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Abstract: To increase the potentiality of crop production for future food security, new technologies for
plant breeding are required, including genome editing technology—being one of the most promising.
Genome editing with the CRISPR/Cas system has attracted researchers in the last decade as a safer
and easier tool for genome editing in a variety of living organisms including rice. Genome editing has
transformed agriculture by reducing biotic and abiotic stresses and increasing yield. Recently, genome
editing technologies have been developed quickly in order to avoid the challenges that genetically
modified crops face. Developing transgenic-free edited plants without introducing foreign DNA has
received regulatory approval in a number of countries. Several ongoing efforts from various countries
are rapidly expanding to adopt the innovations. This review covers the mechanisms of CRISPR/Cas9,
comparisons of CRISPR/Cas9 with other gene-editing technologies—including newly emerged Cas
variants—and focuses on CRISPR/Cas9-targeted genes for rice crop improvement. We have further
highlighted CRISPR/Cas9 vector construction model design and different bioinformatics tools for
target site selection.

Keywords: CRISPR/Cas9; Cas variants; genome editing; rice; improvements

1. Introduction

Agriculture is currently facing many obstacles such as global climate change, a rapidly
growing population, pests and pathogens, and many environmental threats. The growing
population makes food security an urgent, pressing issue all over the world, and there
it is forecast that global food-supply demand will double from 2005 to 2050 [1]. Rice is
considered the main dietary component or primary source of food for a large portion of the
world’s population. Several crops, including rice, have been domesticated and harvested
for many years to meet the increasing demand for food. Nonetheless, attempts to guarantee
food supplies by using traditional breeding methods have shown little promise. There is a
critical need for more powerful technologies to improve foods’ nutritional content, increase
abiotic stress tolerance, and enhance resistance to major biotic factors [2].

Recent advances in gene-editing technologies (GET) can contribute to coping with
the complex problem of traditional breeding techniques, beginning a new age of crop
enhancement. These methods allow us to alter genes of interest at specific locations and to
provide new outlooks into crop functional genomics. A genome-editing system is a robust
tool looking into the biological and biotechnological aspects of the characterization of plant
genes and genetic modification. Recent genome-editing tools, such as zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeat (CRISPR)-associated endonuclease 9 (CRISPR/Cas9)
techniques have opened up a new horizon for rice yield and quality enhancement [3–5]—of
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which, CRISPR/Cas9 has shown the most prominent potential for quick and effective
genome editing in plant species. CRISPR/Cas9 genome editing as an advanced molecular
biology tool enables us to carry out precise and efficient target modification, identify-
ing novel prospects for evolving new plant variations using deletions, insertions, and
substitutions, and hence encouraging the hastening of rice crop enhancement. So far,
genome-editing tools employing CRISPR/Cas9 have been successfully exploited in rice
for the improvement of drought tolerance [6], cold tolerance [7], salinity, and heavy metal
stress [8,9].

More recently, newly emerged Cas variants such as CRISPR/Cpf1 (clustered regularly
interspaced short palindromic repeat from Prevotella and Francisella 1) were developed
in 2016. This technique is a more sophisticated and effective gene-editing technology
than CRISPR/Cas9 [10]. As a new approach option that complements the HDR method,
the strategy of a CRISPR/Cas9-based base editing enables the conversion of one base to
another directly and permanently without a double-stranded break or donor DNA [11,12].
Researchers have successfully designed adenine base editors (ABE) and demonstrated
the efficiency of A–T to G–C conversion using the ABE system in the rice genome [13].
Similarly, other scholars also confirmed the efficiency and precision of ABE by changing
the A–T target into G–C without any other insertions/deletions (InDels) or substitution
mutations in target sites, indicating its high efficiency in multiplex base editing [14]. Recent
research has employed a fusion of CRISPR-Cas9 and activation-induced cytidine deaminase
to develop multiple herbicide-resistant mutants [15–17].

Due to its small genome size, high transformation efficiency, accessibility of gene
resources, and increased genomic synteny, rice is a model crop for functional and structural
genomics studies. Thus, rice can be effectively exploited to examine multiple classes of
rice genome modification in the CRISPR/Cas9 system [18,19], as well as to determine the
function of functional genes [20–22]. To date, many studies have been released on the
potential application of CRISPR/Cas9 in rice [23–30]. However, there is a need for an
elaborative review, keeping in mind the rapid and extensive acceleration of new studies on
the CRISPR/Cas9 genome-editing tool. Therefore, this article aims:

1. To discuss the current application of CRISPR/Cas9 to rice research that focuses on
CRISPR/Cas9-targeted genes for rice crop improvement;

2. To discuss CRISPR/Cas9 components and mechanisms;
3. To highlight CRISPR/Cas9 vector construction model design and different online

tools for target site design;
4. To compare CRISPR/Cas9 with other gene editing tools (ZFNs and TALENs), includ-

ing the newly emerged Cas variants.

2. CRISPR/Cas9 System and Its Components

Initially, CRISPR/Cas9 was discovered as an adaptive immune system of archaea and
bacteria. It was first reported by [31], and researchers discovered a means of exploiting
it as a gene-editing technology. This technique can identify a particular site in a target
gene in a highly efficient, unique, and flexible manner [32]. In roughly 50% of bacteria
and 90% of archaea, CRISPR/Cas9 active immune mechanisms exist [33]. CRISPR/Cas9
is an endonuclease of DNA that splits the invading phage DNA into pieces and then
incorporates it into the CRISPR set as a spacer. It was implemented efficiently in plants in
2013, and in five original research articles, the CRISPR/Cas9 scheme in rice was efficiently
recorded [4,19,34–36]. Consequently, CRISPR/Cas9 technologies have proved to be an
essential genome-editing method for rice.

Nowadays, the editing system of CRISPR/Cas9 is the most common mechanism in
plant biology for the genome editing process [37,38] because of its uncomplicatedness,
flexibility, and efficiency. Two CRISPR/Cas9 components: the Cas9 protein and a short
RNA molecule (sgRNA), together form a ribonucleoprotein complex (Figure 1). The sgRNA
is made up of 18 to 21 nucleotides that are designed to target specific sites in the genome
(protospacer). A G-rich (5′-NGG-3′) protospacer-adjacent motif (PAM) should be found
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downstream of the target site [31]. tracrRNA (trans-activating CRISPR RNA) and crRNA
(CRISPR-derived RNA) are the two principal components of guide RNA. In essence, crRNA
has homology area that enables it to integrate with tracrRNA. The tracrRNA has a stem-
loop shape associated with the Cas9 protein. The crRNA and tracrRNA should be designed
as sgRNA in the CRISPR/Cas9 gene-editing scheme to direct Cas9 dsDNA cleavage at
the targeted site [31]. Following the appropriate site identification by sgRNA based on
the Watson–Crick base-pairing rule, the Cas9-sgRNA complex moves through the genome
and produces a double-stranded break (DSB) [33]. During cleavage site repairing, the
error-prone non-homologous end-joining (NHEJ) pathway regularly leaves a lesion in
the form of a minor InDel or substitution upstream of PAM. Such mutations can induce
frame-shift mutations in the coding sequence of the gene and cause a premature stop codon,
resulting in a loss or gain of function in mutants. This achievement has unlocked numerous
other possibilities for scientists to obtain more knowledge on plant biological systems [39].

