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Introduction

One reason that makes extracellular vesicles (EVs) so 
exciting is the large variety of cargo molecules associated 
with them. The studies suggesting that specific molecules 
are sorted and assembled into EVs uncovered their great 
potential in diagnostics – even small changes in specific 
cargo abundances have been associated with a variety of 
metabolic conditions. Among all cargo molecules con-
tained in EV-enriched samples, microRNAs have been 
intensively scrutinized over the last 10 years because their 
dysregulation has been associated with diseases, and 
traces of their expression are often present in biofluids – 
either associated with EVs or in EV-free manner [1–3]. 
Furthermore, because of their exceptional stability in 
biofluids, microRNAs are being intensively tested as 
potential biomarkers [2,4–6]. Since the launch of the 
Journal of Extracellular Vesicles (JEV), there has been 
considerable interest in reporting the association of 
microRNAs with EVs collected from human biofluids 
or collected from cultured cells: close to one-third of all 
JEV publications so far deals with some aspect of the 
detection, delivery or packaging of microRNAs; this pro-
portion is comparable to the literature in the field of EVs 
published elsewhere.

Circulating microRNAs are not always the most 
abundant class of small RNAs in all biofluids; other 
classes, like tRNA fragments, might be more abundant 
on occasions [7]. Yet, the popularity of microRNAs 
prevails. The seminal reports that showed the func-
tional delivery of microRNAs via EVs and that 
tumour-derived EVs may promote metastasis or pre-
pare the niche for metastatic cell invasion [8–14], 
sparked the interest to identify the microRNA expres-
sion patterns found in solid and liquid biopsies from 

individuals affected not only by cancer but by many 
other diseases. So far, there are two diagnostic tests 
clinically applicable in the market – ThyraMIR 
(Interpace Biosciences) and mir-THYpe (ONKOS 
Molecular Diagnostics); both are based on 
a microRNA detection panel to test and classify thyroid 
cancer. However, the first diagnostic panel targeting 
microRNAs as analytes from EV samples, or biofluids 
in general, is yet to get to market.

One of the challenges faced by the community in 
detecting microRNAs (or any other class of small 
RNAs) contained in EV-enriched samples is the limited 
number of molecules that each vesicle may contain. 
Estimates of the microRNA content per vesicle resulted 
in an average of one molecule per 100 individual EVs (i.e. 
exosomes) [15]. (For a thorough explanation about the 
use and nomenclature of the term “exosomes”, refer to 
Witwer and Théry [16]). Clearly, the starting material of 
biofluid to obtain enough quantities of EVs per sample is 
essential. Thus, the development of commercial assays to 
measure microRNA expression has played a crucial role 
in this matter. Fortunately, the ease in conducting high- 
throughput microRNA expression profiling is nowadays 
more sensitive compared to the early years of microRNA 
research. A typical workflow adopted by many research 
groups in order to look for candidate biomarkers within 
a small RNA sample consists of conducting first a high- 
throughput profiling of microRNAs, to then “validate” 
the observed expression pattern by using another techni-
que directed to specific candidates with suspected dysre-
gulation [17–20]. Because of their commercial 
availability, high sensitivity and ease of use, reverse tran-
scription quantitative real-time PCR (RT-qPCR) assays 
are by far the most widely used approach to validate high-  
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throughput microRNA profiling experiments [21–24]. 
Although this strategy is widely employed and has led 
to several publications that support the use of 
microRNAs as early biomarkers, on many occasions, 
the results observed by using one quantification platform 
may not be reproducible by another, yielding data chal-
lenging to interpret. This workflow has given rise to 
inconsistencies not only in those microRNAs whose ele-
vated expression pose potential as biomarkers, but even 
in those expected to remain constant and unrelated to 
disease [25–27]. Recent reports addressed this issue and 
propose that its origin may lie with the inherent varia-
bility of microRNA sequences in combination with the 
use of different detection platforms to validate microRNA 
expression data.

In this editorial, we aim at raising awareness about 
the lessons learned on the sensitivity and specificity of 
the most widely used platforms to quantify the abun-
dance of microRNAs. As not all platforms are created 
equal, their detection mechanism – and in some cases – 
the detected molecule, may not be equal. We highlight 
the studies testing how microRNA variants might affect 
expression profiling experiments and therefore lead to 
inconsistencies in data – especially when compared 
across platforms. We believe that in understanding 
the limitations each platform presents the research 
conducted to characterize EV-carried and circulating 
microRNAs may be particularly benefited because of 
the scarce material available for experimentation. We 
provide a simple diagram that summarizes the general 
strategy followed by the few research groups that have 
managed to overcome these limitations, which could be 
used as a workflow in cases of low data correlation 
when assessing the abundance of microRNAs with 
different detection platforms.

