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Abstract

The service quality and system dependability of real-time communication networks strongly

depends on the analysis of monitored data, to identify concrete problems and their causes.

Many of these can be described by either their structural or temporal properties, or a combi-

nation of both. As current research is short of approaches sufficiently addressing both prop-

erties simultaneously, we propose a new feature space specifically suited for this task,

which we analyze for its theoretical properties and its practical relevance. We evaluate its

classification performance when used on real-world data sets of structural-temporal mobile

communication data, and compare it to the performance achieved of feature representa-

tions used in related work. For this purpose we propose a system which allows the auto-

matic detection and prediction of classes of pre-defined sequence behavior, greatly

reducing costs caused by the otherwise required manual analysis. With our proposed fea-

ture spaces this system achieves a precision of more than 93% at recall values of 100%,

with an up to 6.7% higher effective recall than otherwise similarly performing alternatives,

notably outperforming alternative deep learning, kernel learning and ensemble learning

approaches of related work. Furthermore the supported system calibration allows separat-

ing reliable from unreliable predictions more effectively, which is highly relevant for any prac-

tical application.

Introduction

Sequences of structural and temporal data combine properties of complex symbolic sequences

and multi-variate time series, in that a single sequence s of length r has the format s = [(t(e1),

e1), . . ., (t(er), er)], i.e. each event ei occurs at timestamp t(ei) within s, s.t. t(ei) = t(s)i. Addition-

ally each sequence s can have a label y(s). When trying to process such data with temporal

properties (i.e. semantically relevant, quantitative time intervals of varying length between
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individual events) and structural properties (i.e. a semantically relevant order and context of

events and their represented behavior), research is often faced with different problems, like

varying sequence lengths and the lack of feature spaces that allow representing both temporal

and structural properties sufficiently well. With suitable feature spaces, processes that rely on

such data can be better analyzed and represented, consequently allowing the application of a

wide range of learning methods on those features.

This is true for all processes that create time-dependent structured data, like multi-layer

protocol-based network communication, whose data can be recorded in real-time by logging

systems. This allows the analysis of its structural-temporal data, utilizing its structural proper-

ties (e.g. protocol state-machine behavior) and its temporal properties (e.g. response timings)

to continuously improve the quality of the respective communication service. The problem

becomes even more complicated when analyzing the data of multi-directional real-time com-

munication setups, as in video conferencing systems, in cloud infrastructures [1] or even in

industrial infrastructure [2] networks. In those cases the temporal and structural properties

are contained in multiple interacting event sequences, and the temporal properties are of vital

relevance for the service quality of the system.

To be able to apply machine learning methods to solve the different types of problems

occurring on such data (e.g. classification or prediction), specific feature spaces are required

that properly represent those structural and temporal data properties and allow projecting

sequences of arbitrary length onto feature vectors of homogenous length. To achieve this we

analyze the structural and temporal properties of such highly time-dependent multi-client

sequence data, and propose a new combined feature space which integrates structural and

temporal properties in a novel way and allows for an equivalent length of the projected

sequences, simplifying the subsequent application of various learning methods. We also show

with an extensive competitive evaluation and statistical analysis how this feature space suc-

ceeds in this task.

As practical use case for structural temporal data we focus on bi-directional multi-client

real-time mobile communication data, used to solve the specific problem of detecting and

predicting known sequence classes on data of both known and unknown sequence classes.

On this data all of the previously mentioned properties are relevant, i.e. the order and context

of the events are class specific and relevant, as are both the individual and the interacting

sequences of both clients, as well as the temporal properties represented in the contained

timestamps and their sub-sequences. For this use case we introduce and evaluate a system

for the automatic classification of failures of communication sequences between mobile cli-

ents. This system allows supporting or replacing the expensive manual classification usually

handled by domain experts. We conduct a detailed analysis of the practical implications and

requirements, especially on how to calibrate the system for a high precision while achieving a

reasonable effective recall. This property is one of the main motivations of this manuscript

and highly relevant in practice, as only highly reliable predictions allow rigorous consecutive

decisions. On this system we comparatively evaluate the classification performances when

using the proposed feature spaces with baseline, as well as competitive deep learning, kernel

learning and ensemble methods from the fields of process mining and sequence classifica-

tion, allowing to draw implications on their general suitability and their individual advan-

tages and disadvantages.

While we are focusing our analyses on the specific area of mobile communication, the pro-

posed system for the detection and prediction of pre-defined classes of sequential data, as well

as the proposed feature spaces can be applied in all areas working with structural temporal

data, specifically for problems that require the incorporation of real-time or multi-client sys-

tem properties. This enables more precise classifiers and reduces the amount of required
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manual analysis, whose expensive cost would otherwise prevent the scaling of such a classifica-

tion system to large scale data sets.

Summarizing the primary objectives, we aim to go beyond existing approaches of process

mining and sequence learning by proposing a combination of structural and temporal features

and their integration into a system for multi-class detection and prediction. As such the contri-

butions of this paper are the following:

1. We propose a feature space for structural sequential data, which combines the use of both

structural and temporal properties and integrates contextual positional variance in a novel

way

2. We show the advantageous classification performance of the proposed feature space against

feature spaces and learning methods commonly used in comparable process mining and

sequence classification publications, including a baseline combined feature space

3. We further strengthen these analysis results with a significance analysis of the classification

performances

4. We propose a combined detection and prediction system for multi-class failure classifica-

tion of structural temporal data of mobile communication, with an additional focus on the

calibration of the results’ reliability, which is highly relevant in practical applications

This paper is structured as follows: This Introduction is followed by a discussion of the

Related Work. Then the use case and the utilized datasets are discussed in the Section Use

Case Description, followed by the introduction of the relevant Structural and Temporal

Feature Spaces. Afterwards the System Layout of the proposed sequence class detection and

prediction are described, including the utilized learning methods. This is followed by the Eval-

uation and a statistical analysis of the classification system and the introduced feature spaces,

before finally reaching the Conclusion.

Related work

We are interested in analyzing and evaluating features spaces representing the unique proper-

ties of sequences of structural, temporal data, whose inter-event structural properties have a

semantically relevant relation to each other. We do this with a focus on mobile communication

data, as an example of real-time protocol-based network communication data, where both the

raw data logs and logs of additional dynamic analysis allow representing the contained struc-

tural dependencies. Further details on mobile communication protocol behavior can be found

in [3]. While similar analyses have been done for network communication, as e.g. in [4–11],

most research focusses on the structural data properties, and less on the temporal properties

relevant for the real-time execution of such processes.

We are using different types of features to represent the structural as well as the temporal

data properties within the feature spaces. Specifically we are relying on token n-grams, i.e.

sequences of n arbitrary tokens. This feature representation is similar to spectrum kernels [12]

and originates in the field of natural language processing [13–16], but has also been extended

to network communication [17–21]. However, we are extending this structural feature type by

including additional temporal information, and by also integrating a wider context for each

token n-gram, an idea similar to the integration of additional context information as intro-

duced in [22] for the CBOW (continuous bag of words) and Skip-gram models.

This makes our research unique but also highly relevant for commercial processes, where

such approaches are still highly sought after, e.g. in the form of process mining [23]. In this

field different objectives are solved on business analytics data, which often comes in a format
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similar to our, i.e. consisting of events and timestamps. However, research in this field did so

far not address multi-class classification problems, but focuses primarily on very narrow objec-

tives, which do not require a combination of those different properties that we are interested

in. As such [24] are using Markov Classifiers to predict the time remaining to completion of a

business case. This objective is also addressed by the system proposed in [25], which utilizes

Naive Bayes Classification and Support Vector Regression approaches, and in [26] which uses

Long Short Term Memory neural networks (LSTM). The verification of linear temporal logic

(LTL) compliance is approached in [27] by using Decision Trees, which is similar to the

research of [28], which uses Multi Layer Perceptrons (MLP) for detecting service level agree-

ment violations. One large research topic is also the prediction of the next events during run-

time, for which graph theory [25], LSTMs [29], Decision Trees [30–32], Markov Classifiers

[31–33] or Multi Layer Perceptrons [34] are used.

With the works of [35, 36] there has been research in the process learning domain recently,

which allows learning on complex symbolic sequences by combining various of their con-

tained properties. As their proposed feature representations and general systems differ from

our envisioned approach in crucial ways (e.g. by not numerically encoding the temporal infor-

mation, or not covering multi-class classification problems), a direct application of and com-

parison with these systems is out of the scope of this publication. In [36] the authors are using

LSTM to simultaneously allow the runtime prediction of the next events and the prediction of

the remaining time to case completion. For their feature representation they combine different

temporal properties of their data (relative timestamp, time within the day and within the

week). While the concrete time features would be irrelevant or even misleading in our use

case, the relative timestamp are very similar to our te.rel. In [35] the authors are using hidden

Markov Models and Decision Trees for predicting the achievement of a performance objective,

as well as the fulfillment of a compliance rule. While being more complex, the features used in

this work are only structured-sequential, i.e. the temporal component is not included in a

quantitative form, thus missing an important requirement for our use case. Besides those dif-

ferences both approaches do not allow for a multi-class prediction based on manually assigned

class labels, as required in our use case. The highly dynamic, often non-deterministic behavior

of the mobile network communication log sequences analyzed here, as well as their large num-

ber of states and transitions further hinders a direct application of these approaches. Those

reasons also prevent the direct application of methods proposed in recent research in deep

neural networks and their application on graph data [37–39], which opened novel ways of

learning on complex data, e.g. for semi-supervised learning approaches or implicit feature

spaces. Additionally, practical necessities like system interpretability and reliability are harder

to fulfill with these more complex learning methods—as are the higher requirements on the

data set sizes, necessary to achieve converging models of the trained neural networks.

Since we are operating on sequential data, one could also use methods originally from the

field of sequence labeling, where the task is to predict a label for each event within the sequence,

which was solved using methods like Hidden Markov Models [40], Conditional Random

Fields [41], MLP [42], but recently also Recurrent Neural Networks and specifically LSTM

Neural Networks [43–45]. Since in our objective data each event is already labeled though, we

are not interested in predicting such individual labels, but instead require predictions based

on the behavior represented by the complete sequences. Using predictions of such individual

labels to describe a complete sequence label is also no option, as a defined sequence label can

depend on structural-temporal properties not represented in event-wise predictions. Since the

event order and the inter-event durations are semantically relevant, using methods of sequence

alignment [46] is also not directly possible. Also methods like dynamic time warping [47] are

not directly applicable, as they are not designed to process temporal data with additional
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structural properties, or multi-client dependencies. As such we need methods producing a

label for the whole sequence, as is done in sequence classification [48, 49]. Of those methods

support vector machines [50–56] are a well established method for feature-based sequence clas-

sification, which we are specifically interested in as we are trying to reflect the data properties

by specific feature spaces. SVM approaches have shown a reliable performance, specifically

when using non-sequential n-gram feature spaces for the respective sequential data, as done in

the fields of natural language processing [13–16], intrusion detection [17, 18], malware detec-

tion [57–59] and the analysis of network communication [19–21, 60].

