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Abstract

Enormous amounts of biomedical data have been and are being produced by investiga-

tors all over the world. However, one crucial and limiting factor in data reuse is accurate,

structured and complete description of the data or data about the data—defined as meta-

data. We propose a framework to predict structured metadata terms from unstructured

metadata for improving quality and quantity of metadata, using the Gene Expression

Omnibus (GEO) microarray database. Our framework consists of classifiers trained using

term frequency-inverse document frequency (TF-IDF) features and a second approach

based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the

dimensionality of the unstructured data. Our results on the GEO database show that

structured metadata terms can be the most accurately predicted using the TF-IDF ap-

proach followed by LDA both outperforming the majority vote baseline. While some ac-

curacy is lost by the dimensionality reduction of LDA, the difference is small for elements

with few possible values, and there is a large improvement over the majority classifier

baseline. Overall this is a promising approach for metadata prediction that is likely to be

applicable to other datasets and has implications for researchers interested in biomedical

metadata curation and metadata prediction.

Database URL: http://www.yeastgenome.org/

Introduction

Enormous amounts of biomedical data have been and are

being produced by investigators all over the world. This is

mainly due to advancements in molecular technologies that

have enabled extensive profiling of biological samples and

have unleashed a myriad of omics data such as gene expres-

sion, microRNA expression, DNA methylation and DNA

mutation data. However, during the last decade, journals,

investigators, funding agencies, etc. realized that this data

should be stored and shared with other investigators.
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Several databases were created in the process to house this

data and make it available to the community at large, such

as the NCBI databases for microarray data; Gene

Expression Omnibus (GEO) (1) and sequence data; the

database of Genotypes and Phenotypes (dbGAP) (2). This

data repurposing—the use of data beyond what the original

investigators envisioned—has been very fruitful for the bio-

medical and biological community by allowing meta-

analysis studies to discover novel biology hidden in each

single dataset.

In this article, we predict the structured metadata from

textual metadata elements. With predicting metadata, we

aim to improve the quality and quantity of metadata. This

improvement for biomedical datasets is crucial to drive the

next paradigm shift in data reuse. Tackling the metadata

problem will remove hurdles in mapping datasets to each

other and time consuming efforts to find datasets for an in-

vestigator’s disease of interest. It will allow streamlined

meta-analysis due to easier discovery of similar datasets

owing to harmonized metadata annotations.

Despite the development of community standards to de-

scribe an experiment (e.g. Minimum Information About a

Microarray Experiment; MIAME) (3) or a dataset (e.g.

Health Care and Life Sciences; HCLS dataset description)

(4), these are often poorly implemented, making it difficult

to find, access and reuse data. However, one crucial and

limiting factor in data reuse is accurate, structured and

complete description of the data or data about the data—

defined as metadata. Overall, current metadata is often of

low quality, and many fields are either altogether absent,

erroneous or inconsistent. For example, the largest data-

base of gene expression studies, the GEO microarray data-

base, contains over 50 000 studies, more than 1.3 million

samples, and is still growing. However, only 15 metadata

fields are consistently annotated out of 32 fields.

Thousands of records have empty values. The majority of

the samples have fewer than four sample level annotations

and they suffer from a spectacular lack of consistency (e.g.

there are over 30 different ways to specify the ‘age in years’

in the GEO database). It takes time and effort to create

well-specified metadata, and investigators view the task of

metadata authoring (or data annotation) to be a burden

that may benefit other scientists, but not the team that did

the work in the first place. There is minimal verification

for the correctness of metadata during submission. Because

of this, valuable information may not be reusable by other

researchers.

Our solution is to leverage textual descriptions for gen-

erating structured data based on context and corpus statis-

tics. The main contribution of this paper is to explore

whether unstructured gene expression sample metadata

contains information, which can be exploited for

predicting structured metadata using traditional text min-

ing methods based on term frequency-inverse document

frequency (TF-IDF). Furthermore, we will explore whether

topic models are able to identify semantically meaningful

topics in the unstructured text contained in sample meta-

data, and whether this topic representation is suitable for

training supervised classifiers, with the aim of predicting

the values of structured metadata elements compared to

the TF-IDF approach.

Topic models are a widely used method for the analysis

of textual corpora and other discrete data. We use Latent

Dirichlet Allocation (5), one of the most popular topic

models, for discovering the latent topics which are present

in the metadata of gene expression samples. Topic models

provide the opportunity to reduce the description length of

the documents as compared to TF-IDF, and they also pro-

duce semantically meaningful features in the form of latent

topics (5). In the experiments presented in this article, these

topics are used as features for training supervised classi-

fiers, with the aim of predicting metadata values. We com-

pare the classification results of topic models to those

produced by classifiers that use TF-IDF features to investi-

gate how much discriminatory information is lost by this

reduction of document description length.