Variations on the theme of microRNA profiling 
and detection

The most widely used methods to explore microRNA 
expression are microarrays, RT-qPCR and small RNA- 
seq (sRNA-seq) [17,18,22,24,28]. Although the technolo-
gic approach of microarrays and RT-qPCR operates by 
different mechanisms, both meet at one concurrent prin-
ciple: specific oligonucleotide probes hybridize to 
microRNA molecules to produce a signal. This condition 
inexorably requires previous knowledge on the RNA 
sequences in order to design and synthesize the hybridiz-
ing probes (the molecular approach conducted by each 
platform may be revisited in Yin et al., 2008; and 
Pritchard et al., 2012). sRNA-seq, on the contrary, does 
not require previous knowledge on the sequence to 

detect, and hence has been typically employed in studies 
aimed to discover novel sequences. As the commercial 
availability of these three approaches has increased and 
their cost has reduced over the last 10 years, many labora-
tories use them routinely to explore microRNA expres-
sion in several experimental setups and disease 
conditions.

Even though each type of platform is very robust in 
detecting microRNAs, it is common to stumble on 
puzzling results when their expression is validated by 
using different platforms sequentially. For example, 
while some microRNAs correlate robustly and present 
similar expression trends, others show low correlations 
between platforms – this can be observed for the same 
microRNA and sample [18,21,22,29,30]. For this rea-
son, microRNAs with acute fold-changes relative to 
their controls, and therefore attractive as potential bio-
markers must be discarded from further analyses 
because the platform chosen to validate their expres-
sion did not reproduce the trend observed with the first 
one. The expression of those microRNAs with low 
correlation is typically ignored due to the suspicion of 
biases in data collection. This situation is detrimental 
to biomarker discovery.

To understand this phenomenon in more detail, one 
research group explored in vitro how microRNA sequence 
variants contribute to such discrepancies [31–33]. First, 
Nejad et al. reported confounding results in the detection 
of miR-222 in human fibroblasts: by RT-qPCR, the authors 
failed to detect the 70% decrease of miR-222-3p in response 
to IFN initially observed by sRNA-seq. This observation 
was later confirmed and extended by Pillman et al., who 
reported that the use of predesigned LNA-based RT-qPCR 
assays employed in their study – and that of Nejad et al. – 
targeted the miRBase entry sequence of miR-222-3p, but 
failed to detect other of its abundant variants, which were 
only discernable by computational analysis of the sRNA- 
seq data. Intriguingly, Pillman et al. also noticed that this 
situation was not unique to their study, and it applied as 
well for other published data, but in some cases went 
unnoticed [31]. Finally, Magee et al. reported that the Cq 
values for miR-21 obtained by using one RT-qPCR plat-
form were affected by changing the stoichiometry between 
its miRBase entry sequence with either synthetic spiked-in 
variants or cell-extracted RNA [30]. Importantly, the Cq 
values were affected differently by using another RT-qPCR 
platform. Reports exemplifying the lack of correlation in 
microRNA analyses are increasing (reviewed by Witwer 
[27]), and despite numerous review articles highlighting 
the strengths and limitations of each approach 
[17,18,20,26,27,34–36], the lack of validation is still 
a recurring theme.
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A microRNA name is not composed of one 
molecular entity only

