Submitted: 29/12/2019

Accepted: 04/03/2020

Published: 27/03/2020

Genomic characteristics of classical swine fever virus strains of bovine origin according to primary and secondary sequence–structure analysis

Massimo Giangaspero1* and Shu-Qin Zhang2

¹Faculty of Veterinary Medicine, University of Teramo, Italy ²State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, No 4899 Juye Street, Changchun, Jilin, People's Republic of China

Abstract

Background: Classical swine fever virus (CSFV), species member of the family *Flaviviridae*, is generally considered restricted to domestic and wild suids. The circulation of CFSV has been detected in cattle herds in China and India. Natural infection appeared associated with clinical signs in some cases.

Aim: The secondary structures of the internal ribosome entry site in the 5' untranslated region (UTR) were used for the genomic characterization of bovine strains.

Methods: Sequences have been compared to the representative CSFV strains isolated from pigs, vaccines, and contaminants from porcine cell lines and an ovine strain isolated in Spain.

Results: The observed sequences from cattle showed a genetic relatedness with live-attenuated vaccine strains used in pigs. Sequence characteristics of the Chinese strain S171 are genetically distant from the previously reported CSFV genotypes, suggesting a new outgroup in the species, described for the first time, and named CSFV-d. Other Chinese strains were genetically closely related to CSFV genotype a2 (Alfort type) pig strains. Indian strains, reported from the states of Tamil Nadu and Meghalaya, were genetically closely related to CSFV genotype a1 (Brescia type) and a5 pig strains, respectively.

Conclusion: These preliminary observations are new and relevant in countries, where CSFV control and eradication strategies are applied.

Keywords: Cattle, Classical swine fever virus, Pestivirus, Secondary structure.

Introduction

The genus Pestivirus, family Flaviviridae, includes genetically related species recognized as important pathogens in veterinary medicine. The Classical swine fever virus (CSFV) has been eradicated in different countries as in Europe and North America, but still control and eradication strategies are applied against the virus in various other regions. There is a consensus concerning the capacity among pestiviruses to cross species barrier. The wide host range of these viruses may lead to the formation of virus reservoirs in other domestic or wildlife species, presenting a concern for the long-term success of eradication campaigns. Nevertheless, CSFV is generally considered to be restricted to domestic and wild suids. Current knowledge indicates that experimental infections without clinical signs have been reported in cattle, sheep, goats, and deer, but there is no evidence that these species become infected in nature (Biró et al., 1966; Loan and Storm, 1968; Shimizu and Kumagai, 1989; CFSPH, 2015). In only two cases, the species has been identified in sheep (Hurtado et al., 2003; Mohamed, 2004), corroborating these beliefs. One ovine isolate (strain 5440/99), which is similar to CSFV vaccine strains used in the framework of eradication campaigns in pigs, was reported from

Spain (Hurtado *et al.*, 2003). A second isolate (strain 12 Ovine liver 113nt) was obtained during investigations on pestiviruses in the United Arab Emirates (Mohamed, 2004). This *Pestivirus*-like sequence, when aligned with corresponding sequences from a variety of pestiviruses, showed a greatest similarity to CSFV subgenotype 1.1 but raised doubts on correct classification, due to the suboptimal quality of the sequence and its short length (113 nucleotides) (Mohamed, 2004).

On contrary to this apparent epidemiological static nature and apparent inability to cross species barrier in natural conditions, the recent reports indicated the isolation of CSFV strains in cattle (Bos taurus) from India and China and contaminants or associated to natural infection with reproductive disorders (abortion, stillbirth, birth defects, repeat breeding, and mastitis) (Zhang et al., 2014; Giangaspero et al., 2017). Twelve strains isolated from cattle aged from 6 months to 2 years have been detected in four farms, out of 19 tested, during an epidemiological survey aiming to identify bovine viral diarrhea virus (BVDV) persistently infected animals by reverse transcription-polymerase chain reaction (RT-PCR), among BVDV-seropositive enzyme-linked immunosorbent assay (ELISA) cattle and buffalo farms from four districts of the state of Tamil Nadu, India (Giangaspero et al., 2017). Four strains were reported from China. Pestivirus RNA sequences have been detected from commercial fetal bovine serum batches and designated as strains S171 (KF006974), S173 (KF006975), and S112 (MK118725) (identical to S173) originated from Henan and Jiangsu provinces (Zhang et al., 2014). The attempts to isolate live viruses from some of these samples have been unsuccessful. The strain HEN03 (sequence deposited by Zhang, under accession number KC176778) was detected in cattle from Henan province. In addition, during a survey for the detection and genetic characterization of 5'-untranslated region (UTR) and E2 gene of CSFV from bovine population of the northeastern region of the Indian state of Meghalaya, of 134 cattle serum samples tested, all were positive in RT-PCR for 5'-UTR region, and 10 samples were positive for CSFV antigen by a commercial antigen capture ELISA (Chakraborty et al., 2018). The full-length E2 region of CSFV was amplified from two positive samples. In this study, the 5'-UTR sequences of the reported strains have been considered for genomic characterization according to the secondary structure analysis of the internal ribosome entry site (IRES).

Material and Methods

The 5'-UTR sequences of the 16 reported strains (13 sequences detected in cattle from India and China and three sequences detected in commercial fetal bovine serum batches from China) (Zhang et al., 2014; Giangaspero et al., 2017; and with reference to strain HEN03 sequence deposited by Zhang) have been compared with those from other CSFV strains (n = 110) isolated from pigs, vaccines, and contaminants from porcine cell lines and an ovine strain isolated in Spain representative of identified genetic clusters in the species, with particular attention to isolates circulating in Asian countries, including India and China (Table 1), and further compared to 1,300 sequences from other Pestivirus species different from CSFV. The two Indian bovine CSFV sequences reported by Chakraborty et al. (2018) were evaluated indirectly considering the similarity of their full-length E2 region with other previously deposited pig sequences. Newly described subgenotypes reported from Brazil and Cuba (Postel et al., 2013; Silva et al., 2017) could not be considered, being available only E2 sequences, and apparently specific and restricted to South American and Caribbean regions.

The taxonomical segregation of the genomic sequences was performed according to the genotyping based on the palindromic nucleotide substitution (PNS) method (Harasawa and Giangaspero, 1998; Giangaspero and Harasawa, 2007; Giangaspero and Apicella, 2014), through the qualitative and quantitative evaluation of relevant secondary structure regions from full-length (216–237 nt) 5'-UTR of the viral RNA, the three variable regions, and V1, V2, and V3 genomic sequences in the

IRES. Genotypes were identified according to base-pair (bp) combinations at the level of low-variable positions and ranked with alphabetic nomenclature according to increasing divergence in the species. The classification among CSFV strains according to the PNS analysis based on changes in the secondary structure was compared with those based on the primary structure of the 5'-UTR performed through sequence alignment and construction of phylogenetic trees. A phylogenetic tree was constructed with Clustal X (Chenna et al., 2003) by using the neighbor-joining method (Saitou and Nei, 1987) and visualized with the Newick tree format option (Mega version 7.0.26) (Kumar et al., 2016). In addition, a basic local alignment search tool (BLAST; http://www.ncbi.nlm.nih.gov), which is the web-based sequence analysis tool with default values, was used to find the homologous hits for the sequence analysis of strains.

Results

The obtained secondary structures have been aligned (Table 2) for computing genetic distance among sequences, in terms of base-pairing variations at the level of the IRES in the 5'-UTR, to identify genetic groups, ordered according to the increasing values of divergence. Among Indian bovine CSFV sequences, the V2 and V3 loci are all identical. The sequence of 8 India is identical to the sequences 2, 3, 9, and 13. The sequence of 1 India was identical to 4, 5, 6, 7, 10, and 11 (11 India showed only the first nucleotide in V1 locus: adenine instead of guanine). CSFV-c strain Okinawa/86 is identical to the strains P97 and 94.4/ IL/94/TWN (difference in V1/1 g-c), CSFV-a1 strain Ibaraki/66 was identical to BresciaX (difference in V2/7 g*u), and CSFV-a1 39 was identical to strains JL1(06), 5NCRCSFMZAIZ348, Aizawl-09, and RUCSFPLUM (difference in V1/1 g-c).

The sequences have been clustered into four genotypes, from CSFV-a to CSFV-d (Table 3). PNS marker characteristics to the Pestivirus CSFV species, genotype, and subgenotypes are shown in Table 4. The secondary sequence analysis of the 5'-UTR sequences of the Chinese and Indian strains suggested their appurtenance to CSFV species, genotype CSFV-a2 (Alfort type) for three of the Chinese strains and genotype CSFV-a1 (Brescia type) for all the Indian strains. The Chinese strain S171 was clustered as a new genotype in the species, named CSFV-d. Only partially related to CSFV-a2 (divergence 62.5%, mean value 9.87), with a marked difference at the level of the V3 locus nucleotide base pairings, S171 was divergent from all other CSFV genotypes (divergence values ranging from 10 to 15). Furthermore, it was significantly less related to border disease virus (BDV) (Fig. 1), a known characteristic of other CSFV strains. Base pairing comparison between strain S171 and strains of the different BDV genotypes scored the high divergence values, ranging from 17 to 25, with a mean value of