All of this shows that our approach to multi-class detection and prediction of network

communication sequence failures can be distinguished from other approaches of related work

and state-of-the-art methods, extending their concepts by the explicit integration of temporal

properties and positional variance into the applicable feature space, as well as the inclusion of

calibratable multi-class prediction compatibility. To achieve an evaluation which allows a com-

parison with these works, some of their most commonly used methods are used for conducting

the experiments, as described in Subsection Learning Methods. While some approaches and

features are in principle similar, we have refrained from applying our approach to standard

problems of sequence learning or process mining, as this interesting line of research would

deserve a publication of its own right and focus. Instead to remain focussed, we have compared

only some of the process mining methods and features that are indeed applicable to the network

communication application of this work.

Use case description

We will now discuss the properties of the data and the contained problem classes of our con-

crete use case of failure classification for sequence data of mobile communication, and why

these are representative for the analysis of structural and temporal aspects.

Data set properties

We are using mobile communication data of a specific format as a concrete example to discuss

and show the properties of sequential structural and temporal data. It was recorded to provide

a wide-ranging quality analysis of the underlying network infrastructure. The data is collected

by a fleet of specialized cars equipped with roof-mounted antennas and multiple android

smartphones. The mobile phones run test sequences, which consist of automatically calling a

phone within one of the other cars, establishing a connection, playing a voice chat of 1 minute

and finally closing the connection. This whole process is monitored, recorded and consecu-

tively analyzed by a system which focuses on various key performance indicators (KPIs) and

statistics, radio frequency (RF) values and the successful completion of the key processing

steps of the respective protocol state machines of UMTS, LTE and GSM. Since the cars are

moving while all of this takes place, the recorded data also contains switches between different

transmission technologies (e.g. the sequence may start in GSM, switches then to LTE, and fin-

ishes in UMTS). The resulting data already allows for drawing simple conclusions, e.g. on

whether communication sequences have been successful at all (i.e. the relevant KPI and RF val-

ues did not show negative deviations, and all relevant protocol states have been completed suc-

cessfully), whether they dropped in the middle (i.e. important protocol states have not been

completed), or whether they have failed for other reasons.

Those failed sequences are then manually analyzed to determine their reason of failure and

potentially even its cause. This process is called failure classification, allowing to assign a spe-

cific failure class to a failed sequence. Doing this manually by looking at many hundred log file

entries is a tedious, time-consuming and expensive task. By using statistics over the KPIs, RF
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values and the protocol states for rule-based approaches, this can partially be automated, spe-

cifically for failures with simpler behavioral patterns. A more versatile machine learning

approach could however help solving this problem better, potentially allowing to cover less

clearly defined failure classes, while also adding some flexibility when trying to find new failure

classes, caused by changes in the communication technology backbone architecture, e.g. with

the upcoming 5G [61] technology.

For our analyses we collected two different data sets: the MFC data set, containing manually

labeled and unlabeled failure class samples, and the AFC data set, containing failure class sam-

ples which are automatically labeled by a rule-based approach, as well as unlabeled samples.

Table 1 shows some of their most important characteristics. Each contained sample represents

a call sequence, which utilizes at least the GSM, UMTS or LTE protocol, following its respec-

tive specification and call phases, which is reflected in the logged events and the respective

timestamps. Instead of using all the recorded events though, we are mainly interested in those

that are relevant for the potential failure classes. Hence we are using filters based on rules that

have been defined by experts with deep domain knowledge, removing all events that contain

redundant or irrelevant information. As a result we obtain a final set of base events, which

together with their different states (e.g. different reasons for a location update reject), and

in combination with the respectively utilized protocol, leads to overall 335 different event

identifiers.

Both data sets will serve different purposes in this paper, because the details of the different

labeling approaches used for both data sets are expected to impact the AFC evaluation perfor-

mance negatively. The filtered events available in both data sets are selected to cover all impor-

tant call phases and event sequences potentially relevant for a proper class prediction. As such

they are theoretically sufficient to properly reproduce the MFC labels. However, they are insuf-

ficient to achieve a similar performance for the AFC data, where also data of additional events,

as well as relevant KPI and RF data has been used for defining the classes, none of which we

have access to in our structural-temporal data. As a result of these restrictions Table 1 shows

that the average number of events per sequence is much smaller for AFC data, and its variance

is much larger, reflecting a larger class variance and making a proper discrimination harder.

Additionally, the AFC data contains 8 very similar variations of the Core Network Failure class,

which are harder to discriminate as well. Due to these shortcomings of the AFC data set, the

smaller MFC data set is more relevant for our purpose, as its labels provide a better ground

truth. Since this is a problem in the AFC data set, we will restrict our analyses on the AFC data

to those which are expected to provide valuable insights on this data set only, namely how well

Table 1. Data set statistics: Number of events e#, of failure sub classes c# and of samples s#.

MFC AFC

Average e# 44.11 ± 13.51 29.75 ± 27.24

Main failure classes c# s# c# s#
CSFB Failure 2 48 2 370

Congestion Failure - - 1 60

Core Network Failure 1 30 8 682

E2E Failure 1 19 2 169

UE Failure 1 21 - -

Other Failures 39 86 39 360

Sum 44 204 52 1,641

Unlabeled Samples - 5,873 - 1,623

https://doi.org/10.1371/journal.pone.0228434.t001
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the proposed feature spaces and learning methods can still reproduce the AFC labels under

these conditions, and—given its larger number of samples—how much of a performance

improvement we can expect when increasing the training data size.

We will now discuss the format of the contained sequences. Each sample in our data sets

consists of the bi-directional communication sequence between a caller and a callee. We

denote the caller as the MOC client (mobile originated call) and the callee as the MTC client

(mobile terminated call). The samples contain highly structured sequential data (order of

events) with highly relevant temporal components (inter-event durations), all of which are

semantically relevant for discriminating the failure classes, e.g. reflecting call phases being

incomplete or too long, or reflecting an anomalous order of events. Table 2 shows an exem-

plary event sequence of a successful call, starting in LTE and proceeding and ending in

UMTS. This example also introduces the new timestamp format ts.rel, denoting sequence-rel-

ative timestamps, defined for a sequence s as ts.rel(ei) = t(ei) − t(e0) (or ts.rel(s)i = t(s)i − t(s)0),

i.e. the timestamp of the first sequence event is set to 0.0, and all other timestamps are reset

relative to this value. In the example the MOC client is set up until ts.rel = 12.232, then the

MTC client is set up until ts.rel = 14.231. Once the clients are connected at ts.rel = 30.103 the

call takes place, before they are finally disconnected again. The abbreviations represent the

following event types: extended service (ES) request, security mode (SM) command and

complete, connection management service (CMS) request, radio bearer (RB) setup and

extended service (ES) request.

Failure classes

Before analyzing how the concrete sequence properties are utilized in the feature spaces, we

first need to discuss the existing failure classes and their structural and temporal properties in

more detail, to provide a better practical background of the problem domain. Table 1 contains

an overview and provides relevant class statistics for the selected, sufficiently sized failure sub-

classes of the listed main failure classes. It also contains details about the samples of insuffi-

ciently sized failure classes, grouped together in the set of Other Failures, as well as the addi-

tional number of unlabeled samples per data set.

CSFB problems. A circuit switch fallback is conducted when the current network (e.g.

LTE) does not sufficiently fulfill the current connection requirements (e.g. signal strength, cell

coverage, sufficient response times) or suffers from other problems, while at the same time an

older network (e.g. GSM) is available. It can also occur when one of the communicating clients

is not LTE capable. Handing over the correct connection state to another protocol can be

problematic, though. Our data set contains cases of failures that occurred when the call setup

was not properly continued after the location area update (LAU) and the routing area update

(RAU), when the current network did not allow a proper release for redirection, or when the

redirection to the older network simply took too long.

Congestion problems. These problems can occur when the network is overloaded, s.t.

problems with the connection or response timings occur. In our data sets we have sample

sequences where the connection downlink disconnected too early, leading to an interrupted

connection, and other cases, where no circuit channel was available, completely preventing to

establish a connection.

Core network problems. This failure class represents more general problems, where the

causes might be similar to those of the previous failure classes, e.g. an unexpected downlink

disconnect or problems with LAU and RAU. The previous classes, however, contain additional

semantic properties that lead to the classification as CSFB (fallback to older technology) or

congestion problem (high latency, low bandwidth), which are missing here. Failure sub classes
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dominant in our data sets contain cases of unexpected downlink disconnect, unreachable

MTC clients, or no or too slow reply to LAU or RAU. The high similarity to other classes, as

well as the fact that only minor differences exist between its individual sub classes makes dis-

criminating them harder, which is specifically relevant for the AFC data, with its higher num-

ber of samples of these sub-classes.

E2E problems. End to end problems occur beyond the scope of the core network. In our

data set two of its sub classes are prominently represented. Unexpected downlink (DL) radio

resource control (RRC) connection releases are symptoms of problems during the downlink

Table 2. Example sequence of successful bi-directional mobile communication.

ts.rel MOC client MTC client

protocol event event protocol

0.0 LTE ES Request

1.271 LTE SM Command

1.271 LTE SM Complete

2.385 UMTS SM Command

2.386 UMTS SM Complete

3.298 UMTS CMS Request

3.864 UMTS SM Command

3.864 UMTS SM Complete

4.273 UMTS Setup

4.826 UMTS Call Proceeding

5.192 UMTS RB Setup

5.392 ES Request LTE

6.209 SM Command LTE

6.209 SM Complete LTE

12.232 UMTS RB Setup Complete

MOC client is set up

12.577 SM Command UMTS

12.577 SM Complete UMTS

13.130 Setup UMTS

13.253 Call Confirmed UMTS

13.783 RB Setup UMTS

14.231 RB Setup Complete UMTS

MTC client is set up

14.799 Alerting UMTS

14.865 UMTS Alerting

15.721 Connect UMTS

16.254 Connect Ack UMTS

18.237 UMTS Connect

19.020 UMTS Connect Ack

29.923 UMTS SM Command

29.924 UMTS SM Complete

30.032 UMTS RB Setup

30.103 UMTS RB Setup Complete

Clients are connected and the call takes place

93.028 UMTS Disconnect

93.427 Disconnect UMTS

https://doi.org/10.1371/journal.pone.0228434.t002
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authentication phase of the connection, causing it to fail. This also holds for missing downlink

setup failures, which already fail at an even earlier state.