Since the first reports of hundreds of conserved 
microRNAs in animals, their existence has been accompa-
nied by the presence of sequence variants to what is collec-
tively known as mature sequences [37,38]. Historically, 
except for few exceptions (like let-7 and bantam), mature 
microRNAs were given a number, and therefore a name, 
after their discovery in a progressive list (e.g. miR-1, miR-2, 
and so on). Most mature microRNAs arise from the pro-
cessing of longer stem-loop precursors in a series of clea-
vage events by the RNases type III Drosha and Dicer [39– 
41]. The intense study of biogenesis and function of 
microRNAs in the first decade after their discovery led to 
assume that in general, the variability observed in their 
mature sequences originated during their biogenesis, 
being the most frequently varying location the nucleotide 
positions near their 3′ ends. These positions were assumed 
to have little to no effect on microRNA function [38,42]. 
The variants were primarily observed by direct cloning of 
microRNA-containing DNA concatamers, and later corro-
borated by northern blot assays; the combination of these 
two methods made evident that the variability observed for 
any given microRNA could be in sequence, in size, or 
a combination of both. With the advent of deep sequencing 
technologies, our understanding of microRNA variants 
evolved in the last decade [43–45], and several laboratories 
have demonstrated that they are not merely byproducts of 
imprecise cleavages by Drosha or Dicer [46–48], but also 
that play a biological role and might influence mRNA 
target selection [49–53], and their presence associates 
with diseases as well [54–57]. These variants are referred 
to as microRNA isoforms, or isomiRs [58]. IsomiRs not 
only appear when there is a high-depth coverage in sequen-
cing reads, but they were also observed since the first 
massively cloning studies in animals from Profs. Tuschl’s 
and Ambros’ laboratories in 2001 [37,38]. In those studies, 
due to the method employed for the cloning of small RNAs 
(concatamerization), the depth and coverage of the 
sequences obtained did not go beyond a few dozen thou-
sands of “reads”. It is currently known that isomiRs exist in 
every sample, regardless of the abundance of their canoni-
cal microRNAs, and also that some isomiRs could be the 
most abundant representative of a microRNA name within 
a sample.

The abundance of isomiRs might bias the bulk 
detection of microRNAs

The evidence obtained from experiments aimed to 
address the inconsistencies in microRNA quantifica-
tion across platforms suggests that the issue may have 

roots in the abundance of isomiRs within a sample, and 
also by how each detection platform deals with them. 
Notably, this phenomenon is not only constrained to 
one specific detection platform only, but rather to their 
sequential combination [31–33,56] – e.g. microarray or 
sRNA-seq followed by individual RT-qPCR validation.

To explain how the abundance of isomiRs may affect 
microRNA detection across platforms we present two 
hypothetical scenarios: one in which data validation is 
robust, and another in which is low (Figure 1). Consider 
a sample that contains several isoforms of a given 
microRNA of interest (in this case, hsa-let-7a-1); all iso-
forms are present at various stoichiometries. In the case 
of robust validation (Figure 1, top), the miRBase entry 
sequence for hsa-let-7a-1 (red) – also commonly referred 
to as canonical, reference, archetype, consensus, or |0|0| – 
is the predominant and most abundant compared to the 
sum of all other isoforms. If a high-throughput analysis of 
this sample is conducted by microarray profiling, it is 
expected that the mature archetype sequence is detected, 
together with its other isoforms in a bulk signal (check-
marks). A subsequent validation by RT-qPCR for hsa-let 
-7a-1 would show a high correlation of detection across 
platforms, as the abundance of all other isoforms has little 
to no influence in detecting the predominant |0|0| iso-
form (for isomiR nomenclature refer to [56,57,59]).

In the case of low validation, however, the miRBase 
entry sequence might not be the most predominant 
isoform within the sample (Figure 1, bottom). All plat-
forms will detect the archetype, but the majority of the 
bulk signal will come from the most predominant iso-
form, hsa-let-7a-1 |0|–3|. Since some abundant iso-
forms may not be detected by each platform 
technology (cross marks), the confounding results will 
arise because of low correlation. For example, if hsa-let 
-7a-1 |0|–3| is detected and profiled by microarray, it 
will not be detected by stem-loop RT-qPCR; conver-
sely, if it is followed by poly-A RT-qPCR, the bulk 
detection of the different isoforms altogether would 
yield a higher signal-to-noise. These scenarios are 
expected because it is known that individual hybridiza-
tion probes cross-react with highly similar isoforms 
(e.g. having 1–2 nt difference) [30], but the detection 
tolerance for all microRNA isoforms remains largely 
unknown, and it is uncertain whether some isoforms 
might even be detected by each probe (Figure 1, ques-
tion marks). Therefore, since the bulk detection of each 
microRNA in a sample is the sum of all its isomiRs 
detected individually, assays based on the poly-A RT- 
qPCR approach typically yield higher signal-to-noise 
ratios compared to those based on the stem-loop (e.g. 
the hydrolysis-based probes known as Taqman [60]) 
[22,29,33].
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The only platform from which individual isoforms 
may be deconvoluted from the bulk signal is sRNA-seq. 
In general, the diversity and relative proportions of all 
microRNA isoforms in a sample can be assessed quan-
titatively by computational analyses, regardless of the 
sequencing technology (Illumina, SeqLL, Invitrogen- 
Thermo, etc.). Additionally, sRNA-seq offers the 
advantage to detect non-templated nucleotide addi-
tions (NTAs), that do not correspond to the original 
precursor sequences that give rise to mature 
microRNAs – NTAs arise from the activity of terminal 
transferases that typically add extra uridines or ade-
nines at the miR-3′ ends, and their presence is some-
times related to a target-directed microRNA decay 
mechanism (reviewed in refs. 14 and 35). Despite the 
current understanding of the importance of isomiRs 
biology, however, most computational tools used for 
the analysis of microRNAs expression do not include 
an isomiR deconvolution feature by default, so the user 
must specifically look for this option (for a list of tools 
for isomiR analysis refer to www.tools4mirs.org [61]). 
If there is not an appropriate computational analysis 
after sRNA-seq profiling and the advantage offered of 
individual isoform detection with their respective 
abundances is not harnessed, the detected isomiRs 