UTR (PNS method). The	ndicated under parenthesis	
are characteristics at the RNA 5	uence analysis by depositors is	ofa).
o palindromic secondary structu	ng according to the primary sequ	ries); Wild boar (Sus scrofa scr
(n = 126) evaluated according t	vergence in the genus. Clusterir	ofa domesticus); Sheep (Ovis a
irus strains of CSFV species (fied genotypes is based on div	attle (B. taurus); Pig (Sus scre
ble 1. List of Pestivi	menclature of identi	D: not determined. C

nomenclature of identif ND: not determined. Ca	ed genotypes is based on divergence in the g. ittle (B. taurus); Pig (Sus scrofa domesticus);	Sheep (Ovis aries); W	'ild boar ((Sus scrofa scrofa).		
Species/Genotype	Strain	Origin	Year	Country	Accession	Reference
CSFV-a1	1 India	Cattle 2	2016	India	MG859286	Giangaspero et al., 2017
CSFV-a1	10 India	Cattle 2	2016	India	MK105823	Giangaspero et al., 2017
CSFV-a1	11 India	Cattle 2	2016	India	MG859287	Giangaspero et al., 2017
CSFV-a1	13 India	Cattle 2	2016	India	MK105824	Giangaspero et al., 2017
CSFV-a1	2 India	Cattle 2	2016	India	MK105825	Giangaspero et al., 2017
CSFV-a1	39	Pig 2	2001	China	AF407339	Wu et al., unpublished
CSFV-a1	3 India	Cattle 2	2016	India	MK105826	Giangaspero et al., 2017
CSFV-a1	4 India	Cattle 2	2016	India	MK105820	Giangaspero et al., 2017
CSFV-a1	5 India	Cattle 2	2016	India	MK105821	Giangaspero et al., 2017
CSFV-a1	5NCR/CSF/MZ/AIZ/348	Pig 2	2011	India	JX975460	Rajkhowa et al., unpublished
CSFV-a1	5NCR/CSF/MZ/AIZ/352	Pig 2	2011	India	JX975461	Rajkhowa et al., unpublished
CSFV-a1	6 India	Cattle 2	2016	India	MK105822	Giangaspero et al., 2017
CSFV-a1	7 India	Cattle 2	2016	India	MK109913	Giangaspero et al., 2017
CSFV-a1	8 India	Cattle 2	2016	India	MG813566	Giangaspero et al., 2017
CSFV-a1	9 India	Cattle 2	2016	India	MK105827	Giangaspero et al., 2017
CSFV-a1 (1.1)	Alfort 187	Pig		France	X87939	Ruggli al., 1995
CSFV-a1	Alfort A19	Pig		France	U90951	Smondack et al., unpublished
CSFV-a1	Aizawl-09	Pig 2	2009	India	HM449066	Rajkhowa et al., unpublished
CSFV-a1	Bangalore Ind-163/07	Pig 2	2007	India	EU446419	Patil et al., unpublished
CSFV-a1 (1.1)	Brescia	Pig		Italy	M31768	Moorman et al., 1990
CSFV-a1 (1.2)	BRESCIAX	Pig		Italy	AY578687	Risatti et al., 2005
CSFV-a1	BV-P	Pig 2	2005	Hungary	DQ314582	Farsang et al., unpublished
CSFV-a1	C strain	Vaccine 1	1994	China	Z46258	Moormann et al., 1996
CSFV-a1 (1.1)	CAP	Pig		Switzerland	X96550	Tratschin et al., unpublished
CSFV-a1	cF114	Pig 2	2001	China	AF333000	Mingxiao et al., unpublished
CSFV-a1	CSF/MZ/KOL/73	Pig 2	2009	India	JX094153	Rajkhowa, unpublished
CSFV-a1	CSF/MZ/SAI/76	Pig 2	2009	India	JX094154	Rajkhowa, unpublished
CSFV-a1 (1.1)	CSFV/1.1/dp/CSF0382/Koslov	Pig		Czech Republic	HM237795	Leifer et al., 2010
CSFV-a1 (2.3)	CSFV/2.3/wb/0608/2005/Euskirchen	Wild boar 2	2005	Germany	GU233732	Leifer et al., 2010
CSFV-a1 (2.3)	CSFV/2.3/wb/CSF1046/2009/Hennef	Wild boar 2	2009	Germany	GU233733	Leifer et al., 2010
CSFV-a1 (2.3)	CSFV/2.3/wb/CSF1045/2009/Roesrath	Pig 2	2009	Germany	LT593749	Hoeper, unpublished
CSFV-a1 (1.1)	CSFV212L-13	Pig 2	2013	India	KY860615	Tomar <i>et al.</i> , unpublished

Table 1. (Cont'd)						
Species/Genotype	Strain	Origin	Year	Country	Accession	Reference
CSFV-al (1.1)	CSFV-GZ-2009	Pig	2009	China	HQ380231	Shen <i>et al.</i> , 2011
CSFV-al (1.1)	CSFV/IVRI/VB-131	Pig	2009	India	KM262189	Kamboj et al., 2014
CSFV-al (1.1)	CSFV-PK15C-NG79-11	Contaminant	2011	India	KC503764	Tomar et al., 2015
CSFV-a1	Eystrup	Pig		Germany	AF326963	Meyers et al., 1999
CSFV-a1	GPE (-)	Vaccine		Japan	AB019152	Harasawa and Giangaspero 1999
CSFV-a1 (1.1)	HCLV	Vaccine		India	AF091507	Wang et al., unpublished
CSFV-a1 (1.1)	HCVCAD22/14	Contaminant	2008	India	U606028	Desai et al., unpublished
CSFV-a1	Hokkaido/66	Pig	1966	Japan	AB019154	Harasawa and Giangaspero 1999
CSFV-a1	Ibaraki/66	Pig	1966	Japan	AB019156	Harasawa and Giangaspero 1999
CSFV-a1	Ibaraki/81-115	Pig	1981	Japan	AB019158	Harasawa and Giangaspero 1999
CSFV-a1	Ibaraki/81-20	Pig	1981	Japan	AB019160	Harasawa and Giangaspero 1999
CSFV-a1	Ibaraki/81-38	Pig	1981	Japan	AB019162	Harasawa and Giangaspero 1999
CSFV-a1	Ibaraki/81-40	Pig	1981	Japan	AB019164	Harasawa and Giangaspero 1999
CSFV-a1	Ind-173/08	Pig	2008	India	FJ183444	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-174/08	Pig	2008	India	FJ183445	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-175/08	Pig	2008	India	FJ183446	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-176/08	Pig	2008	India	FJ183447	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-239/08	Pig	2008	India	FJ183449	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-243/08	Pig	2008	India	FJ183452	Patil <i>et al.</i> , 2010
CSFV-a1	Ind-272/08	Pig	2008	India	FJ183456	Patil <i>et al.</i> , 2010
CSFV-a1 (1.1)	JL1(06)	Pig	2006	China	EU497410	Qiu et al., unpublished
CSFV-a1	KC	Vaccine		Russia	AF099102	Grebennikova et al., 1999
CSFV-a1	LK-VNIVViM	Vaccine		Russia	KM522833	Zhou <i>et al</i> ., 2014
CSFV-a1 (1.1)	LOM	Pig		Japan	AB019655	Sakoda <i>et al.</i> , 1999
CSFV-a1	Miyazaki/81	Pig	1981	Japan	AB019168	Harasawa Giangaspero 99
CSFV-a1	Nakamura/66	Pig	1966	Japan	AB019170	Harasawa Giangaspero 99
CSFV-a1 (1.1)	NFP/AS-1	Pig	2011	India	KC617749	Roychoudhury et al, unpublished
CSFV-al (1.1)	NFP/ML-2	Pig	2011	India	KC617761	Roychoudhury et al, unpublished
CSFV-a1 (1.1)	NFP/ML-4	Pig	2011	India	KC617750	Roychoudhury et al, unpublished
CSFV-a1	Rovac	Vaccine	1994	USA	KJ873238	Zhou <i>et al</i> ., 2014
CSFV-al (1.2)	RUCSFPLUM	Vaccine		USA	AY578688	Risatti et al., 2005
CSFV-a1	Shimen	Pig	1999	China	AF092448	Huang et al., unpublished

5
· -
+
0
~~
()
-
•
Ξ.
1.
e 1.
le 1.
ble 1.
ıble 1.
able 1.
Fable 1.

Species/Genotype	Strain	Origin	Year	Country	Accession	Reference
CSFV-a1	SWH	Pig	2004	China	DQ127910	Li et al., 2006
CSFV-a1	Vac A	Pig		USA	L42435	Stadejek et al., 1996
CSFV-a1	Yamanashi/69	Pig	1969	Japan	AB019182	Harasawa and Giangaspero 1999
CSFV-a2	17-93	Pig		Poland	L42413	Stadejek et al., 1996
CSFV-a2 (2.3)	Alfort/Tübingen	Pig		France	J04358	Meyer et al., 1989
CSFV-a2	Chiba-80	Pig		Japan	AB019659	Sakoda <i>et al.</i> , 1999
CSFV-a2 (2.3)	CSFV/2.3/dp/CSF0821/HR/Novska	Pig	2002	Croatia	HQ148061	Leifer et al., unpublished
CSFV-a2 (2.3)	CSFV/2.3/dp/CSF857/Borken	Pig	2006	Germany	GU233731	Leifer et al., 2010
CSFV-a2 (2.3)	CSFV/2.3/dp/CSF864/BG/Jambul	Pig	2007	Bulgaria	HQ148062	Leifer et al., unpublished
CSFV-a2 (2.3)	CSFV/2.3/wb/XXX0609/Uelzen	Wild boar	2004	Germany	GU324242	Leifer et al., 2010
CSFV-a2 (2.3)	CSFV/2.3/SRB/1264/2005	Pig	2005	Serbia	KY849593	Petrovic et al., unpublished
CSFV-a2 (2.3)	CSFV/2.3/SRB/6168/2006	Pig	2006	Serbia	KY849594	Petrovic et al., unpublished
CSFV-a2	CSF/wb/FR57/2004/0964-03	Pig	2004	Germany	LT158404	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2003/0647-19	Pig	2003	Germany	LT158502	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2005/0018-06	Pig	2005	Germany	LT158405	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2005/0125-05	Pig	2005	Germany	LT158406	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2005/0238-02	Pig	2005	Germany	LT158407	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2006/0199-01	Pig	2006	Germany	LT158409	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2006/060003-06	Pig	2006	Germany	LT158408	Hoeper, unpublished
CSFV-a2	CSF/wb/FR67/2007/0192-01	Pig	2007	Germany	LT158410	Hoeper, unpublished
CSFV-a2 (2.1g)	GD19/2011	Pig	2011	China	KU504339	Gong <i>et al.</i> , 2016
CSFV-a2	HEN03	Cattle	2012	China	KC176778	Zhang et al., unpublished
CSFV-a2 (2.1)	HNLY-2011	Pig	2011	China	JX262391	Jiang <i>et al.</i> , 2013
CSFV-a2 (2.1)	HNSD-2012	Pig	2012	China	JX218094	Jiang <i>et al.</i> , 2013
CSFV-a2	Osaka/51	Pig	1951	Japan	AB019174	Harasawa and Giangaspero 1999
CSFV-a2	Osaka/71	Pig	1971	Japan	AB019176	Harasawa and Giangaspero 1999
CSFV-a2	Pader	Pig		Germany	AY072924	Uttenthalet et al., 2001
CSFV-a2	Paderborn	Pig		Germany	GQ902941	Rasmussen et al., 2010
CSFV-a2	S112	Contaminant	2014	China	MK118725	Zhang <i>et al</i> ., 2014
CSFV-a2	S173	Contaminant	2014	China	KF006975	Zhang <i>et al</i> ., 2014
CSFV-a2	Shizuoka/73	Pig	1973	Japan	AB019180	Harasawa and Giangaspero 1999
CSFV-a2 (2.1)	SKCDK	Pig	2009	China	GQ923951	Li et al., unpublished