UE problems. Besides those network and protocol related failures, problems can also

occur on the devices themselves. The MFC data set contains samples of potential firmware

issues, leading to such problems.

Other failures. Sequences of failure classes that contain only very few samples are not use-

able for a proper evaluation. Those samples are all re-labeled as Other Failures, allowing to use

them in the model class detection step of our system.

Structural and temporal feature spaces

One of the objectives of this paper is to analyze feature spaces capable of representing sequen-

tial data with structural and temporal properties, like the one detailed in the previous section,

and to propose a feature space suited to better represent those properties. To achieve this, we

discuss five different feature spaces ΓqT, ΓT, ΓS, ΓS+T and ΓST. ΓqT is based on a sequential

representation of the data, as commonly used in process mining [23]. Since we are specifically

interested to additionally integrated temporal information in our feature spaces, ΓqT optionally

allows the inclusion of quantized temporal information. ΓT focusses on the temporal informa-

tion in a re-ordered sequential representation, while ΓS focusses on the structural information

in a non-sequential representation, essentially using a token n-gram approach, as described in

Section Related Work. Finally we propose ΓS+T and ΓST to show the advantages of integrating

structural and temporal information complementarily into a single feature space, which is

expected to allow a better data representation, compared to using only structural or temporal

features alone. We discuss those feature spaces abstract, but also discuss unique properties

that are specifically relevant for our use case. As such some of those discussions are exemplary

adaptations of the abstract feature space properties to our concrete use case. However, this

should not be seen as a restriction on the general applicability of these feature spaces, as they

can be adapted to other use cases as well.

Base processing

All of the following feature spaces require an identical base processing, for which we need a

second timestamp format, enabling the consideration of relative time-dependencies (i.e. local

delays): the event-relative timestamps te.rel, defined as te.rel(ei) = ts.rel(ei) − ts.rel(ei−1) (or te.rel(s)i
= ts.rel(s)i − ts.rel(s)i−1) for a given sequence s.

One objective for our proposed feature spaces is, that they represent multi-client behavior

within the sequential data. This is relevant for our use case, because some failures can be caused

by erroneous behavior on the MOC side of the call, while others are caused by problems on

the MTC side—or even by problems on both sides, individually or combined. To reflect those

structural properties, we need to create the sub-sequences sMOC and sMTC to contain exclusively

the events of MOC and MTC respectively, with |s2C| = |sMOC| + |sMTC|. These representations

allow the feature spaces to omit events of the respective opposite client. Table 2 shows this

behavior exemplarily for the MOC-events at ts.rel = 5.192 and ts.rel = 12.232. They are inter-

rupted by three MTC events in the s2C sequence, but are represented consecutively in the sMOC

sequence. As a result, a sequence s can be described by a triple of sequences s2C, sMOC and sMTC.

If not stated otherwise, we use s synonymously with s2C to denote the complete 2-client com-

munication. As such the example in Table 2 effectively illustrates an s2C sequence. This defini-

tion is extended to the whole set of sequences. Where previously we denoted all sequences s in

a set S as s 2 S, we can now also denote the sets of sequences of each different representation,

i.e. s2C 2 S2C, sMOC 2 SMOC and sMTC 2 SMTC. This also allows extending the definition of ts.rel
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to those representations, in that ts.rel(s2C) denotes the vector of the sequence-relative time-

stamps of s2C, and ts.rel(sMOC) and ts.rel(sMTC) denote those of the client-wise sequence represen-

tations. The same holds for te.rel. Note that ts.rel is set to 0.0 for the first event of each sequence

representation respectively (i.e. ts.rel(s)i = t(s)i − t(s)0 for s 2 {sMOC, sMTC}), to allow for a better

comparability of sequences of the same client type.

Using an exemplary set of event identifiers E = {0A0, 0B0, 0C0, 0D0} allows creating two artificial

example sequences x1 and x2 and their timestamps in the two formats, as shown in Table 3.

These will be used in the next sections to illustrate various aspects of the different feature spaces.

ΓqT features

ΓqT features are based on the s 2 S2C feature vectors, essentially representing the most common

type of data representation used in the related work of process mining. We extend this repre-

sentation additionally by quantized temporal features. The idea is to get a sequential represen-

tation of the event identifiers, which is specifically suited for classifiers used in process mining,

but to additionally include temporal information. To achieve this, we start with the event indi-

ces in s. Consecutive events with a temporal distance closer than a predefined minimum inter-

val θmi maintain their current position in the event index sequence. If consecutive events

exceed θmi, an additional empty event e; is inserted, reflecting the larger interval between those

consecutive events. This is repeated until the next event is reached. As a result, smaller values

of θmi introduce more events e; and lead to larger, sparser feature vectors, while larger values

of θmi introduce less empty events, thereby decreasing the feature vector length while increas-

ing the density—until a completely dense feature vector is achieved, containing no empty

events e; at all. Through manual analysis of the temporal properties of the analyzed data, a

value of θmi = 5.0s is selected as a compromise capable of filling large temporal gaps occurring

in the data (which often represent overly long durations between two protocol states) while

not increasing the overall feature vector length too much in less relevant regions of the

sequence. For θmi = 5.0s, the resulting ΓqT feature vector for sequence x1 in Table 3 is thus

ΓqT(x1) = [0D0, 0A0, 0B0, 0C0, e;, e;, 0A0], s.t. the large te.rel(0A0) is represented by two instances

of e;. Choosing θmi> 60.0s allows eliminating all occurrences of e;, which is identical to the

original sequence of events, without the additional temporal information provided by the

e; inserted in the sequence. When using ΓqT in this way, we denote it as ΓqT�, which allows

highlighting the performance differences when using both types of feature representations

with competing classifiers of the process mining domain.

ΓT features

To create the set of temporal features ΓT, we use the set S2C. The idea of ΓT is to create a feature

space which projects properties of the ith occurrence of each event type in a sequence s onto

Table 3. Two artificial communication sequences x1 and x2.

x1 x2

ts.rel te.rel ei ts.rel te.rel ei
0.0 0.0 D 0.0 0.0 D

2.211 2.211 A 1.823 1.823 B

4.341 2.130 B 3.230 1.407 B

6.207 1.866 C 5.103 1.873 C

18.075 11.868 A 25.330 20.227 B

30.548 5.218 A

https://doi.org/10.1371/journal.pone.0228434.t003
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the same dimension. The projected property is the timestamp ts.rel of the respective event,

allowing to compare it with the timestamps of the ith occurrence of the same event type of

other sequences. We start by calculating the occurrence frequency f(e, s) for each event type

e 2 E in each sequence s 2 S2C. Then we define its maximum value as me = max(f(e, s)), 8e 2 E,

8s 2 S2C, calculating what is the most frequent occurrence of event type e in any sequence. Fur-

thermore a function κ(e, s, i) is required, returning the ith occurrence of e in s. For example

the simple sequence x1 in Table 3 has two occurrences of the event type ‘A’. As such, κ(0A0, x1,

2) returns e5 = 0A0, i.e. the 5th event in s is the 2nd occurrence of ‘A’ in s, with ts.rel(κ(0A0, x1, 2))

= 18.075. Now a function ts(s, e, me) can be defined, providing a vector of these timestamps

ts.rel of all occurrences of a selected event in a sequence, and 0.0 otherwise:

tsðs; e;meÞ ¼ ½tðs; e; 1Þ; . . . ; tðs; e;meÞ�

with

tðs; e; iÞ ¼

( ts:relðkðe; s; iÞÞ if i � f ðe; sÞ

0:0 else

Concatenating the resulting vectors of ts(s, e, me) for a sorted list of all e 2 E via the concate-

nate()-function yields the final feature vector for a sequence s, which has for all samples the

same length of ∑me, 8e 2 E. A small example should make this better understandable. Table 3

shows two simple sequences {x1, x2} = X, for which the maximum frequencies me = max(f(e,
x)), 8x 2 X of each e 2 {0A0, 0B0, 0C0, 0D0} are mA = 2, mB = 3, mC = 1, mD = 1. As a result the fea-

ture vectors have the following format:

GTðsÞ ¼ concatenateð½tsðs;0A0; 2Þ; tsðs;0B0; 3Þ; tsðs;0C0; 1Þ; tsðs;0D0; 1Þ�Þ;

for s 2 {x1, x2}, resulting in the following final feature vectors:

GTðx1Þ ¼ concatenateð½tsðx1;
0A0; 2Þ; tsðx1;

0B0; 3Þ; tsðx1;
0C0; 1Þ; tsðx1;

0D0; 1Þ�Þ

¼ concatenateð½½2:211; 18:075�; ½4:341; 0:0; 0:0�; ½6:207�; ½0:0��Þ

¼ ½2:211; 18:075; 4:341; 0:0; 0:0; 6:207; 0:0�

and

GTðx2Þ ¼ concatenateð½tsðx2;
0A0; 2Þ; tsðx2;

0B0; 3Þ; tsðx2;
0C0; 1Þ; tsðx2;

0D0; 1Þ�Þ

¼ concatenateð½½30:548; 0:0�; ½1:823; 3:230; 25:330�; ½5:103�; ½0:0��Þ

¼ ½30:548; 0:0; 1:823; 3:230; 25:330; 5:103; 0:0�

To obtain an optional binary representation of ΓT, values of τ(s, e, i) larger than a defined

threshold can be set to 1, and to 0 otherwise.

ΓS features

The structural ΓS features are event n-gram features, similar to the previously used token n-

gram features, and as such representing a feature representation commonly used in the related

works of sequence classification. Therefore we extract for all s2C, sMOC and sMTC all event n-

grams and index their sorted list, spanning the final feature space ΓS—including the client-spe-

cific n-grams of sMOC and sMTC. We denote an event n-gram of a sequence feature vector s via

its vector indices in interval notation (similar to the one used in Matlab or numpy), s.t. s[i,i+n)
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denotes the event n-gram from position i (inclusive) to position i + n (exclusive). The ΓS fea-

ture vector of sequence sample s is then defined via the binary occurrence of the respective

event n-gram within s. When using the examples x1 and x2 from Table 3, the sorted list of n-

grams for n = 3 is [‘DAB’, ‘ABC’, ‘BCA’, ‘DBB’, ‘BBC’, ‘BCB’, ‘CBA’], resulting in the final ΓS
feature vector ΓS(x1) = [1, 1, 1, 0, 0, 0, 0].

