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Insulin Reduces Cerebral Ischemia/Reperfusion Injury in
the Hippocampus of Diabetic Rats

A Role for Glycogen Synthase Kinase-33

Massimo Collino,' Manuela Aragno,? Sara Castiglia,' Chiara Tomasinelli,”> Christoph Thiemermann,?

Giuseppe Boccuzzi,* and Roberto Fantozzi'

OBJECTIVE—There is evidence that insulin reduces brain
injury evoked by ischemia/reperfusion (I/R). However, the mo-
lecular mechanisms underlying the protective effects of insulin
remain unknown. Insulin is a well-known inhibitor of glycogen
synthase kinase-38 (GSK-3B). Here, we investigate the role of
GSK-3p inhibition on I/R-induced cerebral injury in a rat model of
insulinopenic diabetes.

RESEARCH DESIGN AND METHODS—Rats with streptozo-
tocin-induced diabetes were subjected to 30-min occlusion of
common carotid arteries followed by 1 or 24 h of reperfusion.
Insulin (2-12 IU/kg i.v.) or the selective GSK-3[3 inhibitor TDZD-8
(0.2-3 mg/kg i.v.) was administered during reperfusion.

RESULTS—Insulin or TDZD-8 dramatically reduced infarct vol-
ume and levels of S100B protein, a marker of cerebral injury.
Both drugs induced phosphorylation of the Ser9 residue, thereby
inactivating GSK-38 in the rat hippocampus. Insulin, but not
TDZD-8, lowered blood glucose. The hippocampi of the drug-
treated animals displayed reduced oxidative stress at 1 h of
reperfusion as shown by the decreased generation of reactive
oxygen species and lipid peroxidation. I/R-induced activation of
nuclear factor-«B was attenuated by both drug treatments. At
24 h of reperfusion, TDZD-8 and insulin significantly reduced
plasma levels of tumor necrosis factor-«; neutrophil infiltration,
measured as myeloperoxidase activity and intercellular-adhe-
sion-molecule-1 expression; and cyclooxygenase-2 and inducible-
NO-synthase expression.

CONCLUSIONS—Acute administration of insulin or TDZD-8
reduced cerebral I/R injury in diabetic rats. We propose that the
inhibitory effect on the activity of GSK-33 contributes to the
protective effect of insulin independently of any effects on blood
glucose. Diabetes 58:235-242, 2009
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pidemiological studies have shown that diabetes

is a leading risk factor for ischemic cerebrovas-

cular diseases (1). Animal and human studies

demonstrate that insulin reduces brain damage
evoked by ischemia/reperfusion (I/R) injury (2,3). Glyce-
mic control by insulin may be involved in this protective
effect, but the molecular mechanisms underlying the pro-
tective effects of insulin are debated and still poorly
understood (4). One important pharmacological effect of
insulin is its ability to inhibit the activity of the glycogen
synthase kinase (GSK)-3, a serine/threonine kinase that
was originally identified for its key role in glucose metab-
olism (b5). More recently, GSK-3 has emerged as a key
regulatory switch in the modulation of neurodegeneration
and inflammation (6,7). There are two mammalian iso-
forms of GSK-3: GSK-3a and GSK-3B. GSK-3f3 is highly
expressed in the central nervous system (8). Unlike most
kinases, GSK-3 is constitutively active in cells and can be
inactivated by phosphorylation at Ser9 (9). Binding of
insulin to its receptor activates phosphatidylinositol 3-ki-
nase, leading to the subsequent activation of protein
kinase B/Akt, and the inactivation of GSK-33 by phosphor-
ylation on the regulatory Ser-9. This contributes to the
insulin-induced stimulation of glycogen synthesis. We and
others have recently reported that various inhibitors of
GSK-3p attenuated brain injury in rat models of cerebral
I/R injury, with a marked reduction in infarct size (10-12).
However, the potential protective effects of GSK-3 inhi-
bition against cerebral I/R injury have never been tested in
animal models of insulinopenic diabetes, in which the lack
of insulin may drastically influence GSK-33 basal activity.
Hence, this study was undertaken to investigate 1) the
effects of insulin administration on the organ injury asso-
ciated with cerebral I/R in a rat model of insulinopenic
diabetes and 2) the role of GSK-33 inhibition in mediating
insulin effects. To weigh the role of GSK-3B inhibition in
the observed effects of insulin, TDZD-8, a potent and
selective inhibitor of GSK-33, was used as a comparative
pharmacological tool.