might end up simply portrayed as bulk signals. 
Therefore, a careful bioinformatic analysis is required 
to figure out whether the lack of robustness can be 
explained given the abundance of specific isomiRs in 
each case. A concern that escapes the scope of this text 
is the ligation and amplification biases that may occur 
during library construction, and the type of normal-
ization that limits sRNA-seq profiling (for review on 
this matter, see references [2,5,20,25,28,29,62–64]). 
Poor reproducibility across platforms is the result of 
a complex blend of several factors, originated by the 
intrinsic mechanisms by which each platform detects 
microRNAs.

It is essential to highlight that within any sRNA-seq 
dataset, only a handful of microRNAs uniquely corre-
spond to the archetype miRBase entry. For the majority 
of microRNA names, there is a rich blend of isoforms 
that may even outnumber their |0|0| counterpart and 
this applies for several microRNA names [31–33,65-67]. 
In 81 colorectal neoplasia samples, for example, isomiRs 
account for 70% of all microRNA sequencing reads and 
their archetype sequences account only for 30% of all 
microRNA reads. Similar archetype:isomiRs ratios are 
observed from the sRNAseq data collection at miRBase, 
or directly from any of the SRA datasets referenced at 

Figure 1. The abundance of isomiRs may reveal inconsistencies in the bulk detection of mature microRNAs across detection. Two 
examples of high (top) and low (bottom) correlation are shown. The archetype miRBase entry sequence (|0|0|) of hsa-let-7a-1 is 
shown in red, and its isomiRs are shown in black. The hypothetical abundance of each isoform is represented by a horizontal bar 
(left). NTA, Non-templated nucleotide additions (grey Us).
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the repository (miRBase v22 [65],), or even by a random 
selection of SRA files from the Gene Expression 
Omnibus (GEO) from a variety of human and mouse 
cell lines and tissues, including biofluids and EV- 
enriched samples. Within these ratios, microRNA 
names distribute in four general categories: 1) 
microRNA names whose archetypes are the only 
sequence encountered; 2) microRNA names whose 
archetypes are more abundant than the sum of all their 
respective isoforms; 3) microRNA names whose arche-
types are less abundant than the sum of all of their 
corresponding isoforms; and 4) microRNA names for 
which one or many individual isomiRs are more abun-
dant than their archetype. The most critical aspect of 
such distribution is that category 1) is the least frequent 
(in agreement with Wu et al., and Fiskaa et al.). In other 
words, the representative of a microRNA name – for 
which most commercial probes are directed to hybri-
dize – rarely exists as a unique sequence in a sample, 
supporting previous reports and the data deposited at 
miRBase (v22) [65–67].

Why isomiRs matter in EV-enriched samples?

Since the diameter of EVs is typically under 1 µm, their 
maximum cargo is minimal. Exosomes, for example, 
range at ~30–120 nm in diameter, so only a few 
microRNA molecules could be assembled into one 
particle. In this view, not all may correspond to the 
same microRNA name, but most could be microRNA- 
empty. The estimated average of the number of 
microRNA molecules per vesicle particle in the size 
range of exosomes is 1:100 [15]. At such scarcity, it is 
not surprising that RT-qPCR is the preferred validating 
platform for the detection of EV-carried microRNAs – 
it has been demonstrated that as low as 10 molecules 
per sample can be detected using this platform [68]. 
Notably, for sRNA-seq experiments, the amount of 
starting material must be substantially higher (1–5 ng 
of enriched small RNAs). Lower quantities might be 
used for library construction, but the quality tests and 
concentration measurements must be skipped. 
Additionally, higher PCR amplification cycles are 
required during library construction, but it is known 
this originates acute amplification biases [5,64,69].