ΓS+T features

One base hypothesis of this paper is that the classification performance can be increased by

using a complementary structural and temporal feature space. For the structural-temporal

ΓS+T feature space we treat the feature vectors of ΓS and ΓT as equivalent. Because of its binary

format, ΓS already produces qualitative feature vectors, but ΓT produces quantitative feature

vectors. If we binarize its values, we create a qualitative representation, which we can simply

concatenate with the ΓS feature vector. This is used here to provide a baseline complementary

feature space, before defining the more complex complementary feature space ΓST.

ΓST features

For the structural-temporal ΓST feature space we will first need an analysis of the representative

capabilities we specifically want to achieve with this feature space. As such, we will start this

section with an analysis of some feature requirements, before explaining how these require-

ments are met by creating the data representation via structural-temporal δ − n matching and

the use of model sequences.

Context and position. Metrics and features for structured, sequential data should reflect

its specific properties. A sample of such data could be described by the occurrence of single n-

grams (as done in ΓS). But this description can be improved when these n-grams are also ana-

lyzed in terms of their broader context and position. As such two similarly positioned n-grams

might be identical, but their respective neighbor events (their context) might be different,

which should prevent or penalize a match between them. This is highly relevant in data which

is created by protocol-driven processes, like mobile communication data, which follows spe-

cific protocol states (e.g. for the radio bearer setup or the security parameter negotiations), all

requiring specific events in their context. Thus it is important to focus on comparing contextu-

alized n-grams with each other, i.e. events at the call setup should not be compared with those

in the final call phases.

Model sequences. For the definition of ΓST the concept of model sequences needs to be

introduced. Projecting each of the s 2 S onto a feature space spanned by these model sequences

yields projected samples of the same length (independent from the length of the projected

sequence s), while at the same time incorporating both temporal and structural properties. The

use of model sequences is based on the idea of defining the features of a sequence s based on its

similarity to each model sequence sM in the set of model sequences SM, which thus defines a

feature space model. To this purpose we define the set of model sequence representations as a

triple SM ¼ ðSM
2C; S

M
MOC; S

M
MTCÞ just as we did for our actual sequences. By consecutively indexing

the sequences and the events within SM we effectively span a feature space of size
P
8sM2SM js

Mj.

Note that the model sequences do not have to be labeled, and also do not have be mutually

exclusive to the set of training or test sequences S = {S2C, SMOC, SMTC}, as we are not using the

labels of the model sequences in any way. We rely instead on the relevance of their contained

structural and temporal properties, offering insight into relevant types of behavior, required

for the class discrimination. However, as the feature space is spanned by using the model

sequences, their labels could potentially be used to increase the contained number of different
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features, or to balance the representation of features of more complex failure classes against

those of simpler ones.

Defining the structural temporal features. The ΓST feature space is based on the idea of

representing structural and temporal properties of the respective sequences. In this paragraph

we will discuss, how to achieve this by using n-grams and model sequences in structural-tem-

poral matching procedure, with a focus on the feature properties of context and position.

We define the context of each event by the size of the n-grams and the parameter of positional

variance δ, and the positional properties by the actual matching procedure. The idea of this

procedure is to match each n-gram of each s 2 S with the n-grams of each sM 2 sorted(SM),

requiring identical positions of both matching n-grams within the two sequences—and then

loosen this requirement via the parameter δ. The result of this matching for each s 2 S is a vec-

tor of its structural similarity to each of the model sequences sM, for each of its sequence repre-

sentations s2C, sMOC and sMTC. Specifically the additional matches on the SMMOC and SMMTC are

relevant for failures, as they allow detecting event chains of a single client, automatically cross-

ing the gap caused by interfering events of the other client. We achieve this by a structural δ-n
matching function, denoted as F̂ðs; sM; ŝM; d; nÞ, where ŝM denotes a vector of length |sM|,

which is initialized as a zero-vector. By iterating over all indices, this vector is populated as fol-

lows:

F̂ðs; sM; ŝM; d; nÞ ¼

( incð̂sM
½iþj;iþnþjÞ;

~1nÞ if sM
½iþj;iþnþjÞ ¼ s½i;iþnÞ

ŝM
½iþj;iþnþjÞ else

8(i + j)� 1 and 8(i + n + j)� |sM| + 1, with i 2 [1, |sM| − n + 1], j 2 [−δ, δ] and δ� 0.

incð~x;~yÞ ¼~x þ~y denotes here the element-wise incrementation of vector ŝM by a one-vector

~1 of length n. Here we are using the indexing method introduced for ΓS to denote individual

event n-grams, s.t. s[i,i+n) denotes the event n-gram of the events [ei, . . ., ei+n−1] in the sequence

s. As such we essentially compare s[i,i+n) with sM
½iþj;iþnþjÞ, and allow a positional variance in the

model sequence by defining j over the range of [−δ, δ].

Using the exemplary sequence x1 and x2 of Table 3, with x1 as

s ¼ ½0D0;0A0;0B0;0C0;0A0�

and x2 as model sequence

sM ¼ ½0D0;0B0;0B0;0C0;0B0;0A0�;

the structural δ-n matching with δ = 1 and n = 1 yields the following matching results for the

respective values of i and j

j = −1 j = 0 j = 1 ŝM
½iþj;iþnþjÞ

i = 1 - sM
1
¼ s1 sM

2
6¼ s1 [1, 0]

i = 2 sM
1
6¼ s2 sM

2
6¼ s2 sM

3
6¼ s2 [0, 0, 0]

i = 3 sM
2
¼ s3 sM

3
¼ s3 sM

4
6¼ s3 [1, 1, 0]

i = 4 sM
3
6¼ s4 sM

4
¼ s4 sM

5
6¼ s4 [0, 1, 0]

i = 5 sM
4
6¼ s5 sM

5
6¼ s5 sM

6
¼ s5 [0, 0, 1]

ŝM = [1, 1, 1, 1, 0, 1]
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resulting in the vector

F̂ðs; sM; ŝM; 1; 1Þ ¼ ½1; 1; 1; 1; 0; 1�:

Since we are not only interested in the structural properties of our data, we will now extend

F̂ by integrating the event-relative timestamps te.rel as temporal properties, obtaining the final

structural-temporal projection function F. The idea is to calculate the absolute differences of

the te.rel of the structurally matching events of s and sM. This is done by modifying the previ-

ously used incrementation function int(), giving rise to the final definition of F:

Fðs; sM; ŝM; d; nÞ ¼

incð̂sM
½iþj;iþnþjÞ;Dabsð~x;~yÞÞ if sM

½iþj;iþnþjÞ ¼ s½i;iþnÞ

with ~x ¼ te:relðsMÞ½iþj;iþnþjÞ

and ~y ¼ te:relðsÞ½i;iþnÞ

ŝM
½iþj;iþnþjÞ else

8
>>>>>>><

>>>>>>>:

again 8(i + j)� 1 and 8(i + n + j)� |sM| + 1, with i 2 [1, |sM| − n + 1], j 2 [−δ, δ] and δ� 0.

The function Dabsð~x;~yÞ defines a vector by calculating the absolute element-wise difference

between two vectors~x and~y, which is in this case the temporal difference of the respective

matching events of s and sM, as illustrated in the previous example. As this can result in multi-

ple matches per event in ŝM, we finally average each field in ŝM by its number of matches.

Applying this final formulation to the previous example sequences and their event-relative

timestamps

te:relðsÞ ¼ ½0:0; 2:211; 2:130; 1:866; 11:868�

and

te:relðsMÞ ¼ ½0:0; 1:823; 1:407; 1:873; 20:227; 5:218�

yields the final feature vector

Fðs; sM; ŝM; 1; 1Þ ¼ ½0:0; 0:307; 0:723; 0:007; 0; 6:65�:

Since F is defined over a single sM, it has to be executed for all sM 2 sorted(SM), and the

resulting vectors ŝM have to be concatenated via the concatenate()-function, giving rise to the

final definition of ΓST:

GSTðs; SM; d; nÞ ¼ concatenateðFðs; sM; ŝM; d; nÞÞ; 8sM 2 sortedðSMÞ

The final feature vector ΓST(s, SM, δ, n) has the length
P
8sM2sM js

Mj, and contains the structural-
temporal δ − n matches of the sequence s and all model sequences SM. The O-complexity of

this whole process is linear, as creating the feature space by indexing the model sequences SM

is done in linear time, and projecting a single sequence s onto SM is linear to the number

of model sequences |SM|, as it requires matching the n-grams of each s with those of every

sM 2 SM.

Explaining the semantics. The objective of our projection F is to achieve features

highlighting differences in structurally similar, but temporally different sequences, i.e. we aim

for a way to define similar features for sequences with similar structural and temporal behav-

ior, while achieving different feature vectors for those which are structurally different, or

which are structurally similar, but temporally different. As one can see, the value of a single
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dimension is 0 if there is no structural match, it is very small if te.rel(s[i,i+n)) and te:relðsM½iþj;iþnþjÞÞ
are similar, and it is large if te.rel(s[i,i+n)) and te:relðsM½iþj;iþnþjÞÞ strongly deviate.

Once the feature vector of s is calculated, it is utilized in the classifier, where this feature

projection does indeed allow focussing on the desired differences. If the projections of both

samples have small values for a dimension, those small values contribute to a small distance

between two samples, yielding a high similarity between the samples. If the projections of both

samples have similarly large values for a dimension, these can contribute to a small distance

between two samples—but only if they are similarly large. This is only the case if both samples

have a similarly large deviation from the timestamps of the model sequence, which is only the

case, if they show a similar temporal behavior. If the projections of both samples have differing

values for a dimension, these values increase the distance between both samples, emphasizing

their inter-sample difference for this dimension.

Further considerations. To improve the feature balancing in the final ΓST, the sequences

for SM should be carefully selected. SM containing an unbalanced number of samples per

sequence class will lead to many, potentially redundant features for over represented data

aspects (e.g. class specifics) or irrelevant properties (i.e. noise), while other data aspects could

remain nearly uncovered, due to an insufficient number of sM covering these. This makes

multi-class learning harder, because these over represented features might outweigh less repre-

sented features and may therefore produce results prone to classify the corresponding class.

While we made sure not to use duplicate sequences in any of our data sets, we did not include

such an additional sequence selection optimization. To reduce the dimensionality of ΓST, one

should also select features that are most relevant for the classification task, e.g. by removing

redundant features (e.g. those dimensions that are redundant between the single-client vectors

sMOC and sMTC, and the multi-client vector s2C), or by applying efficient feature selection meth-

ods like RDE [62].