RESEARCH DESIGN AND METHODS

Animals and surgery. Male Wistar rats (Harlan Italy, San Pietro al Natisone,
Italy) were provided with a Piccioni pellet diet (48; Piccioni, Gessate Milanese,
Italy) and water ad libitum. Insulinopenic diabetes was induced in 8-week-old
rats by a single intravenous tail vein injection of 50 mg/kg streptozotocin
(STZ). A blood sample was collected 4 days after the STZ injection, and
plasma glucose was determined using a glucose analyzer (Accu-Chek Com-
pact System; Roche Diagnostics, Basel, Switzerland). Diabetes was defined by
a blood glucose >300 mg/dl. Animals were used 6 weeks later without insulin
supplements.
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Animal care was in compliance with Italian regulations on the protection of
animals used for experimental and other scientific purposes (D.M.116/92). The
experimental protocol was performed as described previously (13). Briefly,
rats were anesthetized through injection of 30 mg/kg Zoletil 100 i.p. (a mixture
of tiletamine and zolazepam; Laboratoires Virbac, Carros, France). The
anesthetized rats were placed onto a thermostatically controlled heating pad,
a rectal temperature probe was inserted, and body temperature was moni-
tored and maintained at 37°C. Ischemia was achieved by clamping the
bilateral common carotid arteries for 30 min using nontraumatic artery
clamps. Recirculation of blood flow was established by releasing the clips, and
restoration of blood flow in the carotid arteries was confirmed by careful
observation. Reperfusion was allowed for 1 or 24 h. At the end of the
reperfusion, the anesthetized rats were killed by decapitation after aortic
exsanguination. After decapitation, the forebrain was rapidly dissected at 0°C
and the hippocampus from both hemispheres was quickly removed and
transferred to a ice-chilled homogenizing medium for biochemical assays.
Drugs and treatments. Animals were randomly assigned to the following
experimental groups. 1) Sham and STZ: nondiabetic and diabetic rats were
subjected to the surgical procedure alone, without causing ischemia (n = 8
per group). 2) /R and STZ I/R: rats were subjected to 30 min of ischemia
followed by 1 or 24 h of reperfusion (n = 10 per group). 3) STZ /R + TDZD-8:
diabetic rats that underwent I/R were treated with 0.2-3 mg/kg TDZD-8 (tail
vein injection) at the beginning of reperfusion and again after 6 h of
reperfusion (n = 10 per group). 4) STZ I/R + insulin: diabetic rats that
underwent I/R were treated with 2-12 IU/kg insulin (tail vein injection) at the
beginning of reperfusion and again after 6 h of reperfusion (» = 10 per group).
Two additional groups of diabetic rats received 3 mg/kg TDZD-8 i.v. or 12
IU/kg insulin i.v. before the sham operation (n = 4 per group).
Determination of infarct volume. At 1 day of reperfusion, the rats were
killed with an overdose of anesthetic and decapitated. The brains were
removed and placed in a brain matrix, and coronal sections were cut into
2-mm slices. Brain slices were immersed in 0.5% 2,3,5-triphenyltetrazolium
chloride monohydrate solution at 37°C for 30 min, followed by 4% parafor-
maldehyde solution. The infarct area and hemisphere area of each section
were traced, quantified by an image analysis system (Inquiry; Loats, Westmin-
ster, MD), and expressed as percentage of infarct area in the whole brain.
Tissue extracts. Cytosolic and nuclear extracts were prepared by the
Meldrum method (14). Briefly, rat hippocampi were homogenized and centri-
fuged at 4,000 X g for 5 min at 4°C. Supernatants were removed and
centrifuged at 15,000 X g at 4°C for 40 min to obtain the cytosolic fraction. The
pelleted nuclei were resuspended in extraction buffer. The suspensions were
centrifuged at 15,000 X g for 20 min at 4°C. The resulting supernatants
containing nuclear proteins were carefully removed, and protein content was
determined using a bicinchoninic acid (BCA) protein assay following the
manufacturer’s directions.

Determination of reactive oxygen species and glutathione. Reactive
oxygen species (ROS) were measured fluorimetrically in cytosolic fractions
using 2',7'-dichlorofluorescein diacetate, and the results were expressed as
units fluorescence per milligram protein. Antioxidant levels in the cytosolic
fractions were evaluated in terms of reduced glutathione (GSH) content using
Ellman’s method (15).