This article is structured as follows. The ‘Dataset’ sec-

tion describes the characteristics of the dataset that we

used for our experiments, and ‘Methods’ section describes

the details of our experimental setup. The results of our ex-

periments are reported in the ‘Results’ section. The

‘Discussion’ section 5 discusses the results and provides

directions for future work. The ‘Conclusion’ section con-

cludes this article.

Dataset

For all our experiments, we used data from GEO, a data-

base of gene expression data which contains experimental

metadata largely authored by original data submitters. The

GEO database contains over 1.3 million records. It contains

over 50 000 studies, called ‘series’ in GEO. A series (identi-

fied with GSE00001 in GEO) organizes samples into a data

set defining an experiment. Each study contains 30 samples

on average. A sample (identified with GSE00001 in GEO)

describes the set of molecules that are being probed and ref-

erences a single platform used to generate its molecular

abundance data (GEO) (1). Note that in some cases samples

can belong to multiple series which complicates the evalu-

ation approach (see below). In this article, we used data at

the sample level for all studies. Each study is annotated with

up to 32 metadata fields representing the conditions under

which the sample was handled, the manipulations it under-

went and the measurements of each element derived from it.
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These metadata fields can be either structured or

unstructured.

We define a structured element as a metadata element

which contains a single concept, such as the organism from

which the material was derived. Values of structured elem-

ents have the potential to be mapped to concepts contained

in a controlled vocabulary. Analogously, we define an un-

structured element as a metadata element which contains

any other form of textual description provided by the user.

The value domain of unstructured elements is free text and

cannot be predicted in any meaningful way. Tables 1 and 2

show a list of the structured and unstructured metadata

fields, respectively. Next, we define document as the com-

bined unstructured text of one metadata record. Figure 1

shows which terms occur most frequently in these

documents.

Methods

In this section, we describe the experimental setup and the

methods used for our classification experiments. Our goal

is to predict structured metadata values using a classifier

trained on the latent topic distributions derived from the

unstructured elements and to analyse how well this method

performs compared to using the full vocabulary for docu-

ment description. To accomplish this, we use the docu-

ments’ latent topic distributions inferred by LDA, as well

as TF-IDF values, as features to represent the documents.

For our metadata prediction experiments, we constructed

a pipeline (Figure 2) for training and evaluating different

supervised classifiers. The experimental setup consists of

four main components for training the classifiers and eval-

uating their predictive performance: (i) pre-processing and

splitting the data into a training set and a test set, (ii) train-

ing the LDA model, calculating TF-IDF values and training

the supervised classifiers, (iii) inferring the per-document

topic distributions, calculating TF-IDF values for the test

set based on the document frequencies of the training set

and predicting the classes and (iv) evaluation of the predic-

tions. Figure 2 shows an overview of this setup, based on

LDA features; the setup which uses TF-IDF features is

analogous. The experimental setup ensures that no infor-

mation from the training set is used in evaluation. For

evaluation, we compare the performance of the supervised

classifiers trained on the topic distributions obtained by

LDA with the classifiers trained on TF-IDF features and

with the performance of a majority classifier. In the re-

mainder of this section, the individual components of the

setup are described in more detail.

Pre-processing

Gene Expression Omnibus (GEO) consists of 1 368 682 in-

dividual sample records. As a first step, we split the records

Table 1. Structured metadata fields in GEO.

Field Description

GPL The unique GEO accession number for the platform (GSE00001).

A platform is, essentially, a list of probes that define what set of molecules may be detected,

e.g. GPL13653 for the Affymetrix GeneChip Rat Genome U34A Array.

Type Type of the sample e.g., RNA or DNA.

Organism The organism(s) from which the biological material was derived, e.g. homo sapiens, drosophila melanogaster.

Molecule Type of molecule that was extracted from the biological material, e.g. total RNA, cytoplasmic RNA.

Label The compound used to label the extract, e.g. biotin, Cy3.

This table lists the structured metadata fields along with a description of each element.

Table 2. Unstructured metadata fields in GEO.

Field Description

Title A unique title that describes the samples.

Source Name The biological material and the experimental variable(s), e.g., vastus lateralis muscle, exercised, 60 min.