ΓST also allows inspecting, which dimensions are of highest importance for the classifica-

tion, allowing a knowledge transfer into potentially faster rule-based algorithms. Since the ΓST
components also encode the temporal positions of the relevant n-grams, they can be mapped

to additionally recorded radio frequency (RF) time-series data (e.g. reception level (RXLEV),

reception quality (RXQUAL), received signal code power (RSCP)) of the logged communica-

tion sequences, enabling the detection of further RF-based failure classes like coverage or inter-

ference failures.

System layout

This section will introduce the actual system for the detection and prediction of classes of

sequence behavior. The system description will be kept as abstract as possible, to allow an

application to other relevant use cases. Fig 1 shows the training phase of the system, in which

the sets of sequences S are used to create the feature vectors, which are then used to train the

required classifiers, responsible for the detection and prediction of properly represented

model classes.

Model class detection and prediction

In our use case, the classes of sequence behavior are defined by the different ways communica-

tion sequences between both clients can fail. When samples of failed sequences of a new data

campaign need to be classified, we could assume a hypothetical scenario in which no new fail-

ure classes are found in the new campaign, i.e. all potential failure classes have already been

seen before. However, this is not true in practice, where new types of previously unseen failures

occur indeed. This is also true in our data sets, with the consequence that only a limited

Features spaces and a learning system for structural-temporal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228434 February 6, 2020 15 / 34

https://doi.org/10.1371/journal.pone.0228434


number of failures classes have a sufficient size to properly evaluate supervised classification

models with them. We denote such classes as model classes, or MC. Sequences of Other Failures,
i.e. of insufficiently large failure classes are denoted as non model classes, or ¬MC.

This motivates the design of our system, consisting of two major components, which allow

to detect whether a new sample is potentially a MC sample (and not a sample of ¬MC), and if

that is the case, to predict the respective model class. Accordingly, those steps are called the

model class detection (MCD) and the model class prediction (MCP). For the MCP a classifier

is trained in a multi class approach, learning to discriminate only samples of the MC, but not

the ¬MC. For the MCD multiple classifiers are trained, one for each MC. Each of those classifi-

ers is trained in a two class approach, learning to discriminate the respective MC against sam-

ples of ¬MC. After training the MCP and MCD classifiers, we can predict the failure class of a

new sample by predicting a MC with the MCP classifier, and then using the MCD classifier

trained for this MC to confirm or reject this prediction.

These predictions are obtained by applying their respective prediction functions to the

feature vector Γ(s) of a test sample s, using one of the previously defined feature spaces, i.e.

Γ 2 {ΓqT, ΓT, ΓS, ΓS+T, ΓST}. The function for the model class prediction classifier is FMCP, with

yMCP ¼ FMCPðGðsÞÞ

and with yMCP 2 {MC1, . . ., MCk}, the set of all k model class labels. The prediction function

for the model class detector is FMCD(MCi), obtaining the prediction of the classifier trained for

MCi via

yMCD ¼ FMCDðMCi;GðsÞÞ

with yMCD 2 {MCi, ¬MC}. As one can see, FMCP returns one of the MC-labels, and FMCD(MCi)
returns the label of the class MCi, or ¬MC.

Combined classification system

We are combining the prediction functions FMCP and FMCD by using two confidence ratings as

a way to ensure a higher confidence in the predictions of the combined (MCP and MCD) clas-

sifier, as this helps improving the classification precision of our approach, which is crucial in

the practical application. These confidence ratings produce the binary results High and Low.

They can be logically combined and can be interpreted either as providing support for the pre-

diction of the MCP (High confidence) or objecting against its prediction (Low confidence).

Since the output of FMCD is limited to a single MCi and ¬MC, it is used as the first confi-

dence rating for yMCP, answering the question of whether sample s really belongs to the

already predicted yMCP (i.e. a specific MCi) or whether it belongs to ¬MC. For this purpose,

Fig 1. Training of the detection and prediction system.

https://doi.org/10.1371/journal.pone.0228434.g001
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the confidence rating function ΘMCD(Γ(s)) 2 {High, Low} is defined as:

YMCDðGðsÞÞ ¼

(High if FMCDðyMCP;GðsÞÞ ¼ yMCP

Low else

To obtain further confidence on the classification result of FMCP, we define an additional

confidence rating Θdb. It uses the decision boundary of the MCP classifier of the predicted

class. The idea behind Θdb is to calibrate the decision boundary of each MCP classifier towards

more conservative values, requiring a sample with yMCP = MCi to cross a stricter decision

boundary for this MCi to obtain a High confidence for Θdb, which reduces the false positive

rate and increases the precision. As it is defined over the decision scores, it can be applied to

any classifier which provides access to its decision scores or probabilities. For this purpose we

access the prediction score of the MCP via the function DMCP(Γ(s)). We also require the exist-

ing bias b of the MCP classifier of yMCP, and a parameter θDB� 0 to define the new bias bdb =

b + (D⌀ − b) � θdb, with D⌀ representing the mean of those decision scores of the training sam-

ples that have been correctly classified by the MCP. As such, the parameter θdb gives rise to the

following definition of the confidence rating Θdb:

YdbðGðsÞ; ydbÞ ¼

(High if DMCPðGðsÞÞ þ bdb > 0

Low else

For example in the two-class definition of the SVM the decision function is FMCP(Γ(s)) =

sign(wTΓ(s) + b), with w being the weight vector of the trained model. Here we achieve a

positive prediction if wTΓ(s) + b> 0. The respective function to access the score is then

DMCP(Γ(s)) = wTΓ(s) + b.

θdb can be changed dynamically during model selection, which allows for a calibration of

the model precision, similar to other methods of false positive calibration as used in e.g. [59].

The confidence ratings are then processed together with the prediction yMCP to produce the

final predicted label Fcombined(Γ(s)) 2 {MC1, . . ., MCk, ¬MC}, defined as follows:

FcombinedðGðsÞÞ ¼

FMCPðGðsÞÞ if YMCDðGðsÞÞ ¼ High

^YdbðGðsÞ; ydbÞ ¼ High

:MC else

8
>>><

>>>:

The effect of the confidence ratings and the consequently created High-confidence predic-

tion subset on the applied evaluation metrics will be elaborated in the next section. Now that

the MCDs and MCPs are trained and calibrated, we can apply the system to classify unlabeled

sequences, as illustrated in Fig 2. As just described, the final prediction Fcombined(Γ(s)) of this

combined classifier for a given sequence s only provides the label of the predicted MCi if

ΘMCD(Γ(s)) = High and Θdb(Γ(s), θdb) = High, and ¬MC otherwise. This, together with the still

accessible Θ-confidence ratings allows for an effective way of increasing the system classifica-

tion precision, thereby discriminating reliable and unreliable predictions, which is highly rele-

vant in the practical application.

Evaluation

The evaluation section seeks to answer the following research questions:
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• Which of the feature spaces achieve the best classification performance, when evaluated with

suitable learning methods widely used in related work? Which learning method achieves the

best and most robust results?

• Does the proposed ΓST feature space, which combines structural and temporal data proper-

ties in a novel way, achieve a better classification performance than other feature spaces,

which do not use its additional properties of temporal features and positional variance?

• Under which circumstances does ΓST allow for a better classification performance than the

baseline feature space ΓS+T? What are the implications for a practical application of the com-

bined classification system?

To enable the analysis of these questions, subsection Learning Methods starts with describ-

ing the different learning methods used for the evaluation. To achieve a better reproducibility

of the experiments, individual parameters and settings are described. Subsection Evaluation

Metrics proceeds with explanations on the definition of the confusion matrix and additional

metrics required in our use case to ensure the required practical applicability. The most impor-

tant evaluations and analyses are then conducted in subsection Experiments on MFC data.

This subsection starts with a description of the evaluation settings and the calibration of the

δ-parameter, followed by the evaluation of the classification performances using various per-

formance metrics for the individual MCP and MCD predictors, as well as their combined

application to simulate the complete system workflow. The subsection ends with a statistical

significance analysis, which further supports the achieved results. Finally subsection Experi-

ments on AFC data describes evaluation results on the AFC data, thereby providing a different

perspective on the proposed features and systems.

To enable reproducibility of the experiments, all data utilized in this manuscript is available

in anonymized form as supporting material on the PLOS ONE publication page.

Learning methods

While unsupervised or semi-supervised methods have shown to produce good results on tex-

tual and structural data and could be relevant to our problem of model class detection, super-

vised methods are regularly outperforming them and are the preferred solution, if labeled

training data is available. As discussed in Section Related Work, Decision Trees, Markov Clas-

sifiers and LSTM are learning methods widely used in the domain of process mining, while

MLP and SVM are more widely used on non-sequential data representations of sequential

data. For these reasons we are conducting our evaluations on those methods, to provide a

broad picture of the classification performances achievable on the discussed sequential (ΓqT),

non-sequential (ΓT, ΓS, ΓS+T) and semi-sequential (ΓST) feature representations. We also

Fig 2. Application of the detection and prediction system.

https://doi.org/10.1371/journal.pone.0228434.g002
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include the classification performance using k-nearest neighbors to provide an additional

baseline. As some of the feature spaces are designed with specific learning methods in mind,

they are only evaluated on those learning methods. In our experiments we actually tested all

types of features with all learning methods, but achieved suboptimal results on non-suitable

learning methods. For those reasons the respective results are omitted. All of the models below

have been chosen using standard cross-validation based model selection.

Decision tree. Decision trees model training data based on their sequence, where their

shared prefix paths build the root of the tree, which branches along the sequence down to the

leafs, annotating the transitions with their respective probabilities. They are widely used, spe-

cifically in process mining in [27, 30–32] and as random forest of decision trees [35]. We use

them as classifiers, based on the sequential ΓqT features, using additional suffix padding to

achieve equivalent length sequences.

Markov classifier. Markov Models are commonly used in process mining [24, 31–33, 63],

where they are primarily used for predicting objectives like the remaining time or the next

event, and not for sequence classification. It can also be used for classification though, as Mar-

kov Models represent the data of each class in the training data as a Markov process. This

allows calculating the class-wise path probabilities for a new sequence, and predicting the most

probable class by the highest overall path probability. We apply such a classifier on the sequen-

tial data representations of the ΓqT feature spaces.