End products of lipid peroxidation. Lipid peroxidation was investigated by
measurement of the end product of peroxidation, hydroxynonenal (HNE), in
the cytosol fractions. HNE concentration was determined on cytosol fractions
by Esterbauer’s method (16).

Myeloperoxidase activity. Myeloperoxidase (MPO) activity, which was
used as an indicator of polymorphonuclear leukocyte infiltration into the
hippocampus, was determined as previously described (17).

Serum concentration of tumor necrosis factor-a by enzyme-linked
immunosorbent assay. Four milliliters of blood were obtained from a
peripheral artery and centrifuged at 1,500 rpm for 15 min at 4°C. The content
of tumor necrosis factor-a (TNF-a) was determined using a rat TNF-a ELISA
kit (Diaclone, Besancon, France).

Western blot analysis. Western blots were carried out as previously
described (13). Proteins were separated by 8% SDS-PAGE and transferred to
polyvinyldenedifluoride membranes. The membranes were incubated with
primary antibody (rabbit anti-total GSK-33, goat anti-pGSK-33 Ser9, rabbit
anti-inducible nitric oxide synthase (iNOS), rabbit anti-cyclo-oxigenase
(COX)-2, mouse anti-—nuclear factor-«B [anti-NF-kB] p65, goat anti-S100B, and
goat anti-intercellular adhesion molecule (ICAM)-1). Blots were then incu-
bated with secondary antibodies and developed with the ECL detection
system. The immunoreactive bands were visualized by autoradiography, and
the density of the bands was evaluated densitometrically using Gel Pro
Analyser 4.5, 2000 software (Media Cybernetics, Silver Spring, MD).
RT-PCR analysis. Total RNA was extracted from the rat hippocampi using
the RNA fast kit (Molecular Systems, San Diego, CA). Total DNA was
amplified using sense and antisense primers specific for the GSK-33 (sense,
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5'-CGTGACCAGTGTTGCTGAGT-3', and antisense, 5'-CGGGACCCAAATGT-
CAAACA-3") and for glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(sense, 5'-AGATCCACAACGGATACATT-3', and antisense, 5'-TCCCTCAA-
GATTGTCAGCAA-3"). Experiments were performed on at least three inde-
pendent cDNA preparations. PCR products were electrophoresed on 2%
agarose gels, and amplification products were stained with GelStar nucleic
acid gel stain (FMC BioProducts, Rockland, ME). Gels were photographed
and analyzed with Kodak 1D Image Analysis software. The net intensity of
bands in each experiment was normalized for the intensity of the correspond-
ing GAPDH band.

Electrophoretic mobility shift assay. Electrophoretic mobility shift assay
(EMSA) was performed by the method of Pahl et al. (18). NF-kB consensus
oligonucleotides (5'-AGTTGAGGGGACTTTCCCAGG-3") were labeled with
[y-**P]ATP using T, polynucleotide kinase and purified on QIAquick Nucleo-
tide Removal kit. For the EMSA, 50 pg nuclear proteins was used. Specificity
of binding was ascertained by competition with a 25-fold molar excess of
unlabeled oligonucleotides. Recombinant human NF-kB incubating with the
radiolabeled NF-kB probe served as positive control.

Materials. Unless stated otherwise, all compounds were purchased from
Sigma-Aldrich (St. Louis, MO). TDZD-8 was from Alexis Biochemicals (San
Diego, CA). The BCA Protein Assay kit and blocking buffer were from Pierce
Biotechnology (Rockford, IL). Antibodies were from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA). Luminol ECL was from Amersham (Buckinghamshire,
U.K).

Statistical analysis. All values in both the text and figures are expressed as
means * SE for n observations. One-way ANOVA with Dunnett’s post test was
performed using GraphPad Prism 4.02 (GraphPad Software, San Diego, CA),
and P values <0.05 were considered to be significant.

RESULTS

Body weight and blood glucose levels. Mean weight *
SE of the nondiabetic rats was 245 = 8 g (n = 18), and
STZ-induced diabetes caused a significant decrease in
body weight (214 = 18 g; n = 96; P < 0.05). Diabetic rats
had significantly higher nonfasting blood glucose (423 =
32 mg/dL; P < 0.05) compared with normal controls (108 =
8 mg/dl). The dose-response curve of glycemic control by
insulin was measured after drug administration at 1 h of
reperfusion, with the maximal reduction after 12 IU/kg
insulin (115 = 12 mg/dl; P < 0.05). A significant, but lower,
decrease of blood glucose (192 = 11 mg/dl; P < 0.05)
resulted from 2 IU/kg insulin. The acute injection of 3
mg/kg TDZD-8 did not significantly decrease blood glucose
levels at the time of I/R injury (403 = 28 mg/dl).