Figure 1. Components of CRISPR/Cas9 system: (A). Genomic structures of the CRISPR/Cas system
(top) and the engineered CRISPR/Cas9 system (bottom); (B). A schematic representation of the Cas9
protein structure. Domains includes REC (large recognition lobe) and RuvC (a nuclease domain),
which is linked with an arginine-rich region. HNH is a second nuclease domain. PI is PAM-interacting
domain; (C). The conformation of the Cas9–sgRNA complex in the process of DNA cleavage. The
Cas9 endonuclease is targeted to DNA by a guide RNA which can be supplied as a two-part system
consisting of crRNA and tracrRNA or as a single guide RNA, where the crRNA and tracrRNA are
connected by a linker. Target recognition is facilitated by the protospacer-adjacent motif (PAM).
Cleavage occurs on both strands (scissors) 3 bp upstream of the PAM.

3. Mechanism of the CRISPR/Cas9 System

In three steps, namely adaptation/acquisition, expression, and interference, CRISPR/Cas9
identifies and targets the genetic material of foreign DNA [40–43]. The adaptation/acquisition
phase includes the recognition, invasion, and binding of donor DNA that are cut into small
segments and combined within the CRISPR locus. Then, the CRISPR locus is transcribed
to create crRNA that directs the intended effect or endonucleases to attack viral items by
complementary base pairing [44,45]. Since the protospacer contains a G-rich base pair (5′-
NGG-3′), PAMs are used as recognition motifs for the adaptation/acquisition of the targeted
site. During the second step of the CRISPR/Cas9 execution mechanism, the lengthy Pre-
crRNA is deliberately transcribed from the CRISPR nucleus and reproduced into crRNAs
using Cas9 proteins. Recently, researchers revealed that tracrRNA is also involved in Strep-
tococcus pyogenes pre-crRNA processing [46]. The tracrRNA is associated with the repeat
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crRNA site through complementary base pairing and allows precrRNA to be processed in
crRNA [47]. The processed crRNAs join the associated antiviral defense complex of CRISPR
and help to identify and parse a particular target area of donor DNA [47]. At the final steps,
i.e., interference, the system needs a Cas9 protein [48,49] so that the sgRNA can guide the
cleavage of the Cas9 protein complex from the particular target area; this creates immunity
from pathogen attacks [40,41].

4. The Advantages and Drawbacks of the CRISPR/Cas9 System

Until recently, the CRISPR/Cas9 tool was thought to be the best option for genome
editing (GE) in plants, but it still has some drawbacks that limit its widespread application
(Figure 2).

Figure 2. The advantages and disadvantages of the CRISPR/Cas9 system over other approaches for
genome editing. (A). Conventional gene targeting. (B). ZNFs and TALENs. (C). CRISPR/SpCas9.
(D). CRISPR/NmCas9. The red arrow indicates the corresponding gene editing method with its
features, advantages, and disadvantages.

The following are a list of the major issues with CRISPR/Cas9 and the advantages of
CRISPR/Cas variants:
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1. The CRISPR/Cas9 system’s large size limits its editing efficiency, and it is not suitable
for packing into viral vectors for delivery to somatic tissues. For efficient plant GE, a
smaller-sized CRISPR/Cas is required;

2. SpCas9 involves a 5′-NGG-3′ PAM next to a 20 nt DNA target site where it only
distinguishes the NGG PAM sequence, which limits its effectiveness when compared
to new CRISPR/Cas variants. NG-Cas9 is more active and there is a newer variant,
SpRYCas9 that is almost PAM-less. The broad PAM compatibility of SpRY greatly
expands the targeting scope of CRISPR-based tools in plant genome engineering;

3. CRISPR/Cas9 has the potential to incorporate a large number of off-target mutations
into the genome. However, by identifying various PAMs, new CRISPR/Cas variants
have achieved better editing efficiency (fewer off-target mutations) of target bases in
the sequence of interest;

4. CRISPR/Cas9 generates mutations at non-specific loci that are homologous to tar-
get sites;

5. CRISPR/Cas9-made mutant plants via Agrobacterium-mediated transformation sys-
tems are more expensive, time consuming, and resource intensive. The use of tissue
culture-free genome editing systems, on the other hand, has the potential to im-
prove efficiency;

6. The commercialization of transgenic crops expressing CRISPR/Cas9 faces challenges
in a number of countries, owing primarily to development costs and constraints
imposed by regulatory systems for the field release of genetically modified organisms.

5. Comparison of CRISPER/Cas9 Tools with ZFN and TALEN

Genome-editing methods are critical not only to explore gene functions in biology tasks
but also to enhance the characteristics of genetic engineering in biotechnology. As shown
in Table 1, we summarized the comparisons of CRISPER/Cas9 with ZFNs and TALENs.

Table 1. Comparison of CRISPER/Cas9 with ZFN and TALEN.

Editing
Technology

DNA Binding
Determinant Endonuclease Target

Length (bp)
Off

Targeting Intended Effects Unintended Effects

CRISPR/Cas9 crRNA/sgRNA Cas9 18–21 Variable
Highly specific, highly
efficient, and multiple

targeting sites

Target selection
limited by the

requirement for PAM
sequences; Off-target

effects

ZFN
Zinc finger

protein,
FokI1018

FokI 18–36 High
Any genomic sequence

targeted; Fewer
off-target effects

Low efficiency;
Targets only a single

site at one time

TALENs
Transcription-
activator like

effector
FokI 30–40 Low

Targets any genomic
sequence; Off-target

effects are limited

Comparatively low
inefficiency; Targets
only a single site at

one time; Sensitive to
target DNA
methylation

ZFNs and TALENs are composed of DNA-binding protein and the enzyme FokI,
whereas CRISPR binds together with Cas9 protein in the CRISPR/Cas9 system [23,50]. The
DNA-binding domain of ZFNs or TALEs is comprised of a series of tandem repeat units;
each one identifies and binds to one or more nucleotide targets on one strand of DNA. In
the case of ZFN, each zinc finger repeat targets a triplet (3 nt), and yet internal and external
context-dependent effects of adjacent fingers can influence the efficiency and specificity
of the target domain relationships [18,51]. There is no accurate relationship, and several
strategies have been developed to screen for and construct more efficient and specific ZFNs.
TALE domains, on the other hand, exhibit a more predictable one-to-one correspondence
between repeat units and their single-nucleotide targets, and no screening is required for
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TALEN engineering. Despite the fact that hundreds of ZFNs and TALENs have been
constructed and tested, the targeting efficiency of these engineered endonucleases varies
greatly. Indeed, the efficiency of TALENs in the same work or even targeting the same
locus can range from low to high, or even show no targeting activity. Unfortunately,
predicting the efficiency of a given ZFN of TALEN is still complicated, owing to a lack of
sufficient knowledge about the properties of these engineered endonucleases. Through the
comparison of all the evaluated TALENs or ZFNs, it may be possible to extract common
rules regarding the efficiencies of these engineered endonucleases by analyzing the rapidly
expanding information on these engineered endonucleases from a variety of sources. The
specificity and potential toxicity of TALENs, on the other hand, require further careful
exploration. ZFN technology is more mature in some applications, such as gene therapy
trials, and it has recently been reported that ZFNs can be delivered directly into cultured
cells in the form of purified proteins. Other factors in the engineering of customizable
engineered endonucleases for TALENs and ZFNs, such as FokI cleavage domain variants
and the relationship between the length of linker peptides and the length of spacers between
the two engineered endonuclease monomer-binding sites can also influence the efficiency
and specificity of these engineered endonucleases.

