction in the
expression of this gene induces an accelerated aging-like syndrome
in mice, whereas overexpression extends the life span of these
animals [55e57]. To determine whether Klotho is implicated in the
mechanism underlying the antiaging effect of ginseng, Lim et al
[58] investigated whether ginseng upregulates Klotho and its
antiaging signaling in response to Tac-induced oxidative stress.
Ginseng was indeed found to reverse the Tac-induced reduction in
Klotho levels in the mouse serum and kidney tissues. Tac-induced
oxidative stress in an experimental mouse was thus reduced by
ginseng treatment, with concomitant functional and histological
improvements. In addition, in vivo and in vitro studies revealed that
the Tac-induced reduction in Klotho levels promoted the PI3K/AKT-
mediated phosphorylation of forkhead box O3a (FoxO3a), which
appeared to be present in an inactive form in the cytoplasm.
However, restoration of Klotho levels by ginseng induced the nu-
clear translocation of FoxO3a via the suppression of PI3K/AKT ac-
tivity and an increase in manganese-dependent superoxide
dismutase levels in HK-2 cells. Based on the proposed mechanism,
ginseng maintained Klotho expression, thereby protecting against
the oxidative damage and apoptotic cell death associated with Tac-
induced toxicity. These results, therefore, provided evidence of the
protective mechanism of ginseng via the antiaging gene Klotho in
response to oxidative stress injury (Fig. 4).
influences autophagic clearance function. Prolonged oxidative stress induced by
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Fig. 4. Schematic diagram summarizing the predicted mechanism whereby ginseng influences regulation of the antiaging gene Klotho. PI3K/AKT-mediated phosphorylation
of FoxO3a is induced by reduced Klotho expression in response to tacrolimus treatment. Under these conditions, FoxO3a appears to be maintained in an inactive form in the
cytoplasm. However, the restoration of Klotho levels in response to ginseng treatment induces the nuclear translocation of FoxO3a via the suppression of PI3K/AKT activity and an
increase in the levels of MnSOD. By maintaining Klotho expression, ginseng may prevent tacrolimus-induced oxidative damage and apoptotic cell death. These findings provide
evidence for the protection mechanism of ginseng via the antiaging gene Klotho against a background of oxidative stress-associated injury. FoxO3a, forkhead box O3; P, phos-
phorylation; MnSOD, manganese-dependent superoxide dismutase.
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As mentioned above, although CNIs are widely used as main-
tenance immunosuppressants in renal transplant recipients, they
can be the cause of notable metabolic abnormalities. In particular,
new-onset diabetes after transplantation occurs in 10e25% of the
patients taking Tac [59,60], thereby reducing graft survival and
increasing the risk of infectious and cardiovascular diseases [61].
Although the pathogenesis of Tac-induced diabetes mellitus is
currently unclear, our group and others have demonstrated that the
direct toxic effects of Tac on pancreatic beta cells, together with
oxidative stress, play key roles in the development of this disease
[52,62e64]. Lim et al [20,51] showed that ginseng can alleviate islet
dysfunction and decrease oxidative stress and autophagic vacuoles
in both CsA- and Tac-induced pancreatic beta-cell injury models.
Co-treatment with ginseng decreased autophagosome formation
and attenuated lysosomal degradation, accompanied by improved
beta-cell viability and insulin secretion in an experimental mouse
model and INS-1 cells. Using INS-1 cells, Tac treatment was found
to cause mitochondria dysfunction mitochondria (impaired mito-
chondrial oxygen consumption and ATP production, and increased
reactive oxygen species production), whereas ginseng treatment
was observed to improve these parameters. These findings thus
indicate that ginseng has a favorable modulatory effect on auto-
phagy by reducing the pancreatic beta-cell injury promoted by Tac-
induced oxidative stress and that this effect is closely related to the
amelioration of mitochondrial function. Accordingly, these results
provide evidence for the beneficial effects of ginseng against CNI-
induced diabetes mellitus in solid organ transplant recipients.
5. Conclusion

Although the ginseng market is currently undergoing a phase of
rapid expansion, the medicinal effects of this plant are still essen-
tially being revealed based on experience. Transplantation is the
most challenging and complex of surgical procedures and may
require causation for the use of ginseng. Our motivation for
reviewing the current literature on the transplantation-related
utility of ginseng was to provide practical guidelines for the use
of ginseng in transplant patients taking immunosuppressants
(Fig. 1). In this regard, using an experimental model of CNI-induced
organ injury, we had previously demonstrated that ginseng does
not affect drug levels in the peripheral blood and tissue, favorably
regulates immune response, and protects against CNI-induced
nephrotoxicity and pancreatic islet injury. Similarly, most of the
studies discussed in the present review have been based on
experimental animal models and/or cell lines. In contrast, few
comparable studies have been undertaken using human subjects,
despite the fact that ginseng products are widely believed and
agreed to contain therapeutic effectiveness when used alone or in a
mix with CNIs in the control of graft rejection. Nevertheless, the
animal-based experimental studies do provide convincing evi-
dence that ginseng has significant potential for use in patients with
immunosuppressant-associated nephropathy and diabetes.
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