Effect of insulin and TDZD-8 on GSK-33 expression
and phosphorylation. As shown by RT-PCR, diabetic rats
exhibited a twofold increase in GSK-33 total expression
compared with nondiabetic rats (Fig. 1A). Neither I/R nor
administration of insulin or TDZD-8 to diabetic rats further
modified the total GSK-38 mRNA levels (Fig. 14). When
GSK-38 inhibition was evaluated in terms of levels of Ser9
phosphorylation (Fig. 1B), diabetic rats showed a stronger
basal activation of the enzyme because the ratio of Ser9
phosphorylated GSK-3p3 to total GSK-3p was lower in the
diabetic group than in the control group (P < 0.05).
Densitometric analysis of the autoradiograms (Fig. 1B)
showed that in the hippocampi of sham-operated animals,
~60% of total GSK-3B was phosphorylated on Ser9,
whereas Ser9 phosphorylation was <30% of total GSK-33
in sham-operated diabetic rats. I/R had no effect on the
levels of Ser9 phosphorylation, whereas both insulin and
TDZD-8 increased Ser9 phosphorylation when adminis-
tered to sham-operated diabetic rats (data not shown). As
shown in Fig. 1C, administration of TDZD-8 and insulin to
diabetic rats that had undergone I/R promoted GSK-3(3
phosphorylation at both 1 and 24 h of reperfusion in a
dose-dependent fashion. TDZD-8 administration induced
Ser9 phosphorylation in the dose range of 0.2-3 mg/kg,
with maximum effect at 3 mg/kg, and this dose was used
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FIG. 1. GSK-3p expression and Ser9 phosphorylation in the rat hippocampus. A: GSK-38 mRNA expression was analyzed by RT-PCR in the
hippocampus of nondiabetic (Sham) and diabetic (STZ) rats and was compared with GSK-33 mRNA expression in diabetic rats that underwent
30-min cerebral ischemia followed by 24 h of reperfusion (STZ I/R). Two groups of diabetic rats received 3 mg/kg TDZD-8 or 12 IU/kg insulin
during reperfusion (STZ I/R + TDZD-8 and STZ I/R + INSULIN, respectively). B: Western blot analysis of total GSK-33 protein expression and
Ser9 phosphorylation in both nondiabetic (Sham) and diabetic (STZ) animals. The reduced ratio Ser9 phosphorylated GSK-3p/total GSK-3 in
the STZ group indicates a stronger basal activation of the enzyme in the presence of diabetes. C: The dose response of TDZD-8 and insulin
administration on GSK-3p phosphorylation detected at both 1 and 24 h of reperfusion. Densitometric analysis of the bands is expressed as
relative optical density of GSK-3f3 phosphorylation at Ser9 corrected for the corresponding total GSK-3p content and normalized using the

related sham-operated band. Data are means = SE of three separate experiments. ®P < 0.05 vs. Sham; *P < 0.05 vs. STZ I/R.

for all subsequent experiments. Insulin significantly in-
creased Ser9 phosphorylation at the doses of 2, 6, and 12
IU/kg. The lowest dose of insulin, 2 IU/kg, evoked a
significant level of Ser9 phosphorylation, quantitatively
similar to that measured with 3 mg/kg TDZD-8 and not
statistically different from that recorded in the presence of
12 TU/kg insulin. Therefore, based on these data and the
following results on infarct size (see below), we chose 2
IU/kg as the reference dose for subsequent experiments.
Insulin and TDZD-8 reduce the severity of cerebral
infarction and neutrophil infiltration. Rats that under-
went cerebral ischemia followed by 24 h of reperfusion
showed an infarct volume of 23.4 + 3.9% of the total brain
volume (I/R group; Fig. 2A). Infarct size was larger in
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diabetic animals exposed to /R (STZ I/R group; 34.9 =
4.8%; P < 0.05). Administration of insulin halved the
I/R-induced infarct volume in diabetic animals, but no
differences in efficacy were observed for any of the doses
tested (2-12 IU/kg). A similar reduction in infarct volume
was measured when 3 mg/kg TDZD-8 was administered
during reperfusion.