CRISPR/Cas9 gene-editing technologies continue to be an excellent tool in revolu-
tionizing many areas of genome processing with their ease, effectiveness, and accuracy in
the cleavage of target sites compared to TALEN and ZFNs [52,53]. In contrast to ZFN and
TALEN, the specificity of the target DNA in CRISPR/Cas9 can be altered by programming
the sgRNA sequence, and multiple sgRNAs can work with the same Cas9 protein for
diverse targets at the same time [54]. Several papers have noted that effective changes have
been carried out on several plant genes, but these techniques are comparatively tedious,
costly, and only a few genes have been changed so far [55]. A CRISPR/Cas9 mechanism that
was established using a Cas9 endonuclease and an RNA guide complex has demonstrated
significantly higher effectiveness in gene editing. Additionally, CRISPR/Cas9 enables
target identification by using gRNAs rather than DNA binding, which makes this method
more reliable compared to ZFNs and TALEN [56]. While the specificity of CRISPR/Cas9
still requires further investigation, the frequency of off-target mutations is already less than
that of physical and chemical mutagenesis methods [57].

6. Comparison of CRISPR/Cas9 with the Newly Emerging CRISPR/Cas GE Tools

Many recent studies have focused on improving the CRISPR/Cas9 system’s efficiency
and accuracy by modifying it. New CRISPR/Cas tools (spCas9-NG, base editing, prime
editing, xCas9, Cpf1, Cas13, and Cas14) are now being used for GE. These recently de-
veloped CRISPR/Cas variants with their potential applications are displayed in Figure 3
and Table 2.

The common Streptococcus pyogene Cas9 (SpCas9) recognizes canonical NGG PAM,
limiting the rice genome’s editable range. Many studies have attempted to address this
limitation by evaluating whether other Cas effectors (Cpf1 for AT-rich PAMs) and engi-
neered Cas9 variants (VQR for NGA PAMs and VRER for NGCG PAMs) could be used in
conjunction with other PAMs for rice genome editing [58]. Researchers have used stable
transgenic lines to assess the efficacy of xCas9 and SpCas9-NG for gene editing in rice [59].
xCas9 was found to efficiently induce mutations at target sites in rice with NG and GAT
PAM sequences.
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Figure 3. Comparison of CRISPR/Cas9 with newly emerging CRISPR/Cas GE tools. (A) In the
CRISPR/Cas9 system, Cas9 is a multicomponent protein and recognizes a G-rich PAM at the 3′ end
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of the target site. Both tracrRNA and crRNA are required to recruit Cas9. Then, the Cas9 creates
a DSB, resulting in blunt ends. (B) In the CRISPR/Cas12a System, Cas12a is a single-component
protein which recognizes T-rich PAM at the 5′ end of the target sequence; tracrRNA is not required.
The DSB results in a 5′ overhang sticky ends with staggered cuts. (C) In the nuclear base-editing
system, cytidine deaminase fused with dCas9 is used to target the desired site. There is no DSB,
cytidine deaminase converts C directly into U, and during mismatch repair a C→ T substitution can
be corrected when the modified strand is used as template. (D) Base editing in RNA. In the REPAIR
system, “A-to-I” editing uses dCas13 fused to ADAR2. REPAIR uses 50- nucleotide RNA with a
50-nucleotide mRNA–gRNA duplex. “A–C” mismatch in the RNA–gRNA duplex determines the
target A. RESCUE system editing “C-to-U.” The optimum results are achieved with a gRNA with a
30-nucleotide spacer. The target “C” is specified by an induced “C–C” or “C–U” mismatch in the
mRNA–gRNA duplex. (E) Prime editing. (a) Nicking the desired DNA sequence at the PAM strand
by the fusion protein, (b) the exposed 3′ hydroxyl group primes the reverse transcription (RT) of
the RT template of the prime editing gRNA (pegRNA), (c) reverse transcription, (d) the branched
intermediate form containing two flaps of DNA: a 3′ flap (containing the edited sequence), and a 5′

flap (containing the dispensable, unedited DNA sequence) followed by flap cleavage, and (e) ligation
and mismatch repair; either incorporating the edited strand or removing it.

Two types of xCas9 variants (xCas9 3.6 & xCas9 3.7) were created using PCR site-
directed mutagenesis [60]. By creating 18 target sites containing GAA, GAT, and NG
PAMs in three rice endogenous genes—MOC1, D14, and PDS—the feasibility of genome
editing with xCas9 variants in rice was investigated [60]. The findings suggested that by
utilizing some previously reported non-canonical PAMs, xCas9 could broaden the scope of
genome editing in rice. The wild-type SpCas9 in the pCas9 (OsU6) vector was replaced
with xCas9 3.6 and 3.7, yielding vectors pCas9 3.6 (OsU6) and pCas9 3.7 (OsU6). Overall,
xCas9 3.7 outperformed xCas9 3.6 for genome editing in rice, demonstrating that xCas9
variants have the potential to become versatile tools that will broaden our understanding
of genome editing.

SpCas9-NG, a SpCas9 variant rationally designed based on the structure of the
SpCas9-sgRNA–DNA complex, has recently been found to recognize relaxed NG PAM
sequences [61]. xCas9 and SpCas9-NG both recognize more relaxed PAM sequences when
compared to SpCas9 [60,61]. xCas9 and SpCas9-NG variants that recognize relaxed NG
PAMs can work more efficiently in rice, and SpCas9-NG is better suited for performing
base editing in rice. The created versatile GE tools have significantly broadened the target
scope in rice, benefiting basic plant research and crop genetic improvement [60]. xCas9, in
general, has higher DNA specificity and editing efficiency, reduced off-target activity, and a
greater PAM compatibility, unlike SpCas9 [60].

As demonstrated for rice [60] and multiple base mutations in rice [62], prime editing
allows for the specific induction of insertions (up to 15 nt) and deletions (up to 40 nt). The
pegRNA and fusion protein are introduced to the target cell, and once inside, the fusion
protein nicks the cell’s DNA at the target sequence, initiating reverse transcription of the
template sequence found in the pegRNA. The pegRNA and fusion protein are introduced
into the target cell, and once inside, the fusion protein nicks the cell’s DNA at the target
sequence, causing reverse transcription of the DNA template contained in the pegRNA to
begin. As a result, an edited strand of DNA and an unedited strand of DNA are produced.
The unedited strand is first removed, and then the newly edited strand is annealed back
together to form double-stranded DNA.

Cas13 is a newly discovered CRISPR effector that can target specific viral RNAs and
endogenous RNAs in plant cells [63]. Cas13 has a high level of RNA target specificity and
efficiency [64]. Cas13 has been used to direct ADAR2 deaminase in human cells for RNA
modification (changing adenosine to inosine) in order to recover functional proteins and
halt disease progression [65]. CRISPR/Cas13a has recently been identified as an entirely
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new CRISPR type that belongs to class II type VI. It is attributed with RNase activity due to
the existence of higher eukaryote and prokaryote nucleotide-binding (HEPN) domains [65].

Cas12a (Cpf1) and Cas12b (C2c1) from the class 2 type V CRISPR/Cas system, in
addition to the Cas9 proteins, have been repurposed for GE [66]. They have many charac-
teristics that distinguish them from Cas9 proteins; Cas12a and Cas12b recognize AT-rich
PAM sequences, in contrast to Cas9, which recognizes GC-rich PAM sequences [66]. Cpf1
is dependent on a T-rich PAM sequence at the 5′-end of the protospacer sequence (5′-
TTTN-3′ or 5′-TTTV-3′; V can be A, C, G). While Cas9 generates blunt-ended DNA breaks,
Cpf1 generates DSBs with staggered ends at the distal position of a PAM, which may
provide additional advantages—particularly for knock-in strategies—and may increase the
effectiveness of NHEJ-based gene insertion [67].