LSTM RNN. Recurrent Neural Network with Long Short-Term Memory nodes are a

type of classifier recently used e.g. in process mining [29, 36]. Deep Learning approaches

work best with large training data sets. In our use case, getting a large amount of labeled sam-

ples is not easy, thus a deep learning approach might not be the best way to address this prob-

lem. However, recurrent neural networks (RNN) with long short-term memory (LSTM)

units have shown great performance on sequence prediction problems, s.t. evaluating their

performance on this problem is still highly interesting. For our experiments we are using

the tensorflow [64] implementation of RNN with LSTM. The ΓqT features are specifically

designed with an LSTM RNN in mind. To achieve samples of homogenous length per batch,

we added empty events to the end of each sequence. Since the history of each event is of spe-

cific relevance in the event sequence handling in LSTMs, this suffix-padding is a good solu-

tion, as it allows to assure that the starting events are not empty. In our experiments we

achieve the best results when using one-hot label encoding, a single hidden layer of 20 nodes,

300 epochs and a batch size of 10.

KNN. K-nearest neighbor classifiers are classical distance-based baseline classifiers from

the field of natural language processing. We achieve the best results with a value of k = 5, using

the euclidean distance while additionally weighing points by the inverse of their distance, s.t.

closer points have a larger impact.

MLP. Multi Layer Perceptrons are a widely used type of neural network sequence classi-

fier, e.g. in [28, 34]. We achieve the best results by using a single hidden layer with 80 nodes

and the identity function as activation function.

SVM. Support Vector Machines are a supervised learning methods, training a maximal

margin separating hyperplane between linearly separable class data. While this can also be

extended to non-linearly separable class data, we are using a linear kernel, which has shown

very good results given sufficiently high-dimensional data, and specifically for protocol-

based communication data [19–21, 60]. For the MCP evaluation we are using a one-vs-rest

(OVR) approach, as this includes calculating a separating hyperplane for each model class

MC, which allows a confidence calibration to optimize the system precision, as explained in

the next section.
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Evaluation metrics

The general system application of reliably detecting and predicting known amidst unknown

sequence classes, and its concrete practical application in failure classification enforces a focus

on two primary objectives: (1) to obtain reliable predictions (2) for as many MC samples as

possible. Precision, recall and the F1 score capture those aspects. For the evaluation of the

MCP and the MCD classifiers they are calculated for multiple cross validation repetitions, s.t.

we chose to calculate their unweighted class mean (denoted with the keyword macro), because

we already configured the sampling procedure to produce similarly sized model classes.

Whenever the ¬MC class participated in the evaluation (in MCD and combined classifiers) we

excluded it from the calculation of the classwise mean values, because our focus is on the cor-

rect detection of MC samples—and not on the correct detection of ¬MC samples. As the set of

¬MC samples is much larger than each individual MC, this would otherwise lead to overly

optimistic evaluation results. The formula below shows this approach exemplarily for the

macro precision, where the ¬MC are implicitly contained in the calculation of the precision of

each MC, but are not used as a primary class:

precision ¼
P
8i2½1;...;k�precisionðMCiÞ

k

By combining MCP and MCD classifiers and applying confidence ratings, we effectively

create a filter, allowing us to focus solely on the created High-confidence subset of the predic-

tions, which is designed to contain only those samples and labels which truly are of a model

class MC and are correctly classified as such, thereby fulfilling objectives (1) and (2). Due to

this mixture of multi-class (MCP) and two-class (MCD) predictions, we also have to adapt the

metrics in the utilized confusion matrix, as described in Table 4.

Based on these values precision and recall are defined as usual, with precision = TP/P and

recall = TP/(TP + FN). However, to correctly address objective (2) we have to calculate an addi-

tional effective recall by considering all existing MC samples, not only those in the High-confi-

dence subset. Therefore we define the effective recall as the recall of correctly predicted

samples of MC over the sum of samples in all MC, i.e. effective recall ¼ TP=
P

s#MCi
; 8MCi.

Together with the precision over the High-confidence subset, this metric allows for a conclu-

sive analysis of the overall system classification performance, as provided by the combined

classification processing.

Experiments on MFC data

To be able to apply the selected learning methods, we have to assure sufficiently sized failure

classes. To obtain any model classes at all, we sample only from classes with a minimum size of

15 sequences. To improve the interpretability of our classification results we opted for similarly

Table 4. Metrics of the confusion matrix.

Set P of samples in the High-confidence subset

TP s 2MC classified as the correct MCi
FP s 2MC classified as an incorrect MCi

s 2 ¬MC incorrectly classified as a MC

Set N of samples in the Low-confidence subset

FN s 2MC classified as the correct MCi
TN s 2MC classified as an incorrect MCi

s 2 ¬MC correctly classified as ¬MC

https://doi.org/10.1371/journal.pone.0228434.t004
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sized failure classes, which we achieved by limiting the size of each failure class to a maximum

of 25 sequences. As such, the number of samples per MC used for the evaluation, s#MC, is 15<

s#MC� 25. To simulate the complete system, we also need members of the Other Failures class,

of which we used all 86 available sequences, i.e. s#¬MC = 86. In the MCD evaluation this allows

highlighting the detection purpose of the method, as the ratio of samples of MCi to ¬MC is

approximately 1: 4. In the combined evaluation the ratio of all MC samples to ¬MC samples is

approximately 1: 1, which helps in the interpretation of the classification results. For defining

the ΓST features we used all 6,077 labeled and unlabeled MFC samples as model sequences SM.

As previously described this use of the unlabeled sequences helps to extract additional infor-

mation about the behavior of the projected sequence. To further reduce the high dimensional-

ity of the resulting ΓST feature space, we additionally applied a dimensionality reduction,

which utilizes the redundancy between the S2C and SMOC, and the S2C and SMTC feature vectors,

once they are projected with the structural δ − n matching of �̂ðs; sM; ŝM; d; nÞ. This resulted in

a feature space of 294,435 dimensions. We also conducted an additional analysis on the num-

ber of dimensions actually relevant for a sufficient data representation, which could motivate

further dimensionality reduction steps. This analysis is summarized in the Appendix.

For all evaluations we used 20 times random sampling, each with a 5-fold cross validation.

For a proper evaluation we made sure all conducted comparisons between classifiers and fea-

ture spaces were done on the same respective samplings. For the event n-gram sizes of the ΓS,
ΓS+T and ΓST feature spaces we used a fixed n-gram size of n = 2, which yielded the overall best

results. We also tested using multiple values of n simultaneously, as e.g. described in [65].

However, the performance increase was only minimal. As a convention, all results are listed as

the mean and standard deviation in percent.

Evaluation of the individual MCP and MCD classifiers. The purpose of the first set of

experiments is to find the best performing learning method for all feature spaces, s.t. we can

restrict the further experiments to this learning method, allowing to focus on the feature space

analyses. Since ΓST is further parametrized by δ, we start with analyzing the impact of different

values of δ on the MCP classification performance of ΓST using the SVM classifier. To obtain

more reliable parameter values, the calibration is conducted using solely the MCP, and not the

combined MCP-MCD system. The mean sample length in the MFC data set is 44.11 events,

with a standard deviation of 13.51 events. Since δ encodes the positional variance of the

matched n-grams within the projected sequence, it does not make sense to increase its size

beyond a value of δ = 60, at which the complete average sequence length is covered. Since we

expect a high importance of a similar positioning of the matched n-grams, we expect better

results for smaller values of δ. The left plot in Fig 3 shows the results for δ 2 [0, 60]. As expected

we achieve the best results with a value of δ� 10. For that reason we focused stronger on the

range of δ 2 [0, 10], which is illustrated in the right plot in Fig 3, allowing to further reduce the

selection of an optimal value down to δ = 5. As this value allows a positional variance of ±5

Fig 3. MCP evaluation on MFC data for ΓST: F1 scores (macro) in% for ranges of δ 2 [0, 60] (left) and δ 2 [0, 10]

(right).

https://doi.org/10.1371/journal.pone.0228434.g003
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events on SM, it can additionally be explained by the circumstance that event sub-sequences,

which are crucial to the protocol, like the call setup (also illustrated in Table 2) take around 10

events in the s2C representation, requiring any sequence to match the contained events.

Now that we know a proper setting of δ we can conduct a comparative evaluation of all

MCP classifiers on the MFC data set, using all feature spaces. The results are shown in Table 5.

Of those learning methods which are widely used in the field of process mining, and which

have been applied on ΓqT and ΓqT�, the decision tree showed the overall best performance, spe-

cifically on ΓqT�, i.e. the original sequence representation. However, both the Markov and the

LSTM classifier achieve an improved performance on the temporally enriched ΓqT feature

space. When compared to the performance on the other feature spaces though, all of those

approaches commonly used in the field of process mining are clearly outperformed by the

other feature spaces and learning methods. While this was to be expected, given that the pro-

cess mining approach, and specifically deep learning approaches like LSTM usually require

much larger training data sets, also the lack of the additionally included concrete temporal

information is highly relevant, since they are even outperformed by ΓT, which only contains

strongly reduced structural information about the data. Hence the SVM classifier performs

best on all feature spaces, outperforming the otherwise widely used MLP, as well as the KNN

approach. For those reasons we are using it for the remaining experiments. The results of the

SVM classifier also show, that in the optimal scenario in which all MC are known, good results

can already be achieved without using the proposed θdb system calibration.

For the MCD evaluation only the SVM classifier is evaluated. This decision was taken as it

shows the most robust behavior in the MCP evaluation. The results are shown at the bottom of

Table 5. Individual evaluation results of MCP and MCD on MFC data (%).

MCP F1 Score (macro) Precision (macro)

ΓqT� Markov 30.90±8.06 34.62±10.97

DCT 52.58±10.12 56.03±11.26

LSTM 45.36±11.78 49.25±13.42

ΓqT Markov 33.57±6.91 34.22±9.18

DCT 48.89±9.74 52.45±11.44

LSTM 47.38±7.85 52.55±8.14

ΓT KNN 77.57 ±9.05 80.27 ±9.13

MLP 80.94 ±6.83 83.55 ±6.98

SVM 84.72 ±7.34 87.33 ±6.65

ΓS KNN 77.51 ±8.89 81.79 ±7.96

MLP 83.07 ±7.00 85.58 ±6.41

SVM 83.60 ±9.01 86.17 ±8.51

ΓS+T KNN 79.10 ±8.14 82.44 ±7.89

MLP 84.27 ±7.81 87.08 ±7.24

SVM 85.25 ±7.17 87.67 ±6.83

ΓST KNN 77.67 ±8.40 79.93 ±8.31

MLP 78.53 ±8.31 82.03 ±7.55

SVM 83.67 ±7.13 85.70 ±6.77

MCD F1 Score (macro) Precision (macro)

ΓT SVM 62.91 ±19.43 64.54 ±20.33

ΓS 63.33 ±21.72 70.68 ±23.85

ΓS+T 65.53 ±20.64 72.57 ±22.21

ΓST 58.63 ±25.17 76.72 ±28.09

https://doi.org/10.1371/journal.pone.0228434.t005
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Table 5. Obviously discriminating the MC and ¬MC is harder than separating the MC in the

MCP setting, which is to be expected, as the ¬MC samples are very heterogenous. However,

using semi-supervised learning via a One-Class SVM to model each MCi against the ¬MC per-

formed even worse. Since all other learning methods also performed much worse, their results

have been omitted to maintain a proper readability of this section. Of all feature spaces ΓS+T

performs best, while the specifically crafted ΓST feature space is slightly outperformed by all

other feature spaces. While one might think that ΓST does not look that promising yet, the

combined classifier evaluation will show, that it performs better than its competitors in the

final system layout, when the effective recall becomes relevant.