Table 1. (Cont'd)					
Species/Genotype	Strain	Origin	Year	Country	Accession
CSFV-a2	Sp01	Pig	2001	Spain	FJ265020
CSFV-a2	Switzerland 1/93	Pig	1993	Switzerland	AF045068
CSFV-a2	Switzerland 2/93'	Pig	1993	Switzerland	AF045069
CSFV-a2	Switzerland 3/93/1'	Pig	1993	Switzerland	AF045070
CSFV-a2	Switzerland 3/93/2'	Pig	1993	Switzerland	AF045071
CSFV-a2	Switzerland 4/93'	Pig	1993	Switzerland	AF045072
CSFV-a2	Venhorst	Pig		Netherlands	AF084049
CSFV-a2	VRI4762	Pig		Malaysia	L42437
CSFV-a2 (2.3)	Wingene	Pig	1994	Belgium	JQ595295
CSFV-a3	Saitama/81	Pig	1981	Japan	AB019178
CSFV-a4 (2.2)	179/MIB/2014	Pig	2014	India	KR350485
CSFV-a4 (2.2)	181/MIB/2014	Pig	2014	India	KR350486
CSFV-a4 (2.2)	211/MIB/2014	Wild boar	2014	India	KR350487
CSFV-a4 (2.2)	23/MIB/2014	Pig	2014	India	KR149284

Species/Genotype	Strain	Origin	Year	Country	Accession	Reference
CSFV-a2	Sp01	Pig	2001	Spain	FJ265020	Mena et al., unpublished
CSFV-a2	Switzerland 1/93	Pig	1993	Switzerland	AF045068	Hofmann and Bossy, 1998
CSFV-a2	Switzerland 2/93'	Pig	1993	Switzerland	AF045069	Hofmann and Bossy, 1998
CSFV-a2	Switzerland 3/93/1'	Pig	1993	Switzerland	AF045070	Hofmann and Bossy, 1998
CSFV-a2	Switzerland 3/93/2'	Pig	1993	Switzerland	AF045071	Hofmann and Bossy, 1998
CSFV-a2	Switzerland 4/93'	Pig	1993	Switzerland	AF045072	Hofmann and Bossy, 1998
CSFV-a2	Venhorst	Pig		Netherlands	AF084049	Widjojoatmodjo et al., 1999
CSFV-a2	VR14762	Pig		Malaysia	L42437	Stadejek et al., 1996
CSFV-a2 (2.3)	Wingene	Pig	1994	Belgium	JQ595295	Haegeman <i>et al.</i> , unpub
CSFV-a3	Saitama/81	Pig	1981	Japan	AB019178	Harasawa and Giangaspero 1999
CSFV-a4 (2.2)	179/MIB/2014	Pig	2014	India	KR350485	Bhaskar et al., 2015
CSFV-a4 (2.2)	181/MIB/2014	Pig	2014	India	KR350486	Bhaskar et al., 2015
CSFV-a4 (2.2)	211/MIB/2014	Wild boar	2014	India	KR350487	Ravishankar et al., unpublished
CSFV-a4 (2.2)	23/MIB/2014	Pig	2014	India	KR149284	Bhaskar et al., 2015
CSFV-a4 (2.2)	322/MIB/2013	Pig	2013	India	KR350488	Bhaskar et al., 2015
CSFV-a4 (2.2)	99/MIB/2014	Pig	2014	India	KR350483	Bhaskar et al., 2015
CSFV-a4 (2)	CSFV-UP-BR-757-09	Pig	2009	India	KC533785	Tomar et al., unpublished
CSFV-a4	Parambi	Wild boar	2014	India	KT239105	Chandramohan et al., unpublished
CSFV-a5	IND/AS/GHY/G4	Pig	2014	India	KM362426	Ahuja et al., 2015
CSFV-a6	Fukuoka/72	Pig	1972	Japan	AB019150	Harasawa and Giangaspero 1999
CSFV-a6	Honduras	Pig		Honduras	L42426	Stadejek et al., 1996
CSFV-b	5440/99	Sheep	1999	Spain	AY159514	Hurtado et al., 2003
CSFV-c (3)	94.4/IL/94/TWN	Pig	1994	Taiwan	AY646427	Lin et al., 2007
CSFV-c (3.4)	Kanagawa/74	Pig	1974	Japan	AB019166	Harasawa and Giangaspero 1999
CSFV-c	Okinawa/86	Pig	1986	Japan	AB019172	Harasawa and Giangaspero 1999
CSFV-c	Okinawa-86-2	Pig	1986	Japan	AB019663	Sakoda et al., 1999
CSFV-c (3)	P97	Pig		Taiwan	L49347	Liu, unpublished
CSFV-d	S171	Contaminant	2014	China	KF006974	Zhang <i>et al.</i> , 2014
CSFV nd (2.2)	Sch180	Pig		Germany	JQ411560	Postel et al., 2012
CSFV nd (1.3)	VRI 4167	Pig		Malaysia	JQ411570	Postel et al., 2012

Table 2. Alignment of genus <i>Pestivii</i> combinations. Base pairing combinations ordered according to increasing diver common base pairs in the prevalent r positions 15 in V1 locus, 5 and 7 in V	<i>rus</i> CSF ttions we rgence i positions V2 locus	V speci are ident n the sp s. Highl s and 1 i	es geno tified fo ecies (* y conse in V3 lc	types var r genoty), and di rved bas rves are g	riable l pe char vergen e pair p genotyp	oci 5'-U acteriza ce in the ositions se specif	TR RN tion (n) genus are ex	[A seco] = 37) a (**) w; (**) w; cluded.	ndary st nd cons as expre Positio ND: no	ructure idered sssed in ns 13 in t detern	sequen for iden a numb n V1 loc nined.	ces, seg tificatio ber of di us and	regated n marko vergent 2, 7 and	accordi er defini base pa 8 in V.	ng to tyl tion. Th uirs, with locus a	pes of b e differe referen re speci	ase pai ent type nce to n les spec	r ss are nost iffic;	
Variable locus										V1									
Position	-	7	3	5r	9	٢	8	6	12	13	14	15	16	17	18 1	9 2	0	11	22
Prevalent base pairs	GY	NA	GC	UG	A	UA (CG	GΥ		CG		NA							
CSFV	GY	ΝA	AU	UG	A	UA (CG	GC	GC	ΝA	GC	AC	GC	CG	AA				
CSFV-a.1																			
39															0	Į.			
HCLV															0	A			
Ibaraki/66															0	A.			
Ibaraki/81-115															0	V			ī
CSFV/2.3/Hennef															0	C			
CSFV2.3Roesrath															0	D			
8 India			GU												0	A			
5NCR/CSF/MZ/AIZ/352									AC						0	IA.			
Alfort 187				UU											0	Ą		ī	ī
Brescia															0	V			ī
1 India	AU		GU												0	V			ī
CSFV-a.2																			
Alfort															0	D			
Osaka/51															0	IJ		ı	ī
Pader															0	Ū			ī
Switzerland 1/93															0	C			ī
SKCDK															0	Ŋ		ī	
Sp01															0	C			ī
CSFV/2.3/SRB/6168/2006															0	C		ī	ī
CSFV/2.3/Jambul										NG					0	D			
17-93												GC			0	D			
Chiba-80																n			ı

http://www.openveterinaryjournal.com M. Giangaspero and S. Zhang http://www.openveterinaryjournal.com M. Giangaspero and S. Zhang

Variable locus										V1									
Position	1	2	3	5r	9	7	8	6	12	13	14	15	16	17	18	19	20	21	22
Prevalent base pairs	GY	UA	GC	UG	P	ΝA	CG	GY		CG		UA					1		ı
CSFV	GY	UA	AU	UG	V	ΝA	CG	GC	GC	UA	GC	AC	GC	CG	AA				ı
S173																GG	ı		ı
HEN03																GG	ı	ı	ı
CSFwbFR672006060003-06																CU	ı	ı	ı
CSFV-a.3																			
Saitama/81																GA	ı	ı	ı
ND Sch180	i.	ŕ	ŕ			ı'	ŕ	ŗ.	ŕ							GA	ı	ı	ı
CSFV-a.4																			
Parambi													GC			GA	ı	ı	ı
211/MIB/2014													GC			GA	ı	ı	ı
322/MIB/2013													GC			GA	ı	ī	ī
181/MIB/2014													GC		GA	GA	ı	ı	ı
CSFV-UP-BR-757-09											CA		GC			GA	ı	ī	ī
CSFV-a.5																			
IND/AS/GHY/G4												AU			AG	GG	ı	ī	ı
CSFV-a.6																			
Fukuoka/72												GC			GA	GA	ı	ī	ī
Honduras										UG	AU	GC				UG	ı	ı	ı
ND VRI 4167	r	ŕ	ŕ			ŕ	ŕ	ŕ	ŕ					CA	AU	CU	ı	ī	ī
CSFV-b																			
5440/99												GC				AG	NA	ı	ı
CSFV-c																			
Okinawa/86											AC	AU			GA	GA	ı	ī	ı
Kanagawa/74								AU		UG	AU	AU			GA	GA	ı	,	ı
CSFV-d																			
S171							CA									GG			ī