Despite the current lack of nomenclature that thor-
oughly describes the nature of every class of 
microRNA-carrying vesicle [6,70], the proportions of 
isomiRs detected in cultured parental cells are generally 
recapitulated in EV-enriched samples. Few studies, 
however, have reported that specific isomiRs may be 
enriched in EVs in comparison to parental cells, sug-
gesting that the proportion EV/parental cell may vary 

under certain circumstances. Koppers-Lalic et al. 
reported that 3′-NTAs (i.e. 3′-uridylated isoforms) are 
over-represented in the repertoire of microRNAs of 
exosomes compared to their parental B-cells (which 
are rather 3′-adenylated) [71]; the same group later 
observed this in EV-enriched samples of urine from 
prostate cancer patients [72]. Li et al. reported an 
enrichment in 3′-uridylated isoforms for miR-214-3p 
in osteoclast EVs [73]. Whereas such NTA 3′- 
uridylation was not observed in hepatic cells [74], 
other studies reported differences at specific nucleotide 
positions within microRNAs in EV-enriched samples 
[75–78], supporting the notion that a sequence hetero-
geneity may influence the packing of specific 
microRNAs into EVs, or also promote their cellular 
retention [67]. More research is required to clarify the 
conditions that may promote specific isomiR associa-
tion with EVs.

We note that the stoichiometric changes observed 
for specific isomiRs in EV-enriched samples mentioned 
above where discernable only after bioinformatic ana-
lyses of sRNA-seq data, like those of Nejad et al. and 
Pillman et al. referred earlier. Since it is unclear at this 
point the sensitivity level at which microarrays or RT- 
qPCR probes discriminate between individual isomiRs, 
significant insights may inadvertently be ignored in the 
literature; a situation that may worsen for samples 
with minute amounts of small RNAs.

A strategy followed when stumbling on elusive 
cargo

So far, we presented two different but related issues 
that arise with the detection of microRNAs with com-
plex isomiR stoichiometries. First, the discrepancies in 
expression caused by the inherent molecular principle 
employed by each platform, associated with their sen-
sitivity in detecting or not isomiRs as bulk signals. 
Second, the diversity of isomiRs for each microRNA 
name within every sample, evidenced by experiments 
that employ the same detection platform but vary the 
isomiR stoichiometries with spiked-in oligos, either 
with synthetic or cell-extracted RNA. It is reasonable 
to expect that the issues that apply for in vitro cultured 
cells may also occur for samples of different origin, like 
solid or liquid biopsies – including EV-associated and 
EV-free circulating microRNAs.

The in vitro studies cited here that managed to solve 
discrepancies in the level of expression detected between 
platforms have one thing in common: they all had 
sRNA-seq data available, and the authors looked back 
to revisit the isomiR datasets. Hence, based on the gen-
eral empirical strategy followed in those studies, we 
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present a simple decision-making diagram that could aid 
in the steps to follow to adequate a confirmation test 
across platforms in cases of suspicion of a high abun-
dance of non-archetype isoforms (Figure 2). We note 
that this workflow applies to microRNA-containing sam-
ples from any sources or concentrations. For high- 
throughput microRNA profiling conducted by sRNA- 
seq, it is possible to analyse sequencing reads and look 
for abundant isoforms (Figure 2, green arrow). For 
microarrays, however, if there is no previous knowledge 
of candidate isoforms, it is challenging to locate the 
putative confounding isomiRs. Naturally, a high correla-
tion is expected to occur whenever the same detection 
platform is employed to validate previous results with 
identical samples (e.g. stem-loop qPCR panels, followed 
by stem-loop individual assays), regardless of isomiR 
stoichiometries. Once the putative isoforms are sorted 
out, it is possible to design specific assays for their 
detection by using RT-qPCR probes of commercial and 
non-commercial methods (Figure 2, green box). 
Alternatively, nanostring technology has been shown to 
detect specific isoforms in a linear range of quantification 
[79]. Alas, should no previous knowledge of candidate 
isoforms is available, it is recommended to re-analyse 
some or all samples by sRNA-seq to then proceed to 
isomiR analysis (Figure 2, red arrow).