Evaluation of the combined classifiers. Now that we established some understanding of

the performance of the individual MCD and MCP classifiers, we will now evaluate for each

qualified feature space its combined classification performance, also integrating the previously

described confidence ratings. We do this to find the feature space which has the highest preci-

sion, at the highest possible effective recall, which is highly relevant for an effective system in

the practical application. Achieving high precision predictions means that we can trust the

results to be correctly classified and to not contain any samples of ¬MC falsely being classified

as an MC sample. And getting the high effective recall means, we get this predictive behavior

for a larger portion of the MC samples that are actually contained in the test set. This aspect is

illustrated in Fig 4, which shows the percentage of High-confidence samples of MC to all sam-

ples of MC in the test set, under a shifting parameter θdb 2 [0, 1.0]. The more θdb is increased,

the less samples of MC are actually contained in the High-confidence subset, reducing the

potential effective recall.

Fig 4. Percentage of MC samples in the High-confidence set, for θdb 2 [0, 1.0], for ΓT, ΓS, ΓS+T and ΓST.

https://doi.org/10.1371/journal.pone.0228434.g004
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For comparing the combined classification performance of the different feature spaces with

the SVM classifier, we need to select values of θdb representing practically relevant values of

precision and recall, which are similar for the respective feature spaces. Fig 5 contains the pre-

cision, recall and the effective recall of the classification results for θdb 2 [0, 1.0]. The precision

starts to reach 100% for most classifiers at θdb = 0.8. At this value also the recall reaches the

maximum of 100%. When looking at the concrete values of mean and standard deviation,

shown in Table 6, we see that the recall can not be further increased, and that the correspond-

ing precision can be selected s.t. it is around 93% for ΓST, ΓS+T and ΓS. Since further increasing

the precision would not further increase the recall, and 93% is already a reasonable system pre-

cision, we will use this value and the respective settings of θdb for the further analyses. Thus we

are using θdb = 0.8 for ΓS and ΓS+T, and θdb = 0.9 for ΓST. In this respect, the performance of ΓT
was not sufficiently high to achieve similar values of precision and recall, which is why we used

θdb = 1.1 there, achieving relatively close values for further analyses.

Now we need to evaluate which feature space offers the best effective recall, i.e. the fraction

of MC samples that can be recovered from the set of test samples, with those high values of

precision and recall previously described. At their respective values of θdb, ΓS has the lowest

Fig 5. Combined classification results on MFC data: Precision, recall, effective recall (from top to bottom) in %

for θdb 2 [0, 1.0], for ΓT, ΓS, ΓS+T and ΓST.

https://doi.org/10.1371/journal.pone.0228434.g005
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effective recall of 25.05%, followed by ΓS+T with 26.27%, and ΓST with an effective recall of

31.79%. Thus ΓST produces a precision performance similar to both ΓS+T and ΓS, while achiev-

ing a 5.5% higher effective recall than ΓS+T, and a 6.7% higher effective recall than ΓS. This

means, we can get for 31.79% of the MC samples in the test set a correct prediction with

93.11% precision and 100% recall when using ΓST, compared to 26.27% effective recall, 93.51%

precision and 100% recall when using ΓS+T, and even worse when using ΓS. These results are

highly relevant in practice, as they effectively allow filtering near-certain from uncertain pre-

dictions with a very high precision. These results are also highlighting the effectiveness of both

combined feature spaces, with a significant advantage for the ΓST feature space. In that regard

both structural-temporal feature spaces ΓS+T and ΓST outperform ΓS and ΓT: Whereas ΓT has a

relatively good effective recall, but a relatively low precision, ΓS has an acceptable precision,

but a low effective recall. This renders both feature spaces less practically relevant than their

combined counter parts, highlighting the relevance of combined structural-temporal feature

spaces.

The dimensions most relevant for the respective classification results in this use case were

security handshake events, followed by the existence of events representing a successful

response to the most relevant key protocol states, like a successful radio bearer setup. As we

saw in the MCP evaluation, the temporal features are also relevant and utilized in both com-

bined feature spaces. The ΓST feature space also has an advantage here, as its SM-based feature

space allows locating the concrete positions and structural-temporal properties of the relevant

events within the sequence, which are in the evaluation often identified as responses occurring

too late in the sequence, or security mode negotiations at anomalous sequence positions. All of

this can then be used to obtain deeper insights into the data, which can help manual analysts

to limit the number of causes for this specific failure class.

Due to their potential in combining classifiers of different features spaces, we also evaluate

the classification performance of an ensemble method [66], namely the ensemble classifier E,

which could potentially further optimize precision and effective recall. It predicts the com-

bined classification results by using a majority voting over the predicted labels of ΓS, ΓS+T and

ΓST. Table 6 shows its results when using their default trained models of θdb = 0.0, and for their

optimized decision boundary models, using θdb = 0.8 for ΓS and ΓS+T, and θdb = 0.9 for ΓST
respectively. ΓT has not been used due to its lower performance. When using the default

Table 6. Combined evaluation results on MFC data (in %).

θdb F1 Score Precision Recall Eff. Recall

ΓT 0.0 76.37 ±7.90 69.09 ±8.22 91.12 ±7.73 61.57 ±9.39

1.1 90.71 ±13.28 87.40 ±16.75 98.44 ±7.67 17.25 ±7.49

ΓS 0.0 80.82 ±7.18 73.74 ±8.42 95.32 ±5.55 57.94 ±10.17

0.8 95.01 ±6.26 92.65 ±8.92 99.90 ±1.00 25.05 ±7.98

ΓS+T 0.0 81.23 ±7.65 75.28 ±8.09 95.02 ±5.54 60.50 ±12.77

0.8 95.64 ±5.54 93.51 ±8.13 100.0 ±0.0 26.27 ±8.64

0.9 97.36 ±4.86 95.97 ±7.39 100.0 ±0.0 20.38 ±8.09

ΓST 0.0 81.52 ±8.83 77.74 ±10.97 91.73 ±7.35 50.84 ±8.28

0.8 91.72 ±8.29 88.29 ±10.34 99.17 ±4.49 39.88 ±8.81

0.9 95.33 ±6.32 93.11 ±9.16 100.0 ±0.0 31.79 ±10.33

E 0.0 81.98 ±8.33 78.53 ±9.07 90.10 ±9.40 55.78 ±10.73

0.8 88.74 ±13.49 89.76 ±13.65 90.72 ±13.58 23.59 ±7.76

0.9

https://doi.org/10.1371/journal.pone.0228434.t006
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models at θdb = 0.0, the ensemble classifier in fact achieves the best precision at the cost of the

effective recall, an effect similar to the trade-off of θdb. For the optimized models of θdb 2 {0.8,

0.9} the ensemble classifier achieved worse results though.

Significance analysis. To further substantiate the results of the previous section, we con-

duct significance tests on both of our theoretical hypotheses, namely that the combined feature

spaces ΓS+T and ΓST outperform the base feature spaces ΓT and ΓS in terms of effective recall at

similar precision (Hypothesis HA), and that the more complex combined feature space ΓST
outperforms the simpler combined feature space ΓS+T under the same premises (Hypothesis

HB). For the formulation of the hypotheses we denote θer as the minimal effective recall.

For hypothesis HA the null hypothesis HA
0

is defined as follows: When using ΓS or ΓT for

achieving a test set precision mean of 93%, a fraction of p0 samplings have an effective recall

� θer. The alternative hypothesis HA
1

is then defined as follows: When using ΓST or ΓS+T for

achieving a test set precision mean of 93%, a fraction of p̂ samplings have an effective recall

�θer. Now we can formulate the question for hypothesis HA: Is there sufficient evidence at the

α = 0.05 level to conclude that the effective recall for the high precision classification perfor-

mance is increased, when using one of the combined feature spaces ΓST or ΓS+T instead of one

of the individual feature spaces ΓT or ΓS? And at which minimal effective recall θer does this

hold? The results for the minimal θer, at which we can reject HA
0

in favor of HA
1

(i.e. above

which p� α always holds for the resulting p-values) are shown in Table 7, for each pair of

base and combined feature space, as calculated on the same sampling that have also been used

for the previous combined MFC evaluation. We can see that HA
0

can be rejected for ΓT for val-

ues of θer� 5%, i.e. for nearly all values of θer, excluding those which do not occur in the com-

bined feature spaces due to their generally higher effective recall. For ΓS, HA
0

can be rejected for

θer� 9% for ΓST, and for θer� 14% for ΓS+T. This means ΓST is better for a larger number of

samplings, while ΓS+T starts outperforming ΓS later—both of which is also relevant for hypoth-

esis HB.

For hypothesis HB the null hypothesis HB
0

is defined as follows: When using ΓS+T for achiev-

ing a test set precision mean of Â 93%, a fraction of p0 samplings have an effective recall�θer.
The alternative hypothesis HB

1
is then defined analogous: When using ΓST for achieving a test

set precision mean of Â 93%, a fraction of p̂ samplings have an effective recall�θer. The ques-

tion for hypothesis HB is then: Is there sufficient evidence at the α = 0.05 level to conclude that

the effective recall for the high precision classification performance is increased, when using

the complex combined feature space ΓST instead of the simpler combined feature space ΓS+T?

And at which minimal effective recall θer does this hold? As shown in Table 7, HB
0

can be

rejected for all values of θer� 30%, showing that ΓST indeed outperforms ΓS+T, a fact that

is further strengthened by the performance advantage of ΓST over ΓS+T, as shown for hypothe-

sis HA.