S100B, a calcium binding protein that has been recog-
nized as a marker of neuronal damage, was scantily
detectable in the hippocampi of sham-operated nondia-
betic and diabetic animals (sham and STZ groups, respec-
tively). Nondiabetic and diabetic rats subjected to I/R
exhibited a two- and threefold increase, respectively,
when measured at 24 h of reperfusion (Fig. 2B). Treatment
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FIG. 2. Total infarct volume (A) and hippocampal S100B expression
(B). Diabetic rats that underwent 30 min of ischemia followed by 24 h
of reperfusion (STZ I/R) showed higher levels of infarct volume and
S100B expression than nondiabetic rats exposed to I/R. Additional
groups of diabetic rats received 3 mg/kg TDZD-8 (STZ I/R + TDZD-8) or
2-12 IU/kg insulin (STZ I/R + INSULIN) during reperfusion. The
infarct volume data are means = SE of four rats per group. The
immunoblot of S100B protein expression and the corresponding p-ac-
tin are representative of three separate experiments. ®P < 0.05 vs. I/R;
*P < 0.05 vs. STZ I/R.

with insulin and TDZD-8 almost completely abolished the
increase in the hippocampal content of S100B, so that
values of S100B measured in animals treated with insulin
or TDZD-8 were similar to those measured in diabetic,
sham-operated animals.

The improvement in the outcome of I/R injury was
associated with a reduced neutrophil infiltration measured
in reperfused hippocampi at 24 h (Fig. 3). MPO activity
was significantly elevated in diabetic rats subjected to I/R
(70.17 = 4.12 pU MPOf/tissue g) in comparison with
diabetic sham-operated rats (14.27 = 5.14 pU MPO/g
tissue) (Fig. 34). In both insulin- and TDZD-8-treated
diabetic animals, the MPO activity was significantly atten-
uated (47.28 + 2.22 and 41.93 = 2.87 WU MPO/g tissue,
respectively, P < 0.05). The adhesion molecule ICAM-1,
which is the endothelial ligand for the neutrophil receptor
CD11b/CD18, was scarcely detected in the hippocampus
from sham-operated diabetic animals, and its expression
was strongly induced by 24 h of reperfusion (Fig. 3B).
Insulin and TDZD-8 prevented the I/R-induced upregula-
tion of ICAM-1 (P < 0.05), without any significant differ-
ences between the two drugs.

Effects of insulin and TDZD-8 on oxidative stress. To
gain a better understanding of the degree of oxidative
stress associated with diabetes and cerebral I/R, we deter-
mined ROS formation and concentrations of GSH and
HNE (a toxic end product of lipid peroxidation) in hip-
pocampal homogenates obtained after cerebral ischemia
followed by 1 h of reperfusion (Table 1). Diabetic rats
showed an increase in oxidative stress when compared
with their wild-type littermates. I/R evoked a 70% increase
in ROS production, which was associated with a dramatic
increase in HNE. The I/R-induced lipid peroxidation was
strongly decreased in hippocampal homogenates obtained
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FIG. 3. Effects of insulin and TDZD-8 on I/R-induced neutrophil infil-
tration in the hippocampus of diabetic rats. MPO activity (A) and
ICAM-1 expression (B) were measured in hippocampi homogenates of
sham-operated diabetic rats (STZ) and diabetic rats that underwent 30
min of ischemia and 24 h of reperfusion (STZ I/R). Insulin (2 IU/kg) and
TDZD-8 (3 mg/kg) were administered during reperfusion (STZ I/R+
INSULIN and STZ I/R+TDZD-8). Each immunoblot is from a single
experiment and is representative of three separate experiments. Den-
sitometric analysis of the bands is expressed as relative optical density
(0.D.) corrected for the corresponding 3-actin contents and normal-
ized using the related sham-operated band. Data are means = SE of
three separate experiments for Western blot and four animals per
group for MPO. *P < 0.05 vs. STZ I/R.

from animals subjected to cerebral I/R that were treated
with either insulin or TDZD-8. Administration of TDZD-8
caused a significant decrease in ROS overproduction.
Insulin also reduced ROS production, but this effect did
not achieve statistical significance. GSH levels showed no
statistical differences among any of the groups studied and
were, hence, not significantly altered by either I/R or by
drug treatment.