Treatment Protocol Treatments applied to the biological material prior to extract preparation.

Extraction Protocol The protocol used to isolate the extract material.

Label Protocol The protocol used to label the extract.

Hybridization Protocol The protocols used for hybridization, blocking and washing, and any post-processing steps such as staining.

Description Any additional information not provided in the other fields.

Data Processing Details of how data in the matrix table were generated and calculate.

This table lists the unstructured metadata fields along with a description of each element.
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randomly into a training set consisting of 80% of the re-

cords and a test set consisting of the remaining 20%. As

previously explained samples belong to a series and a sub-

set of samples can belong to multiple series. To avoid in-

formation leakage from the training to the test set, we first

identified the superseries that each sample belongs to

defined as the grouping of all series that share at least one

sample. Then a superseries is either assigned to the train or

test set and thus never split up. After the split, both the un-

structured text and the values of the structured elements

Figure 2. Overview of the experimental setup. This figure shows the four main components of the experimental setup: pre-processing and splitting

the data into a training set and a test set, training the LDA model as well as the supervised classifier, inferring the per-document topic distributions

and predicting the classes, and evaluation of the predictions. The classification setup for the classifiers using TF-IDF features is analogous: Instead of

latent topics, TF-IDF values are used for representing the documents.

Figure 1. Frequent terms in the unstructured text values of GEO metadata values. This figure shows terms which are frequently used in the unstruc-

tured elements of the GEO dataset. Colors and size correspond to the frequency of a term.
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are pre-processed in preparation for the classification

experiments.

Unstructured text

We applied standard pre-processing methods to the com-

bined values (i.e. unstructured text) of all unstructured

elements. After removing English stopwords (https://code.

google.com/p/stop-words/) as well as rare and frequent

words, the vocabulary consisted of 70 802 distinct terms.

Specifically, words which had less than three characters

and words which occurred in< 20 documents of the train-

ing set were removed, as well as the most frequently occur-

ring 200 words of the training set. Furthermore,

documents with less than five words were removed from

the dataset. We did not apply stemming as unstemmed

words result in more easily interpretable topics and allow

the topic model to capture more subtle latent semantics.

Labels

The structured elements of the dataset have a heavily

skewed value distribution. As an example, Figure 3 shows

the value distribution of the element ‘Organism’ in the

training set, after minimal pre-processing (lowercasing and

removing special characters). Many values are rare; 1233

values occur <10 times.

As supervised classifiers rely on being provided with a

sufficiently large set of training examples for each class, we

chose to exclude infrequently used element values.

Specifically, we excluded values which occurred in less

than 0.1% of the dataset records (i.e. values which

occurred <1368 times in the dataset). Table 3 shows the

number of classes which remained after excluding rare

classes, for each of the structured elements.

Model training

The training pipeline first trains a topic model on the un-

structured text from the training set and subsequently

trains a supervised classifier on the features resulting from

the topic model. For comparison, the same type of classi-

fier is trained on TF-IDF features.

Topic model

The first step of the training pipeline trains a topic model

on the unstructured text of the training set. The topic

model which we use for our experiments is Latent

Dirichlet Allocation (LDA). This is a generative Bayesian

model which was introduced by Blei et al. (5). LDA re-

quires the number of latent topics to be set in advance, as

well as the specification of two hyper-parameters: a for

Figure 3. Value distribution of the element ‘Organism’. This figure shows the skewed distribution of values of the element ‘Organism’ (log scale), with

the most frequently used value (homo sapiens) occurring 603 446 times and 1233 values occurring <10 times.

Table 3. Number of classes which constitute at least 0.1% of

the dataset.

Element

Name

Number

of classes

Example Values

GPL 123 gpl570, gpl1261, gpl96, gpl10558

Label 23 biotin, cy3, cy5_and_cy3, alexa_fluor_647

Molecule 5 total_rna, genomic_dna, polya_rna, protein

Organism 33 homo_sapiens, zea_mays, gallus_gallus

Type 7 rna, genomic, sra, protein

This table shows the number of classes which constitute more than 0.1%

of the dataset, as well as example values, for each structured element.
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smoothing the document-topic distribution and b for

smoothing the topic-term distribution. We built an LDA

model with 150 topics on the unstructured text of the

training set. This number of topics was chosen based on a

document description length which is longer than the num-

ber of different values in the most diverse structured elem-

ent (GPL). The hyper-parameters a and b were set to 0.1

and 0.01, respectively. These relatively low values indicate

our prior beliefs that a sample consists of a mixture of rela-

tively few topics, and that the topics in this dataset contain

a mixture of a few, specific words (rather than many words

of equal importance). A total of 200 iterations of

Collapsed Variational Bayes inference (6) were used to

train the model. In the model, each document is repre-

sented by a distribution over all 150 topics, and each topic

is represented by a distribution over all terms in the vo-

cabulary. This means that the dimensionality of the feature

space, compared to representation methods such as term

frequency or TF-IDF, was reduced by almost 98% (from

70 802 to 150).