We will now further elaborate hypothesis HB by analyzing the distribution of precision and

effective recall, when using either feature space on the same test sets. The results of this perfor-

mance variance analysis are shown in Fig 6. As previously stated, and shown in Table 6, we

conducted the significance tests on SVM classification models calibrated for an average

Table 7. Values of minimal θer to reject hypotheses HA
0

and HB
0

at α = 0.05.

ΓS+T ΓST

HA ΓT 5% 5%

ΓS 14% 9%

HB ΓS+T - 30%

https://doi.org/10.1371/journal.pone.0228434.t007
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precision� 93%. As shown in the left plot of Fig 6, the models of both ΓS+T and ΓST show sim-

ilar performance distributions, with a slight advantage for ΓS+T, due to its slightly higher aver-

age precision of 93.51%, compared to the 93.11% of ΓST. However, as the right plot shows, the

effective recall on the same test sets is much balanced towards ΓST, clearly supporting hypothe-

sis HB. As a result these analyses support our conclusion that ΓST is the most advantageous fea-

ture space in the discussed use case.

Experiments on AFC data

Due to the already discussed shortcomings of the AFC data set properties, we are only inter-

ested to see, whether the MCP are capable of discriminating the model classes of the AFC data

set at all, and how much of a performance improvement we can expect with a larger training

data set, which is possible only on the AFC data set. Similar to the class size restrictions

described for the MFC evaluation, we have to ensure sufficiently large as well as similarly sized

failure classes. To reflect smaller and larger training data sets, we evaluate two different setups.

The first setup is defined with comparability to the MFC evaluations in mind. Hence we use

s#MC = 25, resulting in the 13 sufficiently sized failure classes listed in Table 1. In the second

setup, selecting s#MC = 100 allows for a larger training data set, resulting in 4 sufficiently sized

failure classes. For defining the ΓST features we used all 3,264 sequences as model sequences

SM, resulting in a feature space of 144,938 dimensions after redundancy-based dimensionality

reduction.

Table 8 shows the results of the MCP evaluations on the AFC data set. Due to the differ-

ences in the MFC and the AFC data, we expected a worse classification performance than

on the MFC data, which indeed occurs. However, for the larger sets of training data with

Fig 6. Precision (left) and effective recall (right) of ΓST against ΓS+T(in %).

https://doi.org/10.1371/journal.pone.0228434.g006

Table 8. Individual evaluation results of MCP (SVM) on AFC data (in %).

MCP c#MC F1 Score (macro) Precision (macro)

ΓS+T 25 46.84 ±4.71 49.17 ±6.17

ΓST 42.00 ±5.63 43.97 ±6.12

ΓS+T 100 71.15 ±4.09 72.08 ±4.17

ΓST 62.90 ±6.05 63.67 ±6.08

https://doi.org/10.1371/journal.pone.0228434.t008
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s#MC = 100 the results are largely improved, which shows, that the AFC data set still contains a

sufficient number of discriminative features to enable classification. This also documents the

potential for an equally increased classification performance on the MFC data, once more

class-wise training data is there available as well—which also applied to the general use case of

similar classification problems.

Conclusion

This paper addresses theoretical and practical issues, relevant when analyzing real-time log

data of structural, temporal processes using specific structural-temporal feature spaces for

solving classification problems on mobile communication failure data. On the theoretical

side we present an analysis of structural and temporal data properties, specifically on the dis-

cussed format of mobile communication data. We introduce and discuss novel individual

and combined feature spaces utilizing those properties to obtain a good data representation.

We conduct a comparative performance evaluation of these feature spaces against feature

spaces and on a range of classification methods, all of which are commonly used in related

work. We also show in various evaluations and via hypothesis testing that both of our

combined temporal structural feature spaces ΓS+T and ΓST outperform their competition

counterparts from the research fields of sequence learning and process mining, and that

the novel ΓST feature space excels in classification performance when compared to all other

approaches, including an ensemble method. On the practical side we propose a system for

the detection and prediction of classes of pre-defined sequence behavior, applied on the use

case of the automatic classification of mobile communication failures using the proposed fea-

ture spaces and supervised learning, for which we also show how to maximize its classifica-

tion precision and effective recall via a calibration procedure. We highlight the importance

of properly labeled training data, for which we show that our proposed ΓST feature space is

able achieve a highly trustworthy precision of more than 93% while having the advantage of

an up to 6.7% higher effective recall than the other feature spaces. These results are highly

relevant in practice, as they effectively allow separating reliable from unreliable predictions.

With the higher effective recall more reliable predictions can be obtained, further reducing

the costs of otherwise unfeasible manual analysis processes. We also discussed approaches to

further improve those predictions.

As an outlook it could be interesting to evaluate the potential of word vector representa-

tions like those of [22] for corpora of structural-temporal data. This would not necessarily

reflect the temporal data aspects, and would also require data sets much larger than currently

available. However, the sequential and contextual aspects of the event relations could poten-

tially be covered, which could help improving the interpretability of the internal process

relations, as well as the overall classification performances. Additionally—and despite the

differences in the described data properties and the problems to be solved—a prospective

comparison of the proposed features with those of the field of process mining and business

intelligence analysis will be highly relevant for future research, e.g. by reformulating our

failure sequence classification problem as one of predicting the next events and remaining

time. To achieve a more focused scope, this manuscript deliberately limits the comparative

evaluations to specific feature representations and learning methods. While those have been

chosen based on their use in related work, the primary selection criterion was to allow com-

paring and incorporating the proposed structural-temporal features. Hence the evaluation

of otherwise closely related feature representations (e.g. the complex sequence encoding

of [35]) on network communication data sets need to be part of our future work as well,
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potentially enabling an extension of current process mining approaches to also cover com-

plex temporally aware multi-class problems on event-based communication data like the one

discussed here.

Nomenclature

Appendix

Relevant dimension estimation

Due to the projection on the set of model sequences SM, the resulting ΓST feature space can

become very large. To estimate the potential for the application of a dimensionality reduction

approach, we conducted additional experiments using ΓST and the model class predictors

(MCP) on the MFC data, to achieve an empirical estimation of the number of relevant dimen-

sions, similar to the analyses conducted in [62]. However, the sparsity of the ΓST feature space,

together with the limited size of the analyzed data sets makes it hard to analyze the full set of

dimensions with a sufficient statistical robustness. To achieve statistically more robust results,

the number of base dimensions of ΓST was reduced to those 5.000 dimensions with the largest

variances, selected from a filtered set of those dimensions that had a density > 70%. For those

dimensions a PCA analysis was conducted repetitively, to extract the k largest PCA compo-

nents in a range of 1 to 1.000. We then projected the train and test samples onto the dimen-

sions defined by those k largest PCA components to achieve a feature representation with a

reduced dimensionality. This allowed us to train and test a linear classifier on each of those

projected sets, obtaining the results for the largest 100 and 1.000 PCA dimensions respectively,

as shown in Fig 7.

As can be seen, the performance slowly increases, as long as additional dimensions are

added to the utilized feature space. Although the variance is still relatively high, we already

achieve a convergence at about 100 dimension. The variance starts to decrease from 400

dimensions on. This means, that for this set of filtered dimensions, a reduction to the 400

largest PCA dimensions can be achieved without loosing much of the precision of the base

feature set. Due to the restrictions mentioned above, the results achieved on this limited set of

MCi A model class, i.e. a sequence class sufficiently sized to model a classifier

s#MC Configuration parameter for the number of samples in this model class

|s| Number of events in a sequence s

¬MC non Model Class, containing samples of insufficiently sized classes

MCP Model Class Predictor

MCD Model Class Detector

ΓqT Quantized temporal feature space

ΓT Temporal feature space

ΓS Structural feature space

ΓS+T Concatenated structural temporal feature space

ΓST Structural temporal feature space

S Set of sequences s
SM Set of model sequences sM, defining the ΓST feature space model

ΘMCD Confidence rating based on the MCD

Θdb Confidence rating based on the decision boundaries of the MCP

θdb Calibration parameter for the MCP decision boundaries
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dimensions do not represent the full set of features. This also explains, why the results are

lower than those presented in Table 5. Despite these restrictions, the results allow establishing

the hypothesis that a much lower number of dimensions may be sufficient when using the ΓST
feature space. This hypothesis needs to be tested on larger data sets in the future.

Supporting information

S1 Data. The MFC and AFC data sets. Each communication sequence is provided in an indi-

vidual file, containing all relevant data and using anonymized failure classes, protocol identifi-

ers and event identifiers.
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58. Laskov P, ŠrndićN. Static detection of malicious JavaScript-bearing PDF documents. In: Proceedings

of the 27th Annual Computer Security Applications Conference. ACM; 2011. p. 373–382.

59. Schwenk G, Bikadorov A, Krueger T, Rieck K. Autonomous learning for detection of JavaScript attacks:

vision or reality? In: Proceedings of the 5th ACM workshop on Security and artificial intelligence. ACM;

2012. p. 93–104.

60. Wang K, Parekh JJ, Stolfo SJ. Anagram: A content anomaly detector resistant to mimicry attack. In:

Recent Advances in Intrusion Detection. Springer; 2006. p. 226–248.

61. Chin WH, Fan Z, Haines R. Emerging technologies and research challenges for 5G wireless networks.

IEEE Wireless Communications. 2014; 21(2):106–112. https://doi.org/10.1109/MWC.2014.6812298

62. Braun ML, Buhmann JM, Müller KR. On relevant dimensions in kernel feature spaces. Journal of

Machine Learning Research. 2008; 9:1875–1908.

63. Leontjeva A, Conforti R, Di Francescomarino C, Dumas M, Maggi FM. Complex symbolic sequence

encodings for predictive monitoring of business processes. In: International Conference on Business

Process Management. Springer; 2016. p. 297–313.

64. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

Features spaces and a learning system for structural-temporal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228434 February 6, 2020 33 / 34

http://books.google.com/books
https://doi.org/10.1371/journal.pone.0018093
http://www.ncbi.nlm.nih.gov/pubmed/21483869
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/72.914517
http://www.ncbi.nlm.nih.gov/pubmed/18244377
https://doi.org/10.1109/MWC.2014.6812298
https://www.tensorflow.org/
https://doi.org/10.1371/journal.pone.0228434


65. Lai S, Xu L, Liu K, Zhao J. Recurrent Convolutional Neural Networks for Text Classification. In: AAAI;

2015. p. 2267–2273.

66. Dietterich TG. Ensemble methods in machine learning. In: International workshop on multiple classifier

systems. Springer; 2000. p. 1–15.

Features spaces and a learning system for structural-temporal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228434 February 6, 2020 34 / 34

https://doi.org/10.1371/journal.pone.0228434