Some research groups have succeeded in detecting 
specific isoforms of selected microRNAs empirically by 
using inventoried and customized commercial probes 
that work either with stem-loop or poly-A RT-qPCR 
assays (Table 1) [30,32,33,49,66,68,80–82]. Also, few 
research groups have designed elegant modifications 
to existing methods to detect specific isoforms 
[33,68,82,83]. While not commercially available yet, 
assays like two-tailed RT-qPCR and dumbbell-PCR 
look promising and cost-effective approaches to tackle 
the low correlation issue directly due to the abundance 
of non-archetype sequences by RT-qPCR. However, 
further experimentation is still needed to demonstrate 
their full cross-reactivity and specificity range.

Concluding remarks and future directions

Awareness of the presence of isomiRs might be the 
tipping point for cases in which the abundance of 
candidate microRNAs could be associated with the 
onset of a disease state, but there is a low correlation 
when their expression is assayed with a different detec-
tion platform. The reports of NTA 3′-uridylated 
isomiRs and the nucleotide variability observed in EV- 
enriched samples are an invitation to look more in 
detail for possible expression changes within the 
isomiR repertoires.

Importantly, understanding the different molecular 
mechanisms by which each microRNA detection plat-
form operates helps in selecting the type of analysis in 
accordance with the expected results. We stress the argu-
ment that microRNA detection inconsistencies across 
platforms do not necessarily subtract validity to data 
acquisition, as each platform is robust in its niche. 
However, isomiR stoichiometries within samples vary – 
some microRNAs are present as a rich blend of isoforms, 
while others are unique molecular entities [45]. Not con-
sidering the sequence variability threshold tolerated by 

Figure 2. Decision-making diagram. After high-throughput 
microRNA profiling data are typically validated by conducting 
specific RT-qPCR assays for interesting microRNAs with acute 
fold-change expression over control samples. In those cases 
where the RT-qPCR assays do not reproduce the initial fold- 
change observed for any candidate microRNA, an isomiR- 
directed analysis may help to corroborate previous expression 
profiling results or trends. Ideally, the identification of isomiRs 
in a sample is conducted by the computational analysis that 
follows after sRNA-seq profiling; specific isoforms can be 
detected by isomiR-directed RT-qPCR probes (green box), or 
Nanostring technology. Conversely, the lack of information 
about the presence of putative confounding isomiRs within 
samples requires sRNA-seq profiling (red arrow) and the con-
comitant isomiR-directed computational analysis (green arrow).
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each platform may confine researchers to conclude miR- 
x,y,z – but not miR-a,b,c – are relevant biomarkers 
because their expression fold-change was validated with 
another platform. Remarkably, those platforms that work 
through hybridizing probes, inexorably assume specific 
sequences and therefore detect specific mature 
microRNA sequences [22]. The fact that most commer-
cially available probes are directed to hybridize the 
miRBase entry sequence helped to nurture and develop 
the microRNA field for several years [65,84,85]. However, 
our current understanding of microRNAs heterogeneity 
requires to adjust their detection to avoid confounding 
results [22,31]. Although microRNA databases other than 
miRBase have been developed (for example, the hand- 
curated miRgeneDB [86]), there is no consensus cur-
rently referring to which archetype should be primarily 
considered, or even whether an archetype should be 
considered at all. In our perspective, this constitutes the 
main drawback for microRNA detection using prede-
signed probes.

Several groups of microRNAs are profiled as highly 
represented in specific diseases, either from cultured cells 
or from solid and liquid biopsies (reviewed in [25,34]). 
Hence, the hunt for biomarkers rarely finds isolated exam-
ples of individual microRNAs associated with disease. 
Instead, it is common to find groups of microRNAs from 
unrelated families whose collective expression can be used 
as biomarkers. One key exception to this, however, is miR- 
21 – which, among microRNAs, is considered the quintes-
sence of biomarkers in cancer. The work by Telonis et al. 
puts in perspective the value in considering not only 
microRNA names and their archetype sequences, but also 
their isomiRs. Of all microRNAs, miR-21 is by far the most 
associated with the term “biomarker” in the literature. Yet, 
its presence is poorly discriminatory of disease, supporting 
a previous conclusion by Wang et al. [56,87]. Conversely, 
Telonis and colleagues also described that specific isomiRs 