Furthermore, Cpf1 is regarded as a better GE tool than CRISPR/Cas9 as it only
demands a 42 nt crRNA, whereas Cas9 demands a 100 nt gRNA; meanwhile, Cpf1-mediated
GE needs short sgRNA sequences [68]. Cpf1 proteins, which have RNase activity, have
been used to process crRNA arrays for GE in plants [69]. These characteristics improve
insertion efficiency at the Cpf1-cleaved site [70]. Recently, an improved Acidaminococcus sp.
Cas12a variant (enAsCas12a) with a significantly expanded targeting range was engineered,
allowing the targeting of previously inaccessible PAMs. When compared to sites with
canonical TTTV PAMs, enAsCas12a exhibits a two-fold increase in GE activity. Cas14a, in
contrast to other known class II systems, does not require a flanking sequence (PAM) near
the target site [71]. In vitro validation of the PAM requirement demonstrated that Cas14a
can cleave target sites regardless of the different sequences adjacent to the targets of these
different guides [72].

Base editing (BE) is a remarkably new and diverse GE system that incorporates
accurate and highly predictable nucleotide changes at genomic targets without the need
for donor DNA templates, DSBs, or reliance on HDR and NHEJ [73]. It is thought to
be more effective than HDR-mediated base-pair substitution because it results in fewer
unwanted mutations at the target locus [74]. BE3 [75], BE4 [76], targeted-AID [70], and
dCpf1-BE [77] are among the BE systems currently used to edit plant and animal genetic
material. Such systems use Cas9 or Cpf1 variants to recruit cytidine deaminases, which
use DNA mismatch repair pathways to generate specific C to T alterations. Furthermore,
when directed by sgRNAs to genomic targets in human cells, the adenine base editors,
which were created by fusing an evolved tRNA adenosine deaminase with SpCas9 nickase
(D10A), convert A–T to G–C [78].

Table 2. Different newly emerged CRISPR/Cas techniques with potential functions in
associated hosts.

Class Name Size(AA) PAM Host Spacer (bp) Cut Site Target Ref

AacC2c1 1277 T-rich PAM Alicyclobacillus
acidoterrestris 20 Upstream of

PAM Ds DNA [79]

CjCas9 984 NNNNACAC and
NNNRYAC Campylobacter jejuni 22 Upstream of

PAM DsDNA [80]

Cpf1 – TTTV Prevotella & Francisella 1 20 Downstream of
PAM DsDNA [67]

Cpf1(AsCpf1) 1307 5′-TTTN-3′ Acidaminococcus sp. 24 Downstream of
PAM DsDNA [81]

Cas12a - Thymine-rich PAM
sequences Acidaminococcus sp. - Downstream of

PAM Ds DNA [69]

Cas13 1440 Non-G nucleotide at
the 3′

orthologs; Leptotrichia
shaii 28 - ssRNA [82]

Cas14 400–700 - Uncultivated archaea - - ssDNA [71]

FnCas9 1629 5′-NGG-3′ Francisella novicida 20 Upstream of
PAM Ds DNA [83]
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Table 2. Cont.

Class Name Size(AA) PAM Host Spacer (bp) Cut Site Target Ref

Nme Cas9 1082 5′ NNNNGATT-3′ Neisseria meningitidis 24 and 20 Upstream of
PAM DsDNA [84]

SaCas9 1053 5′-NNGRRT-3′ Staphylococcus aureus 21 Upstream of
PAM DsDNA [85]

SpCas9 1368 5′-NGG-3′ Streptococcus pyogenes - Upstream of
PAM DsDNA [31]

SpCas9-NG– - 5′-NAC, NTG, NTT,
and NCG S. pyogenes - Upstream of

PAM DsDNA [86]

St1Cas9 1121 NNAGAAW Streptococcus
thermophilus 20 Upstream of

PAM DsDNA [87]

St3Cas9 1409 5′-NGGNG-3′ S. thermophilus 20 Upstream of
PAM DsDNA [56]

xCas9 – GAA, GAT and NG - 19–22 Upstream of
PAM DsDNA [88]

‘–’: information unavailable.

7. CRISPR/Cas9 Vector Design for Rice Genome Editing

CRISPR/Cas9 vector design and construction are comparatively easy and cheap. Com-
ponents of the CRISPR/Cas9, namely crRNA and tracrRNA, together make up the sgRNA
that directs Cas9 to implement target-specific DSBs. Effective CRISPR/Cas9 designing
involves the transfer of both Cas9 and sgRNA proteins into target cells. They can be deliv-
ered via an agent (vectors) or directly (electroporation). The techniques of transmission in
crops for gene editing using CRISPR/Cas9 approaches have been comprised of polyethy-
lene glycol-mediated transformation, ballistics techniques, and Agrobacterium-mediated
gene transformation [4,89,90]. For effective genome editing, it is essential to select ideal
promoters to obtain the expression of sgRNA and Cas9 and codon-optimizedCas9. Codon-
optimized SpCas9 variants in eukaryotic organisms have generally been used. Nevertheless,
some studies have used the Cas9 option to optimize crop codons [4,35,89,90]. However,
using RNPs or RNA, no optimization of elements is necessary for good expression (e.g.,
promoter, terminator, or codon optimization, etc.).

In many crops, the Cas9 expression is driven by by EF1A (Elongation factor 1-alpha),
CMV (Cauliflower Mosaic Virus), or LTR (Long terminal repeats) promotors. Among these,
35S CMV (cauliflower mosaic virus) is the most common expression promoter [37]. The
targeted gene for CRISPR/Cas9 needs a customized single guide RNA (sgRNA), which
has a crRNA sequence and tracrRNA [31]. The crRNA structure gives the specificity of
the targeted DNA, and it is feasible to design sgRNAs for multiplex gene editing with
variable crRNAs. The crRNA region is a 20-nucleotide sequence homologous to the part of
the gene that you are interested in, and that directs the activities of the Cas9 nuclease [91].
The target DNA sequence is, therefore, 20 bp followed by a PAM (NGG/NAG) sequence.
However, DNA targets and crRNAs that show a discrepancy from the recognized 20 bp
length have also been reported in a few studies, with length variations ranging from 19 to
22 bp [4,19,35,37]. Consequently, (N) 19–22 NGG or (N) 19–22 NAG is the target DNA
sequence. Nevertheless, CRISPR/Cas9 may be restricted by the accessibility of the PAM
site when targeting a specified sequence [92]. The rice genome demonstrates an abundance
of potential PAM (1 in 10 bp) sites [35], which allows CRISPR technology to be used rapidly
in the rice genome.

The U6 and U3 plant RNA III promoters have been used for sgRNA expression [37].
These promoters have to initiative nucleotide “G” and “A” transcriptions, respectively.
Thus, the sgRNA crRNA structure for the promoter U6 is G (N) 19–22, and the promoter
U3 is A (N) 19–22. The initiating G and A are often fused directly to the gRNA or are part
of the target sequence [4,19,35–37,90].