Table 2. (Cont'd)																				
Variable locus					5								V3							
Position	1	2	3	4	5	9	7	6	1	2	3	4	5	6	7	8	9	10	*) (*	(**
Prevalent base pairs		YG	YG	ΝA	GY			GC	AU		CG		GΥ	ΝA				A		
CSFV	AU	CG	CG	CG	ΝA		GC	GC	AU	ΝA	CG	AU	CG							
CSFV-a.1																				
39						AU								AC	CA	C	ı	ı	0	8
HCLV						AU								GC	CA	C	ı	ı	0	8
Ibaraki/66						AU								AU	CA	C	ı	ı	0	8
Ibaraki/81-115						AU								AU	ΝA	N			0	8
CSFV/2.3/Hennef						AU								AU	Ν	D			0	8
CSFV2.3Roesrath						AU								AU	Ν	Ŋ			0	8
8 India						AU								AC	CA	С			-	7
5NCR/CSF/MZ/AIZ/352						AU								AC	CA	C	ı	ı	1	8
Alfort 187						AU								AC	CA	C	ı	ı	-	6
Brescia		AG				AU								AU	CA	C			1	6
1 India						AU								AC	CA	C	ı	ı	7	8
CSFV-a.2																				
Alfort						GU								AU	UA	D	ı	ı	0	8
Osaka/51						GC								AU	NA	Ŋ			0	8
Pader						GC								AU	CA	C			0	8
Switzerland 1/93						GU								AU	NΑ	Ŋ	ı	ı	0	8
SKCDK						GC								AU	CA	C	I	I	0	8
Sp01						GU								AU	CA	Ŋ			0	8
CSFV/2.3/SRB/6168/2006						GU								AU	UA	C	I	I	0	8
CSFV/2.3/Jambul						GU								AU	NA	Ŋ			-	7
17-93						GU								AU	UA	Ŋ	I	I	<u> </u>	8
Chiba-80						GU		AC						AU	NΑ	Ŋ	ı	ı	-	6
S173						GC		UC						AU	CA	C	ı	ı	1	6
HEN03						GC		AC						AU	CA	С	ı	ı	-	6
CSFwbFR672006060003-06						GU			AG					AU	NA	Ŋ	ı	ı	1	6
CSFV-a.3																				
Saitama/81	AC					GU								AC	CA	A	ı	ı		8
ND Sch180	AC					GU								AU	CA	A	ı	-	Ð	
CSFV-a.4																				
Parambi						GU								UC	CA	C	ı	ı	1	8
211/MIB/2014						GU								UC	CA	A	ı	ı		8
322/MIB/2013						GU								AC	CA	A	ı	ı	1	8
181/MIB/2014						GU								AC	CA	A			2	8

le 2. (Cont'd)	riable locus	sition 1	evalent base pairs	IFV AU	FV-UP-BR-757-09	FV-a.5	D/AS/GHY/G4 AC	FV-a.6	kuoka/72	nduras .) VRI 4167	FV-b		FV-c	inawa/86	nagawa/74 .	FV-d	71 AA
		2	YG	CG														
		3	YG	CG														
	-	4	NA	CG														
	/2	S	GY	UA									AU					
		9			GU		AU		AU	AU	AU		GC		GC	GC		GC
		7		GC									AC					
		6	GC	GC						AC	AC				AC			UC
		1	AU	AU											AG	AG		UU
		2		UA														
		3	CG	CG														CC
		4		AU C														AC (
	V3	2	J AS	G	A		9		A	A	A		C		A	A		CA A
		6 7	V		C C		iu c		C	C	C		JC U.		U C	U C		- C
		8			A A		A U		A C	A C	A C		A A		A U	A U		A C
		6		ı	I		ı		ı	ľ	ı		ı		ı	ľ		'
		10	V	ı	ı		ı		ı	ı	ı		ı		ı	ı		
		(*)			2		б		0	4	QN		4		5	9		7
		(**)			8		8		8	~			6		10	6		12

20.31. These values were very high in confront of the mean divergence value of 14.57 obtained compared to the other CSFV strains with BDV strains (Table 5). Divergence from BDV-2 tentative species is also higher with CSFV-d (divergence values ranging from 21 to 22; mean divergence value 21.33), in confront of scores obtained with other CSFV genotypes CSFV-a, CSFV-b, and CSFV-c (divergence values ranging from 15 to 20; mean divergence value 17.06) (Table 5). No relation was observed between CFSV and any other *Pestivirus* species (Fig. 2).

By phylogenetic analysis of E2 region, the Indian bovine strains CS/ML/911/IDP/13 (KY860532) and CS/ML/AF/Umiam/14 (KY860531) (Ahuja et al., 2015; Chakraborty et al., 2018) were similar to pig isolates as IND/AS/GHY/G4 (KM362426) (Ahuja et al., 2015), originated from Assam, a neighboring state. By BLAST, the E2 sequence of both strains CS/ML/911/ IDP/13 and CS/ML/AF/Umiam/14 showed 99% and 92% nucleotide identity with strain IND/AS/GHY/G4 (CSFV-a5) and reference strain Paderborn (GQ902941) (CSFV-a2), respectively. Taking into account the PNS evaluation of Paderborn and IND/AS/GHY/G4 5'-UTR, both bovine strains CS/ML/911/IDP/13 and CS/ML/ AF/Umiam/14 were clustered into CSFV-a5. Similar to type Parambi (CSFV-a4), also this cluster was the characteristic of India. A schematic phylogenetic tree, based on secondary structure base pair variation and divergence values at the three variable loci, is shown in Figure 3. At the species level, the observed taxonomic status of the examined strains corresponded to the estimation obtained by phylogenetic tree based on the primary sequence analysis of the 5'-UTR constructed from the alignment with the representative strains from the identified genogroups (Fig. 4).

Discussion

On contrary to other pestiviruses, as BVDV-1 which accounted for much more genotypic variants (Giangaspero and Apicella, 2018), the CSFV species was low heterogeneous. Only two genotypes, CSFV-c and CSFV-d, both of Asian origin, were highly divergent. Taking into account the high divergence in the species based on the primary sequence analysis, the strain Kanagawa/74 (CSFV-c) (Japan, 1974; Dreier et al., 2007; Beer et al., 2015) was proposed, similarly to congenital Tremor (United Kingdom, 1964), as harmonized outgroup strain for phylogenetic analyses (Paton et al., 2000). Similar to the strain Kanagawa/74, the Chinese bovine strain S171 (CSFV-d) was divergent in the species (Fig. 4), suggesting its consideration as another outgroup of the species with even more enhanced divergence.

The other bovine Chinese strains are less divergent, showing common genomic trait characteristic of the known reported CSFV-a2 strains, indicating the concomitant circulation of typical CSV types with others showing atypical characteristics, possibly related **Table 3.** Clustering into genotypes of *Pestivirus* CSFV species strains (n = 126) evaluated according to the PNS method at the 5' untranslated region of RNA. Nomenclature according to primary sequence analysis is indicated under parenthesis. ND: not determined.

Species genotypes	Strains	Distance within species
CSFV-a	CSFV-a1 (1.1; 1.2): 39; 5NCR/CSF/MZ/AIZ/348; 5NCR/CSF/MZ/AIZ/352; 1 India; 2 India; 3 India; 4 India; 5 India; 6 India; 7 India; 8 India; 9 India; 10 India; 11 India; 13 India; Alfort 187; Alfort A19; Aizawl-09; Bangalore Ind-163/07; Brescia; BRESCIAX; BV-P; C strain; CAP; cF114; CSFV212L-13; CSFV-GZ-2009; CSFV-PK15C-NG79-11; CSFV/IVRI/VB-131; CSFV/1.1/dp/CSF0382/XXXX/Koslov; CSF/MZ/KOL/73; CSF/MZ/ SAI/76; CSFV/2.3/wb/CSF1046/2009/Hennef; CSFV/2.3/wb/XXX0608/2005/Euskirchen; CSFV/2.3/Roesrath; Eystrup; GPE (-); HCLV; HCVCAD22/14; Hokkaido/66; Ibaraki/66; Ibaraki/81-115; Ibaraki/81-20; Ibaraki/81-38; Ibaraki/81-40; Ind-173/08; Ind-174/08; Ind- 175/08; Ind-176/08; Ind-239/08; Ind-243/08; Ind-272/08; JL1(06); KC; LK-VNIVViM (V1 GC); LOM; Miyazaki/81; Nakamura/66; NFP/AS-1; NFP/ML-2; NFP/ML-4; Rovac; RUCSFPLUM; Shimen; SWH; Vac A; Yamanashi/69.	0.54
	CSFV-a2 (2.1; 2.3): 17-93; Alfort; Chiba-80; CSFV/2.3/dp/CSF857/2006/Borken; CSFV/2.3/ dp/CSF864/2007/BG/Jambul; CSFV/2.3/dp/CSF0821/2002/HR/Novska; CSFV/2.3/wb/ XXX0609/2004/Uelzen; CSF/wb/FR5720040964-03; CSF/wb/FR672006060003-06; CSF/ wb/FR6720070192-01; CSF/wb/FR6720030647-19; CSF/wb/FR6720060199-01; CSF/wb/ FR6720050238-02; CSF/wb/FR6720050125-05; CSF/wb/FR6720050018-06; CSFV/2.3/ SRB/1264/2005; CSFV/2.3/SRB/6168/2005; CSFV/2.3/SRB/6168/2006; GD192011; HEN03; HNLY-2011; HNSD-2012; Osaka/51; Osaka/71; Pader; Pader born; S112; S173; Shizuoka/73; SKCDK; Sp01;Switzerland 1/93; Switzerland 2/93'; Switzerland 3/93/1'; Switzerland 3/93/2'; Switzerland 4/93'; Venhorst; VRI4762; Wingene.	0.46
	CSFV-a3 (2.2): Saitama/81.	1
	CSFV-a4 (2.2): Parambi; 179/MIB/2014; 181/MIB/2014; 211/MIB/2014; 23/MIB/2014; 322/MIB/2013; 99/MIB/2014; CSFV-UP-BR-757-09.	1.4
	CSFV-a5 (2.1): IND/AS/GHY/G4.	3
	CSFV-a6 (1.3): Fukuoka/72; Honduras.	3
CSFV-b	5440/99.	4
CSFV-c (3)	94.4/IL/94/TWN; Kanagawa/74; Okinawa/86; Okinawa-86-2; P97.	5.5
CSFV-d	S171.	7
CSFV ND	Sch180; VRI 4167.	

to the host species adaptation or a result of geographic isolation. Such occurrences have been suggested also for BVDV-1 isolates in China (Xue et al., 2010; Wang et al., 2014). Similarly, Indian bovine strains were genetically closely related to common CSFV genotype al strains and corresponded to circulate Pestivirus pig strains reported in the country. Between 2009 and 2011, Rajkhowa et al. reported three CSFV isolates from pigs (Aizawl-09, 5NCR/CSF/MZ/AIZ/348, and 5NCR/CSF/MZ/AIZ/352) (accessions numbers HM449066, JX975460, and JX975461, respectively), from the Indian state of Mizoram, located at the extreme northeastern border of Myanmar, well distant from Tamil Nadu, the area where CSFV was detected in cattle. Pig strains from Mizoram are very close to the bovine strains, belonging to the genotype CSFV-a variant 1. A distinctive guanine uracile base pairing in position 3 in the V1 locus was found only in the bovine isolates originated from Tamil Nadu. This

peculiarity was different from all other CSFV strains, which present a conserved A–U pairing in this position. Interestingly, G-C or G*U pairings are conserved only among strains belonging to the BVDV species types 1, 2, and 3 (only five exceptions, out of more than 1,000 considered sequences). In the CSFV species, three genetic clusters referred specifically to Asian countries. The CSFV genotype a variant 4 (type Parambi) included only pig and wild boar strains from India [Bhaskar et al., 2015; and sequences deposited by Ravishankar et al. (unpublished); Tomar et al. (unpublished); and Chandramohan et al. (unpublished)]. CSFV genotype C (type Okinawa) was reported only in pigs originating from Japan and Taiwan (Harasawa and Giangaspero, 1999; Sakoda et al., 1999; Lin et al., 2007; and strain P97 deposited by Liu). Furthermore, the sequence characteristics of strain S171 (Zhang et al., 2014) (CSFV-d) were observed only in China.