TF-IDF

With the document frequencies of the training set, TF-IDF

values are calculated for all documents in the training set.

Supervised classifiers

The document-topic distributions resulting from the LDA

model, as well as the TF-IDF values, were used as features

for representing the documents in the supervised classifica-

tion part of our experiments. For classification, we used a

support vector machine (SVM) with linear kernel for each

of the structured elements (7). Additionally, we used a ma-

jority classifier as a baseline. The classifiers were trained

on the records from the training set. The linear SVM was

trained using the default value for the penalty parameter

C¼ 1.0. All classifiers were trained and tested using the

Python library scikit-learn (http://scikit-learn.org/stable/).

The LDA model was built using the Stanford Topic

Modeling Toolbox (http://nlp.stanford.edu/software/tmt/

tmt-0.4/).

Prediction pipeline

The prediction pipeline first uses the trained topic model to

infer the document-topic distributions of the records con-

tained in the test set, and then uses these inferred distribu-

tions for predicting the classes with the supervised

classifier. To analyse how much information was lost dur-

ing the dimensionality reduction, TF-IDF features are also

used for prediction.

Topic model

For inferring the topic distribution of new, unseen docu-

ments, the topic-term distribution learned by the topic

model from the training data was used. It remains un-

changed as the document-topic distribution for the new

documents is inferred.

TF-IDF

With the document frequencies from the training set, TF-

IDF values are calculated for all documents in the test set.

Supervised classifiers

The inferred document-topic distributions, as well as the

TF-IDF values, were used as a representation of the docu-

ments contained in the test set, for the prediction per-

formed by classifiers which were trained as described

above. The trained supervised classifiers were then used to

predict the classes of the records from the test set.

Evaluation

For evaluating the classifiers, we compare the performance

of the different classification models by using the standard

evaluation measures precision, recall and F1-Score, defined

as the harmonic mean of precision and recall. The metrics

we report are class averages, weighted by the support of

the class (i.e. the number of occurrences of this class in the

test set). Each prediction is compared to the actual class

value of our ground truth (i.e. the original class of the re-

spective sample). Additionally, we calculated the metrics

for a baseline classifier in order to obtain a fair evaluation

of the prediction results. For this baseline, we used a ma-

jority classifier, which predicts the majority (i.e. most fre-

quent) class for each record. All code developed for this

project is available at github (https://git.gesis.org/lisa.

posch/geo-metadata-prediction).

Results

This section describes the latent topics identified by LDA,

as well as the results of the supervised classification

experiments.

GEO metadata topics

In LDA, a latent topic is defined by a probability distribu-

tion over the vocabulary. Words in a topic can therefore be

ranked by the probability which they have in this topic, in

order to visualize a topic by showing its most representa-

tive terms. Figure 4 depicts six topics from the 150 topics,

showing the top 10 words for each topic (refer

Supplementary data for a description of all topics). The
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size of the words corresponds to the importance of the

word in the topic.

Metadata prediction

The performance of the SVM with linear kernel classifier,

for both feature sets (latent topics and TF-IDF), as well as

the performance of the majority classifier (MC) baseline

are depicted in Figure 5. The best classification results

were achieved for the elements with the smallest number of

classes. The element with the highest number of classes,

GPL, had the lowest absolute scores, but a large improve-

ment over the baseline. During the dimensionality reduc-

tion of 98% by LDA, information is lost compared to

using the full vocabulary as features for training the classi-

fiers. However, the performance on elements with few val-

ues is similar as that of the classifiers trained on the full

vocabulary. The baseline classifier is outperformed in all

cases, both by the classifiers using TF-IDF features and the

classifiers using topic features.