Here we outline a procedure for performing targeted editing employing the CRISPR/Cas9
system (Figure 4). The first procedure is the selection of a target site to be placed at the short
PAM sequence at its 3′ end or downstream of its protospacer. The choice of the target site
is an essential focus of large-scale CRISPR/Cas9 technology applications. The choice of the
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appropriate target site(s) can achieve the lowest/no off-target effects at an important mutation
site. Many bioinformatics online tools for the designing of sgRNA as well as the identification
of off-target effects are available in model organisms, including rice crops [93].

Figure 4. T-DNA vector with all the components necessary for Cas9-induced mutagenesis. The 20 bp
protospacer sequences of each target site are subcloned or integrated between the sgRNA scaffold
and the U3 promoter by ligation of primers into an AarI-digested SK-sgRNA vector. Then, this vector
is again re-ligated with a pC1300-Cas9 vector by ligation of BamHI and KnpI-digested enzymes. The
whole sgRNA cassette is then delivered into a pC1300-Cas9 vector (contains the Cas9 gene under the
control of the 2 × 35S promoter) for plant transformation.

Following the identification of a target site, the next step is to design the target site-
related oligonucleotide or primers. A DNA fragment encoding the sgRNA scaffold, which is
placed under the appropriate promoter to optimize expression, is fused into the developed
primers. For cloning, appropriate sequences of adaptors should be included. The inverse
primary should have a 5′-AAAC-3′ adaptor, while the forward primer must have 5′-GGCA-
3 adaptors (Figure 4). Once the protospacer sequence is subcloned into an SK-sgRNA
vector or cassette (an example vector for our case study), the next step is inserting the
constructs into the Cas9 expression vector (pC1300 Cas9), followed by its delivery into the
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rice plant cells by appropriate methods such as Agrobacterium transformation, protoplast
transformation, or callus bombardment.

8. Important Considerations for gRNA Selection

The best techniques for gRNA selection—through experiment development, execution,
and evaluation, are always essential to the correct use of CRISPR technology. The best
sgRNA thus relies a great deal on what one is attempting to do when developing sgRNAs
for use in the CRISPR technique: gene knockout, a editing of a particular base, or gene
expression modulation.

The following variables should be regarded for the design of sgRNAs:

1. The DSB should be introduced near to the 5′ end of the coding region or in the
indispensable domains. If choosing a target sequence in the proximity of the adjacent
protospacer motif (PAM), the 3′ end of the target sequence must have a PAM sequence
(5′-NGG-3′; Figure 4). The target sequence (crRNA) should be upstream of the PAM
structure, and the Cas9 nuclease will digest around three bases upstream of the PAM.
For cleavages, the PAM sequence is compulsory; however, it is not a component of the
sgRNA sequence and should, therefore, not be included in the sgRNA sequence itself.

2. When selecting the right target sequence for on-target activity, targets that have poly-T
and very low or very high GC content (≤25% or ≥80%) have low editing efficiency.
Similarly, target site(s) with eight or more adjacent nucleotides have low editing
effectiveness and should be coupled to the sgRNA sequence [94].

3. Another consideration before the start of the CRISPR experiment is decreasing off-
target effects. It is not always so important in what the location the gene target is, but
the gRNA sequence must be designed to be highly active and minimize off-target
sites. Potential off-target sites with higher scores may have a higher probability of
being targeted by the sgRNA/Cas9 nuclease complex. Thus, the selected gRNA
spacers/target sequence should have sufficient specificity to avoid off-target editing.

In general, designing the CRISPR/Cas9 vector for any experiment needs to bal-
ance the maximization of on-target activity while minimizing off-target activity, which
sounds obvious.

9. Bioinformatics Tools Available for sgRNA Designing

Many bioinformatics tools for sgRNA designing with high specificity and off-target
detection in model organisms have been created (Table 3). After considering SNP and/or
InDel in the genome, a unique platform for selecting sgRNA with significant effects is
required [95]. More recently, highly specific sgRNAs with few or no off-target results were
executed in rice, and a CRISPR–GE platform has been developed [94].

At present, the technique is being used as a powerful and multipurpose technology
for genome-engineering, such as editing “changing the genomic sequence” [56,96] and reg-
ulation “repressing or activating expression of genes” [97]. For accurate and programmable
gene targeting, a single guide RNA (sgRNA) is needed [75]. Practical and specific gene
editing demands a detailed layout of sgRNAs, which is still a significant task. In this review,
we listed some of the computational tools (Table 3) that have been used to assist in the
design of sgRNAs for the CRISPR/Cas9 editing system.

Table 3. Available bioinformatics tools for sgRNA designing.

Tool Name Link Reference

CRISPR-GE http://skl.scau.edu.cn/ [94]
CRISPRdirect http://crispr.dbcls.jp/ [98]

CRISPR-P http://cbi.hzau.edu.cn/crispr/ [99]
CRISPResso http://crispresso.rocks/ [100]

http://skl.scau.edu.cn/
http://crispr.dbcls.jp/
http://cbi.hzau.edu.cn/crispr/
http://crispresso.rocks/


Int. J. Mol. Sci. 2022, 23, 4454 13 of 27

Table 3. Cont.

Tool Name Link Reference

E-CRISP http://www.e-crisp.org/E-CRISP/ [101]

BreakingCas http://bioinfogp.cnb.csic.es/tools/breakingcas/
index.php [102]

CRISPR-DO http://cistrome.org/crispr/ [103]
CRISPOR http://crispor.tefor.net/ [104]
CT-Finder http://bioinfolab.miamioh.edu/ct-finder/ [105]

sgRNACas9 http://www.biootools.com/ [106]
CRISPR design http://crispr.mit.edu/ [107]

Cas9 design http://Cas9.cbi.pku.edu.cn/ [95,108]
Cas-Designer http://www.rgenome.net/cas-designer/ [109]

CGAT http://cbc.gdcb.iastate.edu/cgat/ [108]
Cas-OFFinder http://www.rgenome.net/cas-offinder/ [110]

CCTop http://crispr.cos.uni-heidelberg.de/ [111]
ProtospacerWB http://www.protospacer.com/ [112]

SSC http://crispr.dfci.harvard.edu/SSC/ [113]
CRISPR multi targeter http://www.multicrispr.net/ [114]

MAGeCK https://sourceforge.net/p/mageck/wiki/Home/ [115]
GT-Scan http://gt-scan.braembl.org.au/gt-scan/ [116]

GuideScan http://www.guidescan.com/ [101]
CrisprGE* http://crdd.osdd.net/servers/crisprge/ [117]

‘–’: information unavailable.

10. Applications of CRISPR/Cas9 Gene-Editing Technologies in Rice

To keep pace with food consumer demand, the potential increase of rice yield and
quality depends on the integration of multiple modern breeding approaches, compre-
hensive agronomic practices, and appropriate social and economic policies to simulate
crop production activities. Therefore, the enhancement of rice yield and quality using
revolutionary breeding methods is instantly desirable in order to raise access to nutritious
foods at a global level for the ever-increasing population. Recently, many research works
have shown the application of CRISPR/Cas9 genome editing strategies in rice, covering
several aspects from biotic stress resistance to abiotic stress tolerance, and the achievement
of improved yield performance, biofortification, and improvements in quality (Table 4). In
this paper, the potential applications of CRISPR/Cas9 in rice genome editing are taken into
consideration in attaining a large number of objectives.

Table 4. A list of genes involved in a variety of agriculturally relevant parameters targeted by
CRISPR/Cas9.