Table 4. PNS characteristics to the *Pestivirus* CSFV species with related genotypes and genotype variants. The position of base pairings is defined by numbering from the bottom of the variable locus. Y = C or U.

CSFV species	Locus	Characteristic PNS markers
	V1	U-A in position 13 (exception U*G or C-G; C A bulge);
	V3	U-A in position 2; C A or U-A in position 7; U or C in position 8 (exception A).
CSFV genotypes	Locus	Characteristic PNS markers
CSFV-a	V1	A C bulge in position 15 (exceptions G:Y and A-U);
	V2	U-A in position 5; G:Y in position 7;
	V3	A-U in position 1 (exception A G bulge).
CSFV-b	V1	G:Y in position 15; A G bulge in position 19; U-A in position 20;
	V2	A-U in position 5; A C bulge in position 7;
	V3	A-U in position 1; U C bulge in position 6.
CSFV-c	V1	A-U in position 15;
	V2	U-A in position 5; G:Y in position 7;
	V3	A G bulge in position 1.
CSFV-d	V1	A C bulge in position 15;
	V2	U-A in position 5; G:Y in position 7;
	V3	U U bulge in position 1.
CSFV genotype variants	Locus	Characteristic PNS markers
CSFV-a1	V1	AC in position 15;
	V2	A-U in position 1; A-U in position 6;
	V3	C or U in position 8.
CSFV-a2	V1	AC in position 15 (exception G-C);
	V2	A-U in position 1; G:Y in position 6;
	V3	A-U in position 6; U or C in position 8.
CSFV-a3	V1	AC in position 15;
	V2	AC in position 1; G:Y in position 6;
	V3	A in position 8.
CSFV-a4	V1	G:Y in position 15;
	V2	A-U in position 1; G:Y in position 6;
	V3	AC or UC in position 6; A in position 8 (exception C).
CSFV-a5	V1	A-U in position 15;
	V2	AC in position 1; A-U in position 6;
	V3	U in position 8.
CSFV-a6	V1	G:Y in position 15;
	V2	A-U in position 1; A-U in position 6;
	V3	C in position 8.

In general, apart nomenclature difference, the comparison between primary and secondary structure analyses revealed corresponding main genomic groups, defined by phylogenetic analysis, dividing CSFVs into three major lineages (Brescia, Alfort and Kanagawa/ Okinawa types) and their sublineages (Lin *et al.*, 2007). Furthermore, the phylogenetic trees showed such similarity (Figs. 3 and 4). Genotype CSFV-a variant 1 (type Brescia) corresponded to 1.1 and 1.2, CSFV-a

variant 2 (type Alfort/Tübingen) to 2.1 and 2.3, CSFV-a variant 4 to 2.2, and genotype CSFV-c to 3 and 3.4. The CSFV 2.2 strain Sch180 (JQ411560) from Germany and the CSFV 1.3 strain VRI 4167 (JQ411570) from Malaysia could not be determined due to incomplete V1 locus, but their other sequence fragments were compatible with PNS genotype variants CSFV-a3 (type Saitama) and CSFV-a5 (type Honduras), respectively (Table 2). However, as expected, the

Divergence between CSFV and other species

Fig. 1. Graphical representation of PNS quantitative evaluation. CSFV shows close genetic relation to BDV and a lesser extent with BDV-2.

specific differences observable at the level of the E2 gene sequence fragment (Risatti *et al.*, 2005; Postel *et al.*, 2012) were not necessarily related to secondary structure 5'-UTR clustering. Similarly, PNS genotype CSFV-c included variants as 3.4 not discriminable from other members of genotype 3 (Lin *et al.*, 2007). Similar discrepancies may occur comparing other regions, as between 5'-UTR and Npro.

With concern to the relationship between CSFV detection and clinical observations, the strain HEN03, the only among the Chinese strains for which clinical anamnestic data could be retrieved, was associated with reproductive disorders observed in many animals in the herd: abortion, stillbirth, and reduced milk yield. Furthermore, the mortality rate was high. However, concomitant infection with BVDV-1 and BVDV-2 was revealed. It is particularly interesting that also all the Indian bovine CSFV strains were isolated in herds suffering from reproductive disturbances, abortions, birth defects, repeat breeding, and mastitis. Serological positivity for bovine herpesvirus 1 (IBR) and Brucella sp. was absent or very low, manifestly not correlated to observed pathologies, and no BVDV has been isolated (Giangaspero et al., 2017).

Hypothetically, CSFV bovine strains detected in China and India might find their origin from vaccine prophylaxis performed in pig populations. CSFV-a1 comprises a CSFV-lapinized vaccine strain from India (EU857642–AF091507), which showed a high

homology with Indian cattle strains (99% identities according to the results obtained by BLAST). Investigations on vaccination protocols applied in the research area showed that none of the cattle farms investigated in Tamil Nadu showed to have contact with pigs, and no immunization program was carried for BVDV (Giangaspero et al., 2017). However, CSFV vaccine prophylaxis is carried out in the swine industry in India. At present, anti-BVDV-killed virus vaccines are available in China, but, for a long time, there were no commercial BVDV vaccines in the Chinese market. In China, and particularly in Tibet and Qinghai provinces, prophylaxis against BVDV in cattle and vaks was based on the wide use of the live-attenuated hog cholera lapinized vaccine (HCLV), administered to animals at a triple dose. This followed the experimental demonstration of efficacy and safety of the prophylactic use of HCLV for BVDV in lactating and pregnant cows, calves, and vaks undertaken by Yuan Oingzhi in 1957 (Liu et al., 2003). For a long time, the HCLV was the only authorized vaccine against CSFV in China. In Tibet, the long-term use of live-attenuated HCLV not only reduced losses caused by BVDV infection but also gave the opportunity for vaccinal strain adaptation in cattle, allowing as a possible consequence of a subsequent natural diffusion. Tibet is historically a high-quality breeding region managed by a traditional seminomadic agropastoral system and appreciated by traders who seasonally purchase and move live

es			Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Divergen	Related	Related	Related	Related	Related	Related	Related	Related	Related	Related	Related	Related	Related
. Scor	ILIS		20	21	20	21	22	20	20	21	22	21	21	20	18	18	19	19	18	18	19	18	19	18	19	19	19
2,178)	47\evegeneA		12	12	11	12	12	11	12	12	12	12	12	11	6	6	10	10	6	11	11	10	10	12	10	10	10
(n = 2)	8% swania 0		16	16	15	16	16	15	16	16	16	16	16	15	13	13	14	14	13	14	14	13	14	15	14	14	14
/alues	66/0775		14	15	16	16	17	15	15	16	17	15	16	15	13	13	14	13	13	13	14	13	14	14	14	14	14
ence	Honduras		12	13	12	13	14	12	12	14	15	14	14	12	6	6	10	10	6	11	10	6	10	13	10	10	10
diverg	Lukuoka/72		15	16	15	16	16	15	15	16	16	16	16	13	11	11	12	12	11	11	12	11	12	12	12	12	12
ırison	18\emetie8		14	15	14	15	16	13	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
	69/1 busitserland 1/93		13	14	14	14	15	13	13	14	14	12	13	13	11	11	12	12	10	11	12	11	12	12	12	11	11
tering	ЕОИЭН		14	15	14	15	16	14	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	12	13	13	13
e sequ	ELIS		14	15	14	15	16	14	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	12	13	13	13
ructui specie	Pader		13	14	13	14	15	13	13	14	14	13	13	13	11	11	12	12	10	11	12	11	12	12	12	11	11
dary st ferent	IZ/rakeO		12	13	13	13	14	12	12	14	14	12	13	13	10	10	11	11	6	10	11	10	11	12	11	10	10
secone nd dif	Chiba-80		14	15	15	15	16	14	14	15	16	14	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
ecies ance a	Alfort		13	14	14	14	15	13	13	14	15	13	14	13	11	11	12	12	11	11	12	11	12	12	12	12	12
tive sp ic dist	£6-71		13	14	14	14	15	13	13	14	15	13	14	12	10	10	11	11	10	10	11	10	11	11	11	11	11
tental geneti	Ibaraki/81-115		14	15	15	15	16	14	14	15	16	14	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
3DV-2 dicate	Ibaraki/66		14	15	14	15	16	14	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
and F 13) inc	НСГЛ		14	15	14	15	16	14	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
: BDV alue (Brescia		15	16	15	16	17	15	15	16	17	16	16	15	13	13	14	14	13	13	14	13	14	14	14	14	13
versus imit v	sibnI 8		15	16	15	16	17	15	15	16	17	16	16	15	17	17	18	18	17	17	18	17	18	17	18	18	14
SFV ence l	781 11011A		13	14	13	14	15	13	13	14	15	14	14	15	13	13	14	15	13	13	14	13	14	14	14	14	14
tion. C diverg	68		14	15	14	15	16	14	14	15	16	15	15	14	12	12	13	13	12	12	13	12	13	13	13	13	13
e 5. PNS quantitative evalua ding species determination	CSFV	ler disease virus (BDV)	il A841/1	11 V1414	11 135 661	11 170 337	11 G1305	11 G2048	11 D1586/2	11 K1729/3	1 1505744	1 1502304	11 1062689	12 X818	12 Moredun ncp	12 T1789/1	12 Q1673/2	12 JH2816	12 Lyon2	12 L991	12 Moredun cp	12 A1870	12 8320-22NZ	12 1376527	12 8320-31NZ	12 FNK2012-1	12 1118212
Table		Bord	6	9	9	9	9	9	9	9	9	9	9	9	9	9	6	62	9	a	9	9	9	62	9	62	0