Discussion

The results of our experiments indicate that unstructured

metadata contains useful information for predicting struc-

tured metadata. This approach, which is not customized to

the domain or specific dataset, is significant because elabor-

ate descriptions are widely used in biomedical resources,

while structured metadata is often incomplete, missing, in-

consistent and even incoherent. Our results show that both

TF-IDF and LDA models generated from textual

descriptions in combination with supervised classification

are an effective strategy to predict values for some struc-

tured metadata elements. TF-IDF on the full vocabulary re-

sulted in the best performance. However this representation

has the disadvantage of resulting in a very large dataset

(over 70 000 features per document) that is not well seman-

tically interpretable. Overall, our results offer a promising

approach for metadata prediction that is likely to be applic-

able to other datasets, but more work is needed to assess its

utility for different datasets.

Our classification setup achieved a better predictive per-

formance than the baseline for all elements, despite the

baseline, which predicts the majority class, being relatively

high due to the heavily skewed class distribution of most

elements. The goal of this work was not only to find the

best supervised classifier for this task, but also to explore

whether structured metadata elements can be predicted

using the information from unstructured elements and

whether topic distributions can successfully be used for

metadata prediction in this domain.

One limitation of our experiments is that we did not use

all values of the structured elements, but decided to ex-

clude values which were used very infrequently. Future

work is needed to investigate whether infrequently used

values (<0.1% of the dataset) can be accurately predicted

as well. In the experiments presented in this article, a fixed

number of topics as well as fixed hyper-parameters were

used, as LDA requires these parameters to be specified. An

optimal number of topics and optimal hyper-parameters

will likely lead to better prediction results. Therefore, fu-

ture work is needed to further optimize these parameters.

Figure 4. Top words for six sample topics. This figure shows the top 10 words for six of the 150 topics that were learned by LDA. Color and size of the

words correspond to the relative importance of a word in the topic.
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One planned approach is to use a non-parametric topic

model using practical collapsed stochastic variational in-

ference (8), as a memory friendly inference strategy that

optimizes the number of topics as well as the hyper-

parameters. Furthermore, LDA has been adapted and ex-

tended in many ways (9, 10). For example, a supervised

form of LDA could be used which additionally takes into

account the global popularity of the structured element

values, in the form of a prior for the model.

Our work is highly relevant to both prospective and retro-

spective augmentation of metadata. In particular, the ap-

proach we describe here suggests that metadata authors and

biocurators could be aided with accurate suggestions thereby

reducing the time and effort to create rich, high quality meta-

data and help them scale to the increasing amount of submit-

ted biomedical data. Furthermore, the predictions may help

with correcting existing, wrongly entered element values:

detected discrepancies between the element value entered by

a user and the predicted value could be given to human cur-

ators for review. In line with the goals of the Center for Data

Annotation and Retrieval (CEDAR) (11), we aim to incorp-

orate this framework to improve the authoring of metadata.

CEDAR is partnered with a number of community groups to

further develop and evaluate our technologies including

ImmPort, the data warehouse of immunology-related data-

sets led by Stanford (12), The Human Immunology Project

Consortium (13), which channels experimental datasets to

the ImmPort repository, The BioSharing Initiative (14) and

The Stanford Digital Repository (15), operated by Stanford

University Libraries, which helps all Stanford investigators to

archive and disseminate data of all kinds. We plan to extend

our context-sensitive recommendation engine (16) with the

results of this work in order to provide improved real time

support to metadata authors, particularly those that are fol-

lowing curation guidelines (17). Using a constellation of dif-

ferent technologies, such as what is proposed here, we will

increase the accuracy of metadata values during submission,

decrease the missing value problem and increase the consist-

ency of metadata.

Conclusions

We have developed a framework for the prediction of

structured metadata, using unstructured text. We use TF-

IDF and a topic model approach on the unstructured text

contained in metadata records. These TF-DF values and

the latent topics are then used as features for training

supervised classifiers. The results of our experiments

Figure 5. Evaluation results. This figure shows weighted class averages for precision, recall and F1-Score for each structured element. Results are re-

ported for linear SVM with LDA features, linear SVM with TF-IDF features and for the majority classifier (MC) baseline. While some information was

lost during LDA’s dimensionality reduction (by 98%), both approaches performed better than the baseline for all elements.
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indicate that unstructured metadata elements contain in-

formation which can be successfully exploited for predict-

ing structured metadata elements. Furthermore, our results

suggest that topic models can infer meaningful topics from

the unstructured text of metadata records, and that these

topics can be successfully used as features for training

supervised classifiers. While some discriminatory informa-

tion is lost compared to using the full vocabulary as fea-

tures for training the classifiers, the performance on

elements with few values is close to that of the classifiers

trained on the full vocabulary. Our work has implications

for researchers and practitioners interested in biomedical

metadata curation and metadata prediction.

Supplementary data

Supplementary data are available at Database Online.
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