Application
Perspectives

Targeted
Genes

Molecular
Functions

Cas9
Promoter

sgRNA
Promoter

Transformation
Method References

Yield and
quality

improvement

GW2, GW5, and
TGW6

Improvement of
grain weight

OsUbi OsU3,
OsU6, TaU3

OsUbi OsU3,
OsU6, TaU3

Agrobacterium-
mediated

transformation
[22]

Hd2, Hd4, and
Hd5

Early maturity of
rice varieties Cas9 Pubi-H OsU3/U6a - [118]

GS9 Yield Improvement CaMV 35S OsU3
Agrobacterium-

mediated
transformation

[119]

OsGRF4 Yield Improvement 2 × 35S OsU6
Agrobacterium-

mediated
transformation

[120]

http://www.e-crisp.org/E-CRISP/
http://bioinfogp.cnb.csic.es/tools/breakingcas/index.php
http://bioinfogp.cnb.csic.es/tools/breakingcas/index.php
http://cistrome.org/crispr/
http://crispor.tefor.net/
http://bioinfolab.miamioh.edu/ct-finder/
http://www.biootools.com/
http://crispr.mit.edu/
http://Cas9.cbi.pku.edu.cn/
http://www.rgenome.net/cas-designer/
http://cbc.gdcb.iastate.edu/cgat/
http://www.rgenome.net/cas-offinder/
http://crispr.cos.uni-heidelberg.de/
http://www.protospacer.com/
http://crispr.dfci.harvard.edu/SSC/
http://www.multicrispr.net/
https://sourceforge.net/p/mageck/wiki/Home/
http://gt-scan.braembl.org.au/gt-scan/
http://www.guidescan.com/
http://crdd.osdd.net/servers/crisprge/
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Table 4. Cont.

Application
Perspectives

Targeted
Genes

Molecular
Functions

Cas9
Promoter

sgRNA
Promoter

Transformation
Method References

TMS5
Photoperiod

controlled male
sterile lines

- OsU3/U6
Agrobacterium-

mediated
transformation

[121]

TMS10 Photo- and
thermosensitive -

Agrobacterium-
mediated

transformation
[122]

CSA
Photoperiod-

controlled male
sterile lines

- [123]

Gn1a Grain number;
Panicles

ZmUbi U6a
Agrobacterium-

mediated
transformation

[120]DEP1 Plant height; Erect
panicles; Grain size

GS3 Grain size

IPA1 Plant height and
tiller number

CCD7
PYLs

Increased tiller
number; Improved

growth and
productivity

OsUbi OsU3
Agrobacterium-

mediated
transformation

[124]

Lazy1 Pronounced tiller
spreading OsUbi OsU3 OsUbi OsU3

Agrobacterium-
mediated

transformation
[35]

OsPDS,
OsBADH2,

Oso2g23823,
OsMPK2

Tolerance capacity
against various

abiotic stress
factors

2 × 35S OsU6 Particle
bombardment [4]

ISA1 Quality
improvement CaMV 35S OsU6

Agrobacterium-
mediated

transformation
[125]

YSA Young albino
seedlings

CaMV 35S OsU6–2
Agrobacterium-

mediated
transformation

[126]
PDS Phytoene

Desaturase
DL Drooping Leaves

Chlorophyll A
oxygenase
(CAO I)

Pale green leaves OsUbi OsU3
Agrobacterium-

mediated
transformation

[35]

ROC Outermost Cells CaMV 35S OsU6–2
Agrobacterium-

mediated
transformation

[19]

OsCYP97A4,
OsDSM2,
OsCCD4a,
OsCCD4b,
OsCCD7

Quality
improvement CaMV 35S OsU3

Agrobacterium-
mediated

transformation
[126]

BADH2 Enhanced
fragrance CaMV 35S OsU3

Agrobacterium-
mediated

transformation
[127]
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Table 4. Cont.

Application
Perspectives

Targeted
Genes

Molecular
Functions

Cas9
Promoter

sgRNA
Promoter

Transformation
Method References

Biotic stress
tolerance

OsERF922
Enhanced

resistance to blast
disease

- -
Agrobacterium-

mediated
transformation

[20]

OsAnn3 Tolerance to cold
stress CaMV 35S OsU6

Agrobacterium-
mediated

transformation
[7]

Bsrk1 Disease resistance CaMV 35S OsU6
Agrobacterium-

mediated
transformation

[128]

OsSWEET13 Bacterial blight
disease resistance - - - [129]

OsSWEET11,
OsSWEET14

Bacterial blight
disease resistance ZmUbi OsU3

Agrobacterium-
mediated

transformation
[4,34]

Xa13 Bacterial blight
disease resistance CaMV 35S OsU3 & OsU6

Agrobacterium-
mediated

transformation
[130]

eIF4G
Resistance to rice

tungro spherical
virus

ZmUbi TaU6
Agrobacterium-

mediated
transformation

[131]

OsMPK5
Various abiotic

stress tolerance and
disease

CaMV 35S OsU6
Agrobacterium-

mediated
transformation

[36]

Acetolactate
synthase (ALS),
DNA Ligase 4

Disease resistance 2 × 35S OsU6 Expression plasmid
vectors [10]

Abiotic stress
tolerance

BEL Herbicide-resistant 2 × 35S AtU6–26
Agrobacterium-

mediated
transformation

[21]

OsNAC041 Salinity - - [9]

OsEPSPS Glyphosate-
resistant CaMV 35S OsU3

Agrobacterium-
mediated

transformation
[132]

ALS Herbicide-resistant 2 × 35S OsU6
Agrobacterium-

mediated
transformation

[133]

Bentazon
Sensitive Lethal

Phenotypic
analysis showed

plants susceptible
to bentazon

- -
Agrobacterium-

mediated
transformation

[21]

OsDERF1,
OsPMS3,
OsEPSPS,
OsMSH1,
OsMYB5

Drought tolerance CaMV 35S,
OsUBQ1

OsU6
OsU3

Agrobacterium-
mediated

transformation
[134]

OsPYL Drought tolerance - - - [124]

OsAOX1a,
OsAOX1b,
OsAOX1c

Various abiotic
stress tolerance 2 × 35S AtU6–26

Agrobacterium-
mediated

transformation
[135]
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Table 4. Cont.

Application
Perspectives

Targeted
Genes

Molecular
Functions

Cas9
Promoter

sgRNA
Promoter

Transformation
Method References

OsHAK-1 Low cesium
accumulation CaMV 35S OsU6a

Agrobacterium-
mediated

transformation
[136]

OsPRX2 Potassium
deficiency tolerance - - - [137]

OsSAPK2 Drought tolerance - - - [6]

Nutritional
improvement

OsNramp5 Low cadmium
content CaMV 35S OsU6a

Agrobacterium-
mediated

transformation
[8]

ISA1 Starch CaMV 35S
Agrobacterium-

mediated
transformation

[125]

OsWaxy Amylose synthase CaMV 35S OsU6
Agrobacterium-

mediated
transformation

[138]

SBEIIb and
SBEI

Generation of high
amylose rice ZmUbi OsU3

Agrobacterium-
mediated

transformation
[139]

lysC and dapA Lysine content CaMV 35S -
Agrobacterium-

mediated
transformation

[140]

Stomatal
density OsEPFL9 Regulates stomatal

leaf density - - - [141]

Cyclin-
dependent

kinase

CDKA1,
CDKA2, CDKB1 - CaMV 35S OsU3

Agrobacterium-
mediated

transformation
[142]

CDKB2 - 2 × 35S OsU3
Agrobacterium-

mediated
transformation

[143]

Homologous
pairing
activity

OsDMC1A,
OsDMC1B

Disrupted meiotic
cDNA 2 × 35S OsU3

Agrobacterium-
mediated

transformation
[144]

‘–’: information unavailable.