	ent	ent	ent	ent		ent	ent	ent	ent	ent	_	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent	ent
	Diverg	Diverg	Diverg	Diverg	Related	Diverg	Diverg	Diverg	Diverg	Diverg	Related	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg	Diverg
ILIS	21	21	21	21	18	19	19	19	19	19	19	20	19	22	23	21	21	21	21	21	19	19	20	21	23	20
47\ewegeneX	12	12	13	13	10	6	6	6	6	6	11	13	13	15	16	14	14	14	14	15	12	12	14	16	16	12
8% avania 0	16	16	17	16	12	13	13	13	13	13	13	15	13	17	18	16	16	16	16	17	14	14	16	18	18	14
66/0775	15	13	17	14	15	16	16	16	16	16	16	17	16	18	19	17	17	17	17	18	16	16	16	15	16	15
Honduras	12	12	15	13	12	13	13	13	13	13	13	14	12	16	17	15	15	15	15	16	13	13	15	15	15	12
27/raiouauA	14	14	16	14	13	14	14	14	14	14	13	15	15	17	18	16	16	16	16	17	14	14	16	16	16	14
18\emetie8	15	15	15	14	13	14	14	14	14	14	13	15	15	17	18	14	14	14	14	15	13	13	15	16	16	14
69/1 busitzerland 1/93	14	13	14	13	12	13	13	13	13	13	12	13	13	15	16	15	15	15	14	15	12	12	14	15	16	13
EON3H	15	15	15	15	13	14	14	14	14	14	14	15	13	17	18	16	16	16	16	17	14	14	16	16	18	14
ELIS	15	15	15	15	13	14	14	14	14	14	14	15	14	17	18	16	16	16	16	17	14	14	16	16	18	14
Pader	14	13	14	13	12	13	13	13	13	13	12	13	12	15	16	15	15	15	14	15	12	12	14	16	16	13
12/sAka/51	13	12	14	12	12	13	13	13	13	13	12	12	13	15	16	15	15	15	14	15	12	12	14	15	16	12
08-rdidD	15	14	15	14	13	14	14	14	14	14	14	15	13	17	18	16	16	16	16	17	13	14	16	15	17	14
Alfort	14	14	14	14	12	13	13	13	13	13	13	14	14	16	17	15	15	15	15	16	12	13	15	14	16	13
£6-71	13	13	15	13	12	13	13	13	13	13	13	14	14	16	17	15	15	15	15	16	12	13	15	13	15	13
Ibaraki/81-115	15	15	15	15	13	14	14	14	14	14	13	15	15	17	18	16	16	16	16	17	14	14	16	16	17	14
Ibaraki/66	15	15	15	15	13	14	14	14	14	14	13	15	15	17	18	16	16	16	16	17	14	14	16	17	17	14
НСГЛ	15	15	15	15	13	14	14	14	14	14	13	15	15	17	18	16	16	16	16	17	14	14	16	17	17	14
Brescia	16	15	16	16	14	15	15	15	15	15	14	16	16	18	19	17	17	17	17	18	15	15	17	17	17	15
sibn1 8	16	16	16	16	14	15	15	15	15	15	14	16	16	18	19	17	17	17	17	18	15	15	17	17	19	15
781 troffA	16	16	15	16	14	15	15	15	15	15	14	16	16	18	19	17	17	17	17	18	15	15	17	18	18	15
68	15	15	15	15	13	14	14	14	14	14	13	15	15	17	18	16	16	16	16	17	14	14	16	17	17	14
		c		-	01	lolph							1		dA-2		357									2GI
CSFV	Ch1Es	Coos Bay 5	BD31	LA/5909/05	Genzkow 74	Rentier Rud	BT2305	ST1405	ST1507	J1004	CH-BD3	CH-BD4	Italy-10376	Italy-58987	Chamois-Vo	90-F-6335	06-F-0299/	92-F-7119	10F03356	RUPI-05	AH12-01	AHHX15	297	C27	ZA1-1115	0501209-05
	a2	a2	a3	a4	q	q	q	q	q	q	c1	c1	c1	c1	c1	c2	c2	c2	c2	c2	dl	dl	d2	e1	e2	fl

	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	telated	telated	telated	telated	celated
ILIS	21 I	21 I	21 I	21 I	22 I	25 I	23 I	24 I	22 I	23 I	23 I	24 I	21 I	21 I	21 I	21 I	22 I	21 I	21 I	21 I	20 I	18 F	19 F	18 F	17 F	19 F
47/rwrgrard	4	15	15	15	91	91	17	91	15	17	17	8	91	15	15	15	91	17	91	91	15	01	Ξ	6	6	=
8/в мвпіяЮ	16	15	15	15	16	50	8	19	17	8	8	19	17	16	16	16	17	16	15	15	14	12	13	11	11	13
66/0775	17	18	18	18	19	50	18	19	17	18	18	19	18	17	17	17	18	19	18	18	17	=	12	6	11	=
Ronduras	4	13	13	13	4	17	15	16	15	15	15	16	14	13	13	13	14	13	12	12	12	10	11	10	10	6
ZL∕rsyonynJ	16	17	17	17	18	18	16	17	17	16	16	17	15	14	14	14	15	16	15	15	14	Ξ	12	11	11	10
18/emetie2	15	16	16	16	17	61	17	8	91	17	17	8	16	15	16	15	91	1	91	91	15	12	13	12	12	[]
Switzerland 1/93	15	15	16	16	91	61	12	<u>8</u>	91	17	17	<u>∞</u>	91	4	15	4	15	1	91	91	4	6	01	7	6	0
EONJH	9	15	15	15	9	00	8	6]	2	8	8	6]	9	9	. 9	9	2	5	5	5	4	12	3	Ξ	0	[]
ELIS	[9]	[9]	[9]	[9]	[]	50	8	[6]	8	8	8	[6]	[9]	[9]	[9]	[9]	[]	[9]	[9]	[9]	[5]	[2]	[]	Ξ	[0]	[]
Pader	5	5	9	9	9	6		8	9	7	7	8	9	4	5	4	5		9	9	4	0	Ξ	6	8	=
Usaka/51	5	4	6	6	5	8	6	7	6	6	6	7	6	3	5	3	4	2	5	5	4	9	0	7	6	0
08-8diAJ	6	5	5	5	6	10	8	6	7	8	8	6	7	6]	6]	6	7	6	5	5	4	_	2	6	0	2
VII011	5 1	6 1	6 1	6 1	7 1	9	7 1	8	6 1	7 1	7 1	8	6 1	5 1	5 1	5 1	6 1	7 1	6 1	6 1	5 1	0	1	8	9	1
6- / I	5 1	6 1	6 1	6 1	7 1	9	7 1	8	6 1	7 1	7 1	8	6 1	5 1	5 1	5 1	6 1	7 1	6 1	6 1	5 1	9	0		8	0 1
11 00 11 11 11 11 11 11 11 11 11 11 11 1	6 1	7 1	7 1	7 1	8	8	6 1	7 1	7 1	6 1	6 1	7 1	5 1	4	4	4	5 1	6 1	5 1	5 1	4	_	2	6	0	0 1
1041760 1041760	6 1	7 1	7 1	7 1	8	8	6 1	7 1	7 1	6 1	6 1	7 1	5 1	4	4	4	5 1	6 1	5 1	5 1	4	2	3 1	-	1 1	1
нстл	6 1	7 1	7 1	7 1	8	8	6 1	7 1	7 1	6 1	6 1	7 1	5 1	4	4	4	5 1	6 1	5 1	5 1	4	2	3 1	2	2	-
RIESCIA	6 1	7 1	7 1	7 1	8	8	6 1	7 1	7 1	6 1	6 1	7 1	6 1	5 1	5 1	5 1	5 1	7 1	6 1	6 1	5 1	3	4	2	2	2 1
sibni 8	7	8	8	8	8	9	7 1	8	8	7	7 1	8	5 1	5 1	5 1	5 1	6 1	6 1	6 1	6 1	5 1	3	4	3	3	2
Allor 18/	7 1	8	8	8	9 1	7 1	5 1	6 1	8	7 1	7 1	8	6 1	5 1	5 1	5 1	6 1	7 1	6 1	6 1	5 1	3 1	4	3	3 1	2
66	6 1	7 1	7 1	7 1	8	8	6 1	7 1	7 1	6 1	6 1	7 1	5 1	4	4	4	5 1	6 1	5 1	5 1	4	2	3 1	2	2	-
Ű	-	1	1	1	-	-	-	-	-	-	1	-	-	—	-	-	1	-	1	-	07 1	—	1	-	1	
CSFV	89-F-5415	ESP-97	AV	93-F-7289	BA/52521/09	2112/99	M3	0502234	Rocco	C121	LE31C2	Colm24	ARAN-1	RIBAGORCA-4	Chamois1	PALLARS-3	FRESER-2	Drlu-R41	CADI-1	Prlu-S24	l sheep/272/FRA/20	92019/2007/AG	l 59434/2012/EN	l 10F03401	91-F-6732	l 70282/2007/EN
	f1	fl	f1	fl	f1	5	5	5	f3	f3	f3	f3	f4	f4	f4	f4	f4	f	f4	f4	f4	ω [19 19	ω [19 19	a3

EUNG	
٤٤١	
sder	
IZ\ARS	
08-sdid	
lfort	
£6-7	
211-18/iArra	
09/iaraki/66	
CLV	
rescia	
sibnI	
781 trof l	
6	