corresponding to other microRNAs could be even more 
discriminatory but are poorly recognized as biomarkers in 
the literature. Since commercial RT-qPCR assays of miR- 
21 are designed and directed against the sequence refer-
enced at miRBase (as for most microRNAs), it is expected 
that such archetype is detected accurately and quantita-
tively. Interestingly, the miRBase archetype of miR-21 is 
not the most abundant of its variants in sRNA-seq data 
from the TCGA repository, and many of its isoforms are 
unusually high compared to other microRNAs – close to 50 
isoforms [30,56,57,67]. Additionally, Magee et al. reported 
that two different commercial RT-qPCR assays for miR-21 
do not discriminate among some of its most abundant 
isoforms and show a significant cross-reactivity, either in 
experiments that used only synthetic spiked-in RNA oligos 
as target molecules or by mixing the spiked-ins with cell- 
extracted RNAs [30].

Which of the miR-21 variants was profiled in those 
studies that reported a high correlation of different types 
of cancer with the mature miR-21? If the bulk detection of 
miR-21, either by stem-loop or poly-A assays, does not 
discriminate among its most abundant isoforms, could it 
be that this cross-reactivity of miR-21 probes can extend 
beyond and also cross-react with other somewhat similar 
microRNAs? In a different study, Wu et al. concluded that 
the detection of miR-21 archetype is a poor biomarker of 
colorectal neoplasia [66]. Then, why is the presence of miR- 
21 so heavily associated with cancer? Could it be that the 
cross-reactivity of miR-21 RT-qPCR probes (associated 
with the large proportion of its isomiRs) is more likely to 
recapitulate expression fold-changes obtained by using 
other platforms? In support of this, Fiskaa et al. reported 
that a miR-21 isoform (3′ termini = C) – not its archetype – 
is a more consistent biomarker of breast cancer [67].

One provocative hypothesis that could explain this 
phenomenon is that the biomarker literature is biased 
towards certain microRNAs, like miR-21, but not 

Table 1. RT-qPCR probes reported to detect specific isomiRs.

RT-qPCR assay IsomiRs corresponding to microRNAs:
Evidence of discrimination among isoforms 
(except sRNA-seq)

miRCURY LNA miRNA; poly-A (Qiagen) miR-151-3p, miR-25-3p Gutierrez-Vazquez et al., 2017
miR-101 Llorens et al., 2013
miR-21-5p Magee et al., 2017
miR-222-3p Nejad et al., Front. Genet., 2018
miR-33b-5p Schamberger et al., 2014
miR-27a-3p, miR-125a-5p, miR-224-5p, miR-21-5p, miR-30e- 

5p
Wu et al., 2018

TaqMan miRNA; hydrolysis stem-loop 
(Thermo)

let-7a, miR-21, miR-193a Androvic et al., 2017

miR-122-5p Lopez-Longarela et al., 2019
miR-21-5p Magee, R., 2017
miR-222-3p Nejad et al., Front. Genet., 2018
miR-222-3p Nejad et al., RNA, 2018
miR-33b-5p Schamberger et al., 2014

miScript; poly-A (Qiagen) miR-122-5p López-Longarela et al., 2019
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precisely because of their potential as biomarkers, but 
rather because the stoichiometric ratio of archetype: 
isomiR sequences facilitates their “validation” of 
expression fold-changes across different platforms. 
For example, microRNAs with abundant isomiRs, for 
which RT-qPCR probes are more sensitive to sequence 
changes, may not pass the validation process, and 
therefore are discarded from the discussion and further 
experimentation, while others that do pass the valida-
tion, become highly popular in the biomarker realm 
[31,33,82].

We conclude by stating that not accounting for 
isomiRs due to the limitations of detection, keeps us 
from establishing the true suitability of microRNA as 
biomarkers and from the rapid development of accurate 
panels to diagnose diseases. In addition, understanding 
cargo isomiRs will aid in cementing the foundation our 
knowledge to develop synthetic EVs as microRNA deliv-
ery vehicles. Ultimately, the ideal platform for character-
izing the microRNA content in EVs would be such that 
could identify the complete isomiR repertoire, per EV 
particle, per sample, in an unbiased manner. For that, 
we hope not to wait yet for too much time.
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