Effects of insulin and TDZD-8 on NF-kB nuclear
activity. The activation of NF-kB was evaluated by both
Western blot analysis and EMSA. Measurement of the
nuclear translocation of the p65 subunit NF-kB from the
cytosolic to the nuclear fraction of tissue extracts showed
higher levels of p65 subunit in the nucleus than nondia-
betic animals, thus suggesting a basal NF-kB activation
secondary to diabetes (data not shown). A further increase
in NF-kB translocation from cytosol to the nucleus was
recorded in diabetic rats subjected to cerebral ischemia
followed by 1 h of reperfusion (Fig. 44) but not by 24 h of
reperfusion (data not shown). Interestingly, both insulin
and TDZD-8 produced a marked inhibition of the I/R-
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TABLE 1

ROS, GSH, and HNE content in hippocampi homogenates from nondiabetic or diabetic rats exposed to 30-min ischemia and 1-h

reperfusion without or with drug treatment

ROS

(units fluorescence/mg protein) GSH (pg/mg protein) HNE (umol/1)
Sham 89.5 + 10.49* 57.08 = 0.97 0.24 *+ 0.16*
STZ 150.3 = 9.50 37.07 = 5.68 3.90 £ 0.21*
/R 141.7 = 8.52 39.67 = 6.03 48 +0.3
STZ /R 198.7 = 16.65 32.67 = 6.03 5.65 + 0.26
STZ I/R + INS (2 IU/kg) 147.3 + 18.79 44.89 = 8.54 3.20 = 0.34%*
STZ /R + TDZD-8 (3 mg/kg) 133.8 = 25.11* 47.10 = 10.68 3.29 * 0.46*

Data are means = SE of five animals/group. *P < 0.05 vs. STZ I/R.

induced NF-«B activation. EMSA was performed to assess
the effects of /R and drug treatment on NF-«kB DNA-
binding activity (Fig. 4B). In the hippocampus of diabetic
rats that underwent I/R, nuclear NF-«B signal was strongly
activated. The administration of insulin or TDZD-8 signif-
icantly attenuated (at the same level) NF-kB activation.

Effects of insulin and TDZD-8 on inflammatory
markers. Western blot analysis showed that the hip-
pocampal expression of both COX-2 and iNOS proteins
was higher in diabetic animals than in their wild-type
littermates (data not shown). In diabetic rats, /R was
associated with an increase in COX-2 and iNOS protein
expression at 24 h of reperfusion (Fig. 5A and B), and this
effect was attenuated to a similar degree by either insulin
or TDZD-8. Similarly, TNF-«a levels detected in the serum
of diabetic animals were higher than those recorded in
nondiabetic rats (sham group, 19.8 * 4.8 pg/ml; STZ group,
65.8 = 8.8 pg/ml) and reached threefold basal levels at 24 h
of reperfusion (STZ I/R group, 195 = 10.7 pg/ml) (Fig. 5C).
Treatment with insulin or TDZD-8 prevented the I/R-
induced rise in the serum concentration of this cytokine
(94.8 = 11 and 108 = 8.8 pg/ml, respectively, P < 0.05).

DISCUSSION

Our findings support previous studies that demonstrate
that the acute administration of insulin reduces the brain
injury associated with I/R (2,3). Recent clinical trials have
shown that insulin can be safely administered in ischemic
stroke to both diabetic and nondiabetic patients (19-21).
However, to date, the mechanisms by which insulin pro-
tects the brain remain unclear, and involvement of glyce-
mic control as the sole underlying mechanism of the
observed protection remains dubious (4). Because insulin
is a well-characterized inhibitor of the activation of
GSK-33 (9), this study was designed to compare the effects
of insulin with those of TDZD-8, a selective inhibitor of the
activation of GSK-3, on the degree of injury caused by
cerebral I/R in the hippocampus, because this region of the
brain 1) is most sensitive to I/R injury (22) and 2) has the
most pronounced expression of GSK-33 (8). A reduction in
GSK-3B activity has been previously demonstrated to
improve brain tolerance to I/R in nondiabetic animals
(10-12), but its effects against I/R injury in the presence of
diabetes has never been tested. The present study pro-
vides lines of evidence suggesting a potential association
between diabetes and enhanced susceptibility to a cere-
bral ischemic insult and the protective effect of GSK-33
inhibition. Specifically, the I/R-induced infarct volume was
increased by 40% in diabetic rats when compared with
their nondiabetic littermates (control). Insulin administra-
tion significantly reduced infarct volume, and a similar

DIABETES, VOL. 58, JANUARY 2009

effect was recorded when rats were treated with the
GSK-3B inhibitor TDZD-8. Inhibition of the activity of
GSK-33 with either TDZD-8 or insulin also abolished the
I/R-induced rise in the levels of S100B, a member of the
S100 family of calcium-binding proteins, mainly expressed
in the brain (23). Clinical studies indicate that the increase
in the levels of S100B correlate with an impairment of
hippocampal function and cerebral infarct size (24). In our
study, diabetes caused a 50% increase in the I/R-induced
expression of S100B protein, whereas TDZD-8 and insulin
reduced this effect of I/R in diabetic animals. It has to be
stressed, however, that the lack of behavioral testing
related to the observed brain damage limits the interpre-
tation of the clinical transferability of our findings. Thus, a
further rigorous evaluation of effects of the tested com-
pounds on any behavioral impairment caused by cerebral
I/R is needed.