http://ww	w.openveterin	aryjournal.com
M. Giang	aspero and S.	Zhang

	Related	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Divergent	Related	Divergent	Divergent		Divergent	Divergent	Divergent										
ILIS	19	20	21	20	18	18	19	22	21	18	20	20	19	20	21	20	20	20	21	21	23	23		21	21	22
47/ewegeneX	~	12	11	13	14	13	13	16	16	12	14	15	16	15	15	15	15	15	16	17	15	15		18	18	19
8/ swanixO	12	16	15	16	14	13	15	19	18	14	15	16	17	16	17	16	16	16	17	16	18	18		19	19	20
66/0775	12	14	14	14	18	17	17	18	17	14	17	17	17	17	18	17	17	15	16	17	17	16		18	17	18
Honduras	11	11	13	13	13	12	14	16	15	11	14	15	15	16	16	16	16	14	15	14	16	16		18	18	19
27/rsionsius	12	12	14	13	16	15	15	17	16	12	14	15	15	15	16	15	15	13	14	15	16	16		17	17	18
18/smstis2	13	14	15	14	15	15	15	18	17	13	15	15	14	15	17	16	15	14	16	17	17	17		16	16	17
69\l bnshsterland 1/93	10	14	13	14	13	12	13	16	15	10	13	14	13	14	15	14	14	13	14	15	16	16		16	15	16
EON3H	12	14	15	14	14	13	15	18	17	13	15	16	15	16	17	16	16	15	16	15	17	17		16	16	17
ELIS	12	14	15	14	15	14	15	18	17	13	15	16	15	16	17	16	16	15	16	16	17	17		16	16	17
Pader	11	13	14	13	14	13	13	16	15	11	13	14	13	14	15	14	14	13	14	15	16	16		16	16	17
12/sArsO	10	14	13	14	14	13	13	16	15	11	12	13	12	13	14	14	14	13	14	15	16	16		16	15	16
Chiba-80	11	15	14	15	14	13	14	18	17	13	15	15	14	15	17	16	15	14	16	15	17	17		17	16	17
Alfort	10	14	13	14	15	14	13	17	16	12	14	14	13	14	16	15	14	13	15	16	16	16		16	15	16
£6-LI	6	13	12	13	15	14	13	16	15	11	14	14	14	14	16	15	14	12	14	15	15	15		16	15	16
Ibaraki/81-115	11	15	14	15	16	15	15	18	17	13	15	15	14	15	17	16	15	14	16	17	17	17		17	16	17
Ibaraki/66	12	14	15	14	16	15	15	18	17	13	15	15	14	15	17	16	15	14	16	17	17	17		17	17	18
НСГЛ	13	14	15	14	16	15	15	18	17	13	15	15	14	15	17	16	15	14	16	17	17	17		17	17	18
Brescia	13	15	16	15	17	16	16	19	18	14	16	16	15	16	18	17	16	15	17	18	18	18		18	18	19
sibn1 8	14	14	16	15	17	16	16	19	18	14	14	15	14	15	16	15	15	14	15	16	16	18		17	17	18
781 front	14	14	16	15	17	16	16	19	18	14	16	16	15	16	18	17	16	15	17	18	18	18		18	18	19
6€	13	13	15	14	16	15	15	18	17	13	15	15	14	15	17	16	15	14	16	17	17	17	DV-2)	17	17	18
CSFV	91-F-6731	37A	BM01 isolate 5	33S	JS12/04	JSLS12-01	JSYZ15	TR-13	TR-14	Ind 830-09	CH-BD1	06-F-0083	85-F-588	90-F-6227	LA6442110	06M0150	89-F-5374	Gifhorn	B30006	CH-BD2	BDV/Burdur/05-TR	BDV/Aydin/04-TR	r disease virus type 2 (B)	2 712/02	-2 TO/121/04	.2 LA/91/05
	g]	g2	g2	g2	h	h	h	il	i2	j1	j2	j3	j3	j3	k'	ĸ	Borde	BDV-	BDV-	BDV-						

Table 5. (Cont'd)

Divergence between CSFV genotypes with BDV and BDV-2 species

Fig. 2. Graphical representation of PNS quantitative evaluation. Genotype CSFV-d is not related to BDV or BDV-2.

Fig. 3. Schematic phylogenetic tree based on nucleotide changes in the secondary structure of classical swine fever virus genotypes. Mean values of base–pair divergence and variable locus location indicate the evolutionary changes.

Fig. 4. Phylogenetic tree based on the 5'-UTR comparison, showing taxonomic relationships of the CSFV strains in the *Pestivirus* genus. Strains Brescia (M31768), 39 (AF407339), Eystrup (AF326963), Alfort/187 (X87939), HCLV (AF091507), Shimen (AF092448), and the bovine strain 8 India (MG813566) are references for the genotype CSFV-a variant 1. Strains Alfort/Tuebingen (J04358), Chiba-80 (AB019659), Osaka/51 (AB019174), Paderborn (AY072924), and the Chinese bovine strains S173 (KF006975), HEN03 (KC176778), and S112 (MK118725) are references for the genotype CSFV-a variant 2. Strain Saitama/81 (AB019178) is the reference for the CSFV-a variant 3, and strains Parambi (KT239105), IND/AS/GHY/G4 (KM362426), and Honduras (L42426) are the references for the CSFV-a variants 4, 5, and 6, respectively. The Spanish ovine strain 5440/99 (AY159514) is the reference for the genotype CSFV-b. The Japanese strains Kanagawa/74 (AB019166) and Okinawa/86 (AB019172) are references for the genotype CSFV-c. The Chinese bovine strain S171 (KF006974) represents the genotype CSFV-d. Distances were computed using Clustal X, version 1.8, using the neighbor-joining method. Scale bar indicates 10 nucleotide substitutions per 100 nucleotides. Nomenclature of identified genotypes is based on divergence in the genus.

animals and may be possibly responsible for the spread of pestiviruses, especially through immunotolerant persistently infected subjects. In Spain, the reported ovine strain 5440/99 showed the sequence similarities with CSFV vaccine strains used in pigs, suggesting spillovers from prophylactic campaigns (Hurtado et al., 2003). In Belgium, some fetal calf sera positive for CSFV-like 5'-UTR sequences, experimentally not infecting or seroconverting pigs, have been detected during the 90s (Dr Koenen, Sciensano, Belgium, personal communication), suggesting circulation of unidentified virus strains with sequence similarity to CSFV within the 5'-UTR. However, in Belgium, since the last occurrence of CSFV was reported in 1997, thus, in this period, wild and vaccinal strains were present in the country, and it cannot be excluded from the occurrence of possible spillovers in cattle from CSFinfected or immunized pigs.

The recent taxonomy of CSFV is based on the analysis of the E2 genomic region (Postel *et al.*, 2012). Due to the relation to envelope glycoprotein (the main immunogen of CSFV, thus essential for the development of

vaccines) (Perez et al., 2012) and the longer size (1,119 nucleotides), the full-length E2 encoding sequences were recommended for accurate phylogenetic analyses, assessing the viral types and subtypes. Based on the primary sequence analysis, three CSFV genotypes, each with three or six subgroups, have been identified (Paton et al., 2000: Dreier et al., 2007: Postel et al., 2013: Beer et al., 2015; Silva et al., 2017). However, despite a limiting factor for the differentiation of closely related isolates (Postel et al., 2012), short-length target fragments in other regions of the viral genome as 5'-UTR or NS5B have been largely applied for genotyping purposes and molecular epidemiology (Lowings et al., 1996; Paton et al., 2000; Beer et al., 2015). Phylogenetic analysis of the sequences based on a 190-nucleotide (nt) fragment of the E2 glycoprotein proved very useful for the genetic typing of isolates in the case of new outbreaks (Dreier et al., 2007). In any case, laboratory testing international standards are indicated only by the World Organization for Animal Health (Office International des Epizooties -OIE). According to the Terrestrial Manual of the World Organization for Animal Health (Office International

des Epizooties-OIE) (Chapter 2.8.3 CSFV; Paragraph 1.1.5.) (OIE, 2014), as the E2 major glycoprotein gene (190 nucleotides), the fragment 5'-UTR of the CSFV genome (150 nucleotides), targeted for molecular characterization of the bovine sequences in the present study, is admitted too for genetic typing and molecular epidemiology of CSF, based on the comparison of genetic differences between virus isolates. According to the Terrestrial Code (Chapter 15.2; Article 15.2.28, Paragraph 3, Virological surveillance) (OIE, 2017) and the Terrestrial Manual (Chapter 2.8.3; Paragraph 1.1.4.) (OIE, 2014) of the World Organization for Animal Health, the RT-PCR amplification of CSFV RNA followed by nucleotide sequencing, applied for the obtention of the sequences evaluated in the present study (Zhang et al., 2014; Giangaspero et al., 2017), originally focused on investigations of BVDV, is admitted among recommended methods for CSFV agent detection, confirmation of clinical cases, and differentiation from other pestiviruses. It is clear that the sequence of the gene encoding the E2 glycoprotein is preferred in the recent taxonomy of the species (Postel et al., 2012), but the consideration of 5'-UTR was the only possible approach to perform a comparative evaluation of CSFV with sequences of the other different species, otherwise not feasible taking into account that the majority of Pestivirus-deposited sequences are 5'-UTR (Yesilbag et al., 2017; Giangaspero et al., 2018). The secondary structure-sequence characterization allowed an exhaustive comparative evaluation with genomic variants in the genus, about 1,400 Pestivirus strain sequences. The particularity of the PNS method is the exclusive consideration of strategic genomic sequences corresponding to the 5'-UTR IRES, which is responsible for translational, transcriptional, and replicational events in pestiviruses. Thus, at this level, stable nucleotide variations assume a high importance in terms of virus evolutionary history. The PNS method has been successfully applied for the characterization of pestiviruses, including atypical species as Giraffe, Pronghorn, or Bungowannah (Harasawa et al., 2000; Giangaspero and Harasawa, 2008; 2011), thus adequate for the scope of the present study. The presence of CSFV 5'-UTR sequences in bovines from India and China appeared atypical. However, another recent report from India (Chakraborty et al., 2018) strongly corroborated the previous observations, amplifying also full-length E2 region of CSFV in two positive samples, and suggesting a potential emerging health risk in cattle. Furthermore, the possible occurrence of similar circulation in cattle in CSFV endemic environment in Kenya is currently under evaluation (Prof VanLeeuwen, University of Prince Edward Island, Canada, personal communication).

Conclusions

These preliminary observations are new and relevant in countries, where CSFV control and eradication strategies

are applied. Further investigations will be necessary to confirm adaptation and diffusion of the virus in cattle as well as provide a clear picture of genetic characteristics, in particular, to evaluate other genomic regions, E2, and eventually full-length genome, and apply other internationally recognized tests. Furthermore, it will be important to clarify the clinical suspicions and related virus differential diagnosis for correct notification obligations in compliance with the World Organization for Animal Health reference norms.

Conflict of interest

Authors declare that there is no conflict of interest.