10.1. Improving Rice Yield and Quality

Improving the quality of food is important as many individuals depend on rice as
their basic sustenance. However, improvements via conventional methods have limitations
in terms of being time consuming and challenging, causing off-target changes, the involve-
ment of undesirable traits, and their lower efficiency. CRISPR/Cas9 is a useful tool for
knocking out negative regulators controlling yield-associated characteristics of rice, such as
grain weight (OsGW5, OsGLW2), grain size (OsGS3), grain numbers (OsGn1a), tiller num-
ber (OsAAP3), and panicle size (OsDEP) [120,123,145,146]. The simultaneous knocking out
of three rice grain weight genes, namely TGW6, GW2, and GW5, resulted in a significant
enhancement of grain weight characteristics [22]. Since most yield-related components
are quantitative and influenced by the environment, the knockout of individual variables
may not be enough to boost yield. Recently, it was discovered that editing the OsSPL16
gene with CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate
enzymes and cell cycle proteins [147].

Improving rice grain quality characteristics via current advanced genome-editing
tools is a rapid, feasible, and economical approach [148]. Several rice genes that determine
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grain quality appearance have been isolated. Grain appearance and chalkiness are among
the quality traits that impact the market adequacy of rice [149,150]. The integration of
functionally characterized genes such as OsSPL13, OsSPL16/GW8, Chalk5, and GW7 using
CRISPR/Cas9 and the assessment of their relationships with other genes can significantly
enhance our understanding of rice grain appearance and milling quality.

The Waxy gene in the endosperm is primarily responsible for the amylose content (AC),
which determines the cooking and eating quality of rice grains [151]. Waxy was knocked
out using CRISPR/Cas9, resulting in lower amylose content and, as a result, improved
rice quality for food and high cooking efficiency [138,152]. Several studies have also been
conducted to determine the roles of various enzymes or genes involved in transgenic
Taichung65 rice plants comprising a Waxy antisense construction, which had lower AC;
transgenic plants were also demonstrated to have lower AC levels in hybrids [153]. The
SBEIIb gene has also been knocked out via CRISPR/Cas9 to create high amylose rice,
which is an ideal food for patients with diet-associated noninfectious diseases [139]. The
successful editing of the BADH2 gene, responsible for fragrant aromatic rice, involved
the insertion of one nucleotide in the mutated line, which showed a significant amount
of 2AP and enriched the fragrance of the rice [127]. Protoplast and particle-bombarded
rice calli systems were used to validate sequence-specific CRISPR/Cas9-mediated genomic
alteration of three rice genes, OsPDS, OsBADH2, and OsMPK2, which controlled the
responses to various abiotic stress stimuli [4]. Editing rates of approximately 7% and 9% for
OsBADH2 and OsPDS were observed, respectively. Similarly, the five carotenoid catabolic
genes, namely; OsCYP97A4, OsDSM2, OsCCD4a, OsCCD4b, and OsCCD7, have been
successfully knocked out to improve the quantity of β-carotene in rice endosperm [154].

10.2. CRISPR/Cas9 Systems in Developing Climate Resiliance

Climate-resilient farming for contesting biotic and abiotic stress is an upcoming crop
enhancement of interest using genome editing approaches [155,156]. The CRISPR/Cas9
RNA-led method is regularly used to improve plants, but it has been considered in very
few papers so far in producing climate-resilient plants. The primary influences on crop
yield and performance are stresses. Many crops, including fungal, bacterial, and viral
resistance and insects with enhanced biotic stress resistance, were acquired by the knockout
of CRISPR/Cas9. Scientists have moved from proof-of-concept to more applicative uses
of CRISPR/Cas9 in rice. Multiple disease resistance lines have been obtained via this
technology. Blast is a critical fungal disease in rice, but resistance genes against this disease
have been developed by targeting the OsERF922 gene [20]; these findings revealed that
there was a considerable decrease in blast lesion formation under pathogen infection.
Similarly, knocking out of the Bsrk-1 gene enhanced the resistance of rice against blast
without compromising yield [128]. The knocking-out of OsSWEET13 resulted in crops that
resist rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) [129]. A recent
study [157] has discovered that OsCYP71A1 disruptively blocks serotonin biosynthesis
with considerably higher concentrations of salicylic acid, giving resistance to planthoppers
and stem borers–two of the most rice-damaging pests.

Contamination of arable lands is one of the abiotic stresses that have generated the
need to avoid the buildup of poisonous heavy metals in plants. By knocking out OsARM1,
OsNramp5, and OsHAK1, researchers were able to identify rice species with high cadmium
and arsenic concentrations [8,136,158]. In 2018, a study of the OsPYL abscisic acid receptor
family showed that the triple knockout of ply 1/4/6 by CRISPR/Cas9 produced improved
grain output, enhanced tolerance to high temperatures, and lower pre-harvest sprouts [124].
The suppression of the cadmium (Cd) OsNramp5 transporter gene resulted in the growth of
low-Cd hybrid rice populations. CD accumulation in roots, seeds, and shoots was reduced
by mutant osnramp5 [8].

Scientists have also been able to generate CRISPR/Cas9-mediated herbicide-resistant
rice plants [133]. Studies into herbicide resistance were started to guarantee public and
environmental health, as both are affected by agrochemical use [159]. ALS1 is one of
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the essential enzymes accountable for herbicide resistance in rice. Its function was dis-
turbed using CRISPR/Cas9 at multiple discrete points [133], and the results showed that
homology-directed repair mediated by CRISPR/Cas9 was effective. The second exon
of BEL was knocked out by CRISPR/Cas9 in the rice cultivar Nipponbare, which was
associated with bentazon and herbicide resistance [21]. CRISPR/Cas9 was used to edit
TIFY1b [160], a transcription factor, and the OsAnn3 gene [7], which considerably improved
cold tolerance. However, a great potential remains to be utilized; there is a considerable
deal of plant genome manipulation that has been carried out through genome editing
using the CRISPR/Cas9 system. Resistance to imazapic (IMP) and imazethapyr (IMT) was
conferred in rice mutant plants by CRISPR/Cas9-mediated knockout of the Acetolactate
Synthase (OsALS) gene [161]. In general, the CRISRR/Cas9 system has been successfully
used to improve abiotic stress tolerance in rice [162].

10.3. Practical Approach for Hybrid Seed Production

Hybrid breeding or heterosis is a powerful approach used in increasing the productiv-
ity and yield of crops. Evolving a male sterile maternal line is a precondition required for
developing a high-quality hybrid variety [163]. Hence, marvelous achievements have been
achieved via CRISPR/Cas9-mediated gene knockout in the development of rice male sterile
lines, including thermosensitive male sterile tms5 lines [121,164], photosensitive genic male
sterile csa rice [123], and TMS10 [122]. Rice photosensitive and thermosensitive male sterile
lines have been developed to accelerate and exploit heterosis breeding [121,165]. However,
hybrid sterility is a crucial bottleneck in the exploitation of heterosis in rice breeding. To
overwhelm the generative barriers, SaF/SaMatSa and OgTPR1 at the S1 locus [166] were
disrupted in japonica–indica hybrids. The recovery of male fertility in japonica–indica
hybrids was demonstrated through the knockout of one or two copies of the Sc gene
in the indica allele Sc-I [167]. TMS10, created by genetic crosses or genome editing, is
a temperature-sensitive male sterile mutant applicable to hybrid seed production [122].
The results provide insights into how rice copes with adverse changes in temperature
to attain normal male fertility and a new breeding line for rice hybrid seed production.
Correspondingly, knockout of the ORF2 toxin gene, which is accountable for the newly
revealed selfish gene suicide mechanism of rice, rescued the fertility of japonica–Indica
hybrids [168].