To demonstrate the involvement of the GSK-33 pathway
in mediating the protective effects exerted by insulin and
TDZD-8, we analyzed the effects of both drugs on the
phosphorylation of the Ser9 residue on GSK-3@3, which is
the key site determining the activity of this kinase (with an
increase in phosphorylation indicating the inhibition of
this kinase). Both TDZD-8 and insulin markedly enhanced
the hippocampal Ser9 phosphorylation and hence inhibi-
tion of GSK-3f activity at both 1 and 24 h of reperfusion.
Previous studies in nondiabetic animal models have
shown that insulin and TDZD-8 increase GSK-3B phos-
phorylation in the rodent brain (10,25), but this is the first
study demonstrating their effects on cerebral GSK-3 in
the presence of diabetes. Another major observation made
in the present study was that both basal GSK-33 expres-
sion and activity were upregulated in the hippocampus of
diabetic animals compared with those in age-matched
normal animals. Because insulin is reported to negatively
regulate GSK-333 activity, we propose that STZ-induced
lack of insulin contributes to the resulting overexpression
and activation of GSK-3f in the early stages of experimen-
tal diabetes. Therefore, the insulinopenic rat can represent
a suitable experimental model for testing the potential
protective effects evoked by pharmacological inhibition of
the GSK-3B signaling pathway. However, regulation of
GSK-3p in diabetic conditions differs dramatically among
tissues and animal species and models. Other authors (26)
showed that central administration of a very low STZ dose
(1 mg/kg) that does not produce diabetes increased
GSK-33 phosphorylation in the rat hippocampus, whereas
the level of total GSK-3B expression was unchanged. In
diabetic animals, GSK-3(3 activity has been reported to be
increased in epididymal fat, slightly decreased in the liver,
and unchanged in skeletal muscle (27-29). Others found
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FIG. 4. Effect of insulin and TDZD-8 treatment on NF-kB activation
evoked by cerebral I/R injury in diabetic rats. A: NF-kB translocation
from the cytosol to the nucleus was evaluated by Western blot analysis
in sham-operated diabetic rats (STZ) and diabetic rats at 1 h of
reperfusion (STZ I/R), measuring NF-kB p65 subunit levels in both
cytosol and nuclear fractions and expressing the results as nucleus-to-
cytosol ratio. Insulin (2 IU/kg) or TDZD-8 (3 mg/kg) was administered
at the beginning of reperfusion (STZ I/R + INSULIN and STZ I/R +
TDZD-8, respectively). The data from bands densitometric analysis are
means *= SE of three separate experiments. *P < 0.05 vs. STZ I/R. B:
DNA binding activity of NF-kB was evaluated by EMSA on hippocampus
nuclear extracts isolated from sham-operated diabetic rats (STZ) and
diabetic rats at 1 h of reperfusion (STZ I/R) with or without 2 IU/kg
insulin or 3 mg/kg TDZD-8 treatment. Specificity of binding was
ascertained by competition with a 25-fold molar excess of unlabeled
oligonucleotides (Cf). Recombinant human NF-kB incubated with the
radiolabeled NF-kB probe served as a positive control (Cp).

that GSK-3B activity was elevated approximately twofold
in skeletal muscle samples from human patients with type
2 diabetes (30). Recent studies suggest that serotoninergic
activity may regulate the inhibitory Ser9 phosphorylation
of GSK-38 in the rodent hippocampus (31), thus raising the
question of whether ligands of serotoninergic receptors
may enhance the effects evoked by insulin. Similarly,
further studies are needed to better elucidate whether
TDZD-8 can enhance the protective action of insulin.
Oxidative stress and inflammation are known to be
implicated in the pathogenesis of cerebral I/R injury
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FIG. 5. Alteration in hippocampal expression of COX-2 and iNOS and
serum levels of TNF-a induced by insulin or TDZD-8 treatment. Diabetic
rats (STZ) were subjected to 30 min of ischemia and 24 h of reperfusion
(STZ I/R). Insulin (2 IU/kg) or TDZD-8 (3 mg/kg) was administered during
reperfusion (STZ I/R + INSULIN and STZ I/R + TDZD-8, respectively).
COX-2 and iNOS protein expression was evaluated by Western blot
analysis (A and B, respectively). Each immunoblot is from a single
experiment and is representative of three separate experiments. C:
Serum levels of TNF-a were analyzed by enzyme-linked immunosorbent
assay (ELISA). Densitometric analysis of the bands is expressed as
relative optical density (O.D.) corrected for the corresponding B-actin
contents and normalized using the related sham-operated band. Data are
means * SE of three separate experiments for Western blot and six
animals per group for ELISA. xP < 0.05 vs. STZ I/R.