Authors' contribution

M. Giangaspero and S. Zhang contributed equally to the present study.

References

- Ahuja, A., Bhattacharjee, U., Chakraborty, A.K., Karam, A., Ghatak, S., Puro, K., Das, S., Shakuntala, I., Srivastava, N., Ngachan, S.V. and Sen A. 2015. Complete genome sequence of classical Swine Fever virus subgenogroup 2.1 from assam, India. Genome Announc. 3 (1).
- Bhaskar, N., Ravishankar, C., Rajasekhar, R., Sumod, K., Sumithra, T.G., John, K., Mini, M., Ravindran, R., Shaji, S. and Aishwarya, J. 2015. Molecular typing and phylogenetic analysis of classical swine fever virus isolates from Kerala, India. Virus Dis. 26 (4), 260–266.
- Beer, M., Goller, K.V., Staubach, C. and Blome, S. 2015. Genetic variability and distribution of Classical swine fever virus. Anim. Health Res. Rev. 16 (1), 33–39.
- Biró, J., Oláh, P. and Palatka, Z. 1966. Attempt to adapt the lapinized hog cholera virus strain "Suvac" to sheep. Acta Vet. Acad. Sci. Hung. 16(3), 293–299.
- Center for Food Security and Public Health (CFSPH). 2015. Classical Swine Fever. Factsheets. Available via www.cfsph.iastate.edu
- Chakraborty, A.K., Karam, A., Mukherjee, P., Barkalita, L., Borah, P., Das, S., Sanjukta, R., Puro, K., Ghatak, S., Shakuntala, I., Sharma, I., Laha, R.G. and Sen, A. 2018. Detection of classical swine fever virus E2 gene in cattle serum samples from cattle herds of Meghalaya. Virus Dis. 29(1), 89–95.
- Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497– 3500.
- Dreier, S., Zimmermann, B., Moennig, V. and Wilke, I.G., 2007. A sequencedatabase allowing automated genotyping of classical swine fevervirus isolates. J. Virol. Methods 140, 95–99.
- Giangaspero, M. and Apicella, C. 2014. Improved Palindromic Nucleotide Substitutions software version 2.0. Genotyping based on the secondary structure alignment in the 5' untranslated region

of *Pestivirus* RNA. J. Bioinfor. Intel. Cont. 3(1), 39-64.

- Giangaspero, M. and Apicella, C. 2018. Bovine viral diarrhea virus type 1 current taxonomy according to palindromic nucleotide substitutions method. J. Virol. Methods 256, 37–76.
- Giangaspero, M. and Harasawa, R. 2007. Numerical taxonomy of genus *Pestivirus* based on palindromic nucleotide substitutions in the 5' untranslated region. J. Virol. Methods 146, 375–388.
- Giangaspero, M. and Harasawa, R. 2008. Genetic variation of classical swine fever virus based on palindromic nucleotide substitutions, a genetic marker in the 5' untranslated region of RNA. Vet. Ital. 44(2), 305–318.
- Giangaspero, M. and Harasawa, R. 2011. Species Characterization in the genus Pestivirus according to Palindromic Nucleotide Substitutions in the 5' Untranslated Region. J. Virol. Methods 174(1–2), 166–172.
- Giangaspero, M., Kumar, S.K. and Zhang, S.Q. 2017. Classical swine fever virus in cattle. Vet. Rec. 181(3), 73.
- Giangaspero, M., Yesilbag, K. and Apicella, C. 2018. Who's who in the Bovine viral diarrhea virus type 1 species: genotypes L and R. Virus Res. 256, 50–75.
- Gong, W., Zhang, L., Lu, Z., Jia, J., Wang, M., Peng, Z., Guo, H., Shi, J. and Tu, C. 2016. Complete genome sequence of a novel sub-subgenotype 2.1g isolate of classical swine fever virus from China. Arch. Virol. 161(9), 2613–2617.
- Harasawa, R. and Giangaspero, M. 1998. A novel method for pestivirus genotyping based on palindromic nucleotide substitutions in the 5'-untranslated region. J. Virol. Methods 70, 225– 230.
- Harasawa, R. and Giangaspero, M. 1999. Genetic variation in the 5'end and NS5B regions of classical swine fever virus genome among Japanese isolates. Microbiol. Immunol. 43(4), 373–379.
- Harasawa, R., Giangaspero, M., Ibata, G. and Paton, P.J. 2000. Giraffe strain of pestivirus. Its taxonomic status based on the 5' untranslated region. Microbiol. Immunol. 44(11), 915–921.
- Hurtado, A., Garcia-Perez, A.L., Aduriz, G. and Juste, R.A. 2003. Genetic diversity of ruminant pestiviruses from Spain. Virus Res. 92, 67–73.
- Jiang, D.L., Liu, G.H., Gong, W.J., Li, R.C., Hu, Y.F., Tu, C. and Yu, X.L. 2013. Complete genome sequences of classical Swine Fever virus isolates belonging to a new subgenotype, 2.1c, from hunan province, china. Genome Announc. 1(1), E000 80–12.
- Kamboj, A., Patel, C.L., Chaturvedi, V.K., Saini, M. and Gupta, P.K. 2014. Complete genome sequence of an Indian field isolate of classical Swine Fever virus belonging to subgenotype 1.1. Genome Announc. 2(5).

- Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870– 1874.
- Leifer, I., Hoffmann, B., Hoper, D., Bruun Rasmussen, T., Blome, S., Strebelow, G., Horeth-Bontgen, D., Staubach, C. and Beer, M. 2010. Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany. J. Gen. Virol. 91(11), 2687–2697.
- Li, X., Xu, Z., He, Y., Yao, Q., Zhang, K., Jin, M., Chen, H. and Qian, P. 2006. Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes 33(2), 133–142.
- Lin, Y.J., Chien, M.S., Deng, M.C. and Huang, C.C. 2007. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes 35(3), 737–744.
- Liu, Y., Yin, Z., Liu, S., Han, P., Hua, S., Yu, Y., Shi, Q., Ding, X., Liu, X. and Yu, R. 2003. Study on the prevention of bovine viral diarrhoea-mucosal disease of the yak. Chinese J. Prev. Vet. Med. 6.
- Loan, R.W. and Storm, M.M. 1968. Propagation and transmission of hog cholera virus in non-porcine hosts. Am. J. Vet. Res. 29, 807–811.
- Lowings, P., Ibata, G., Needham, J. and Paton, D. 1996. Classical swine fever virus diversity and evolution. J. Gen. Virol. 77, 1311–1321.
- Mohamed, T.M. 2004. BVD Report UAE, 2004. Available via https://www.researchgate.net/ publication/236141896_BVD_ReportUAE2004 (Accessed 8 August 2019).
- Patil, S.S., Hemadri, D., Shankar, B.P., Raghavendra, A.G., Veeresh, H., Sindhoora, B., Chandan, S., Sreekala, K., Gajendragad, M.R. and Prabhudas, K. 2010. Genetic typing of recent classical swine fever isolates from India. Curr. Microbiol. 141(3–4), 367–373.
- Paton, D.J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J.Y., Liou, P.P., Stadejek, T., Lowings, J.P., Björklund, H. and Belák, S. 2000. Genetic typing of classical swine fever virus. Vet. Microbiol. 73(2–3), 137–157.
- Perez, L.J., Arce, H.D., Perera, C.L., Rosell, R., Frias, M.T., Percedo, M.I., Tarradas, J., Dominguez, P., Nunez, J.I. and Ganges, L. 2012. Positive selection pressure on the B/C domains of the E2-gene of classical swine fever virus in endemic areas under C-strain vaccination. Infect. Genet. Evol. 12, 1405– 1412.
- Postel, A., Schmeiser, S., Bernau, J., Meindl-Boehmer, A., Pridotkas, G., Dirbakova, Z., Mojzis, M. and Becher, P. 2012. Improved strategy for phylogenetic analysis of classical swine fever virus based on fulllength E2 encoding sequences. Vet. Res. 43(1), 50.
- Postel, A., Schmeiser, S., Perera, C.L., Rodriguez, L.J., Frias-Lepoureau, M.T. and Becher, P. 2013.

Classical swine fever virus isolates from Cuba form a new subgenotype 1.4. Vet. Microbiol. 161, 334–338.

- Risatti, G.R., Borca, M.V., Kutish, G.F., Lu, Z., Holinka, L.G., French, R.A., Tulman, E.R. and Rock, D.L. 2005. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J. Virol. 79(6), 3787–3796.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
- Sakoda, Y., Ozawa, S., Damrongwatanapokin, S., Sato, M., Ishikawa, K. and Fukusho, A. 1999. Genetic heterogeneity of porcine and ruminant pestiviruses mainly isolated in Japan. Vet. Microbiol. 65(1), 75–86.
- Shen, H., Pei, J., Bai, J., Zhao, M., Ju, C., Yi, L., Kang, Y., Zhang, X., Chen, L., Li, Y., Wang, J. and Chen, J. 2011. Genetic diversity and positive selection analysis of classical swine fever virus isolates in south China. Virus Genes 43(2), 234–242.
- Shimizu, M. and Kumagai, T. 1989. Experimental infection of pregnant goats with swine fever virus. Vet. Microbiol. 20, 207–214.
- Silva, M.N., Silva, D.M.F., Leite, A.S., Gomes, A.L.V., Freitas, A.C., Pinheiro-Junior, J.W., Castro, R.S. and Jesus, A.L.S. 2017. Identification and genetic characterization of classical swine fever virus isolates in Brazil: a new subgenotype. Arch. Virol. 162(3), 817–822.
- Tomar, N., Gupta, A., Arya, R.S., Somvanshi, R., Sharma, V. and Saikumar, G. 2015. Genome

sequence of classical Swine Fever virus genotype 1.1 with a genetic marker of attenuation detected in a continuous porcine cell line. Genome Announc. 3(2).

- Wang, W., Shi, X., Tong, Q., Wu, Y., Xia, M.Q., Ji, Y., Xue, W. and Wu, H. 2014. A bovine viral diarrhea virus type 1a strain in China: isolation, identification, and experimental infection in calves. Virol. J. 11, 8.
- World Organisation for Animal Health (OIE). 2014. Terrestrial Manual Chapter 2.8.3.
- World Organisation for Animal Health (OIE). 2017. Terrestrial Code, Chapter 15.2.
- Xue, F., Zhu, Y.M., Li, J., Zhu, L.C., Ren, X.G., Feng, J.K., Shi, H.F. and Gao, Y.R. 2010. Genotyping of bovine viral diarrhea viruses from cattle in China between 2005 and 2008. Vet. Microbiol. 143(2–4), 379–383.
- Yesilbag, K., Alpay, G. and Becher, P. 2017. Variability and global distribution of subgenotypes of bovine viral diarrhea virus. Viruses 9(6), 128.
- Zhang, S.Q., Tan, B., Guo, L., Wang, F.X., Zhu, H.W., Wen, Y.J. and Cheng, S. 2014. Genetic diversity of bovine viral diarrhea viruses in commercial bovine serum batches of Chinese origin. Infect. Genet. Evol. 27, 230–233.
- Zhou, W., Gao, S., Podgorska, K., Stadejek, T., Qiu, H.J., Yin, H., Drew, T. and Liu, L. 2014. Rovac is the possible ancestor of the Russian lapinized vaccines LK-VNIVViM and CS strains but not the Chinese strain (C-strain) vaccine against classical swine fever. Vaccine 32(49), 6639–6642.