Another obstacle for exploiting hybrid breeding is that heterosis is lost in the fol-
lowing generations because of genetic segregation. Besides this, the high cost of hybrid
seed production hinders the application of heterosis in many crops, including rice. Two
independent groups [169,170] used a multiplex CRISPR/Cas9 editing system to replace
meiosis by mitosis in rice through the knockout of three essential meiotic genes: REC8,
PAIR1, and OSD1. They developed asexual propagation lines either by simultaneous
activation of BBM1 in the egg cell or by knocking out MTL, respectively, enabling the repair
of heterozygosity of hybrids through clonal seed propagation. The study results showed
that the MiMe phenotype could be quickly introduced into hybrid rice varieties using
CRISPR/Cas9 genome-editing technologies.

10.4. Rapid Generation of Genetic Diversity

Furthermore, CRISPR/Cas9 applications include comprehensive genetic diversity
studies. Germplasm is a fundamental tool for the enhancement of crops in sustainable
farming. The main requirement of the plant breeder is the generation of trait-specific
genetically varied relatives for improving the characteristics of the crop. The main objective
of breeders is to concentrate studies into the collection, preservation, and identification of
new elite germplasms, which eventually produce agriculturally superior cultivars with a
broad genetic foundation in breeding programs.

Genetic diversity is an essential cause of plant characteristic enhancement. The creation
of genetic variables in the gene pool is the precondition for the development of distinctive
plant crops. Transgenes in the enhanced variations can be removed once the necessary
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changes have been made. Traditional plant improvement methods rely heavily on genetic
differences between natural germplasms. The introduction of positive characteristics
into the chosen germplasm necessitates a chronological overview, as well as a time and
energy-intensive evaluation of the vast population [148].

Although mutation breeding methods can be significantly accelerated and directed
towards more than 2250 new plant variants [171], subsequent modifications in the mutated
genes are random. This is why plant biologists have sought methods that can easily edit
required genes of interest. Hence, reverse genetic methods increase the progress of crop
improvement through targeted gene editing, and the CRISPR/Cas9 gene-editing system
is an advancing approach for the rapid introduction of population diversity in rice crop
breeding and development [47].

CRISPR/Cas9 now makes it simple to edit the multiplex genome of a possibly limitless
number of genes [172] and has been recently verified in Arabidopsis and rice [173–175].
Eight rice genes such as BADH2, DEP1, Gn1a, GS3, GW 2, Hd1, EP3, and LPA1 have been
successfully edited using one binary vector [174]. They provided a strategy trial for the
rapid generation of various breeding resources, targeting these agronomically essential rice
genes, using CRISPR/Cas9 multiplex genome-editing technology. DEP1, EP3, Gn1a, GS3,
and GW2 are yield-associated genes; LPA1 is a plant architecture gene; while BADH2 and
Hd1 are associated with rice fragrance and photoperiod genes, respectively. The knockout
of genes that have an enormous effect on grain yields, such as GS3, DEP1, GS5, GW2,
Gnla, and TGW6, is an easy and direct method for average rice output. The mutants of
these genes produce the desired, convincing phenotypes [120,176]. The thousand-grain
weight (TGW) increased significantly through the development of triple rice mutants by the
simultaneous knocking out of GW2, GW5, and TGW6 [22]. Four genes were recognized as
panicle architecture, plant architecture, seed size, and grain number regulators by a study
team centered in Guangzhou (China), demonstrating that various agronomically suitable
characteristics can be rapidly enhanced in a single cultivar [120].

CRISPR/Cas9 could also provide an efficient pyramid breeding technique with the
simultaneous alteration of several characteristics [23,177]. Consequently, CRISPR/Cas9 is
a potential tool for feeding the world’s population and achieving the goal of zero global
hunger [178]. The insertion of big sequences via NHEJ would enable transgenes to be
introduced into a specified locus, which supports high-level transcripts and does not inter-
fere with endogenous gene function. Site-specific nucleases allow the addition of many
genes near the current transgenic nucleus to achieve focused molecular feature stacking. It
also allows the introduction of several characteristics in plants that have a small degree of
segregation, which is hard to achieve through standard breeding or even genetic engineer-
ing [179]. There is also a tremendous potential for CRISPR screens to map and interrogate
gene regulatory networks at an unprecedented speed and scale. The implementation of
CRISPR screens offers new opportunities to analyze plant genomes at deeper resolution
and will greatly advance plant functional and synthetic biology [180]. Researchers [181]
have developed genomic resources and efficient transformations in the orphan Solanaceae
crop ‘groundcherry’ (Physalis pruinosa) and have used CRISPR–Cas9 to mutate orthologues
of tomato domestication and improvement genes that control plant architecture, flower
production, and fruit size, thereby improving these major productivity traits. Accordingly,
translating knowledge from model crops enables the rapid creation of targeted allelic diver-
sity and novel breeding germplasms in distantly related orphan crops. More importantly,
promoting integrative ecological (biodiversity resources) genomic studies promises a better
understanding of antagonistic co-evolutionary interactions, as well as the more efficient
breeding utilization of resistant phenotypes. In this case, gene prediction may also go
beyond pre-breeding efforts and feedback on restoration optimization [182].

11. Conclusions Remarks

The progress of science is dependent on new techniques, discoveries, and ideas, so
the development of novel tools and techniques is essential for scientific advancement.



Int. J. Mol. Sci. 2022, 23, 4454 20 of 27

Plant breeding has been transformed by the advancement of genome-editing technologies.
Continuous innovation in crop breeding and genetics is essential in meeting challenges
and achieving sustainable food production. CRISPR, a cutting-edge molecular biology
technique, has already broadened our understanding of genome regulation and organi-
zation in living cells from various biological kingdoms. CRISPR is revolutionizing not
only agriculture, but also industry, the environment, medicine, and other fields. Due to
the relative specificity of each nuclease platform, the majority of research work using the
CRISPR/Cas9 genome-editing technique has been groundwork/preliminary to date. In
the future, the use of high-throughput methods that allow for the comprehensive profiling
of off-target cleavage sites should provide insight into the target recognition stringency
inherent in each system. As a result, more advancement is required to fully exploit the
platform, which will result in increased on-target efficiency. Many strategies, including
modifying Cas9 to recognize different PAM sequences, have been used to overcome this
limitation. The xCas9 3.7 variant was created to broaden the scope of genome editing in rice.
A new version of Cas9 (SpCas9) was also created that could recognize NG PAMs in rice.
Many other such variants are ineffective in plants, emphasizing the need to develop more
Cas9 variants capable of recognizing a wide range of PAMs. The limitation imposed by
PAM specificity can also be overcome by using the newly discovered Cas14a system, which
does not require PAM, but can only target ssDNA. As a result, the rapid advancement of
research into epigenetic genome modifications in rice is a promising approach for future
rice crop improvement. As the scope and power of CRISPR technologies expand, social
and ethical concerns about their use grow, and the applications of these powerful tools
deserve more thought.
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