(32,33). We recently observed (13) that 30 min of ischemia
followed by 1 h of reperfusion causes significant oxidative
stress, whereas the inflammatory response is delayed (by
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6-24 h). Here, we demonstrated that diabetic animals
show a higher level of oxidative stress and inflammation
when compared with nondiabetic animals and, most nota-
bly, insulin and TDZD-8 partially affect oxidative stress
and cause a substantial decrease of the inflammatory
response. TNF-a has been identified as one of the pivotal
proinflammatory cytokines that exacerbate I/R injury (33),
and recently, the attenuation of insulin signaling cascade
evoked by TNF-a has been suggested to involve Ser9
phosphorylation of GSK-38 (34). In our experimental
model, the ability of both insulin and TDZD-8 to abolish
the increase in serum levels of TNF-a and, at the same
time, to reduce the expression of iNOS and COX-2 con-
firms the role of GSK-3B in contributing to protection
against I/R injury. An important marker of an inflamed and
dysfunctional endothelium is the increased leukocyte ad-
hesion. Experimental evidence indicates that leukocyte
adhesion in response to I/R is increased in diabetic ani-
mals (35) and thus represents a common link between I/R
injury and diabetes. Here, we show that neutrophil infil-
tration of previously ischemic sections of the brain was
reduced by GSK-33 inhibition, because both insulin and
TDZD-8 abolished the expression of the adhesion mole-
cule ICAM-1 and attenuated (to a similar degree) the
increase in tissue MPO activity.

NF-kB plays a fundamental role in the development of
both I/R injury and diabetes (36,37), and GSK-3p has been
shown to affect NF-«kB transcriptional activity in a promot-
er-specific manner, demonstrating that GSK-3p3 selectively
supports the expression of a subset of genes activated by
NF-kB (38-40). As observed in the present study, GSK-33
inhibition with either insulin or TDZD-8 was associated
with a significant reduction of the nuclear NF-«B activity,
which may account for the observed reduction in the
expression of COX-2, iNOS, and ICAM-1, all of which are
NF-kB-dependent proteins. Because GSK-33 has been
linked to the regulation of other transcription factors,
including activated protein-1, nuclear factor of activated
T-cells, and cAMP response element binding (40), further
investigations are needed to gain a better insight into the
role of these transcription factors in the protective effects
caused by GSK-3B inhibition.

One particularly interesting finding was the qualitative
difference of the effects of insulin and TDZD-8 on blood
glucose levels. Specifically, acute administration of insulin
rapidly lowered STZ-induced hyperglycemia, whereas the
GSK-3B inhibitor TDZD-8 did not affect blood glucose
levels. Because TDZD-8 treatment differed from insulin in
the modulation of blood glucose levels, whereas the
effects on infarct size and markers of oxidative stress and
inflammation were similar, we would like to propose that
the beneficial effects of insulin observed in our model of
cerebral I/R are, at least in part, due to the inhibition
of GSK-3B activity, but not directly due to the lowering of
blood glucose. This hypothesis warrants further
investigation.

In conclusion, our results point to a role for GSK-3f3
signaling in the protective effects exerted by insulin in a rat
model of cerebral I/R injury. Both expression and activity
of GSK-3B were higher in the rat hippocampus of insuli-
nopenic diabetic animals when compared with their non-
diabetic littermates. We provide evidence that treatment
of STZ-induced diabetic rats with insulin or TDZD-8 de-
creases experimental cerebral I/R injury, possibly by at-
tenuating the signaling of GSK-33. However, we are aware
that further studies evaluating insulin and/or TDZD-8
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effects on the alterations in animal behavior caused by
cerebral I/R are warranted to clarify the potential clinical
relevance of our findings.
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