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The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and
simulate a key example of the Venetian blind effect and to show how it is related to other
well-known perceptual phenomena such as Panum’s limiting case. The model proposes
how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical
areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface
filling-in that simulate many properties of 3D vision percepts, notably consciously seen
surface percepts, which are predicted to arise when filled-in surface representations are
integrated into surface-shroud resonances between visual and parietal cortex. Interactions
between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary
formation. Both binocular and monocular information combine to form 3D boundary
and surface representations. Surface contour surface-to-boundary feedback from V2
thin stripes to V2 pale stripes combines computationally complementary boundary and
surface formation properties, leading to a single consistent percept, while also eliminating
redundant 3D boundaries, and triggering figure-ground perception. False binocular
boundary matches are eliminated by Gestalt grouping properties during boundary
formation. In particular, a disparity filter, which helps to solve the Correspondence Problem
by eliminating false matches, is predicted to be realized as part of the boundary grouping
process in layer 2/3 of cortical area V2. The model has been used to simulate the
consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts
include the Venetian blind effect, Panum’s limiting case, contrast variations of dichoptic
masking and the correspondence problem, the effect of interocular contrast differences
on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and
perceptual closure. These model mechanisms have also simulated properties of 3D neon
color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground
separation.
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1. INTRODUCTION: DESIGN PRINCIPLES FOR HOW THE
BRAIN SEES THE WORLD IN DEPTH

1.1. EXPLAINING 3D PERCEPTS USING LAMINAR CORTICAL
NETWORKS

The 3D LAMINART model (Figure 1) predicts how the LGN
and cortical areas V1, V2, and V4 computed monocular and
binocular visual information to produce three-dimensional
(3D) boundary groupings and conscious surface percepts. Each
cell type in the model clarifies anatomical and neurophys-
iological data. Grossberg and Howe (2003), Grossberg and
Yazdanbakhsh (2005), and Raizada and Grossberg (2003) provide
reviews.

Among the percepts that the model can simulate is the
Venetian blind percept that was described in Figure 6.21 of
Howard and Rogers (1995). This Venetian blind stimulus con-
sists of two gratings. A low frequency grating is presented to the

left eye, whereas a high frequency one presented to the right eye.
During binocular fusion, every second bar of the left grating is in
retinal correspondence with every third bar of the right grating.
The resulting percept consists of short ramps. Each ramp con-
tains three bars that slope up from left to right. These ramps are
interspaced with step returns.

Cao and Grossberg (2005, 2012) showed how the 3D
LAMINART model could quantitatively simulate the surface
properties that are consciously seen in 18 challenging psychophys-
ical experiments, a feat still not matched by competing models,
and did so with a single set of model equations and param-
eters (see Section 4). The implementation of the model with
spiking neurons in Cao and Grossberg (2012) also simulated
these surface percepts and demonstrated how analog proper-
ties of these percepts emerge from the interactive dynamics of
discrete spikes. A simulation of the Venetian blind percept was

www.frontiersin.org August 2014 | Volume 5 | Article 694 | 1

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00694/abstract
http://community.frontiersin.org/people/u/128209
http://community.frontiersin.org/people/u/47447
mailto:steve@bu.edu
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Cao and Grossberg Venetian blind from cortical circuits

FIGURE 1 | 3D LAMINART model variables, circuits, and processing

stages. The model consists of interactions between a boundary cortical
stream and a surface cortical stream. The boundary stream computes 3D
perceptual groupings. Its processing stages are in the middle of the
figure, and go through the cortical areas (V1 Interblob)—(V2 Pale
Stripe)—V4. The surface stream computes 3D surface representations of
lightness, color, and depth. Its processing stages flank those of the
boundary stream on both the left and right, and go through the cortical
areas (V1 Blob)—(V2 Thin Stripe)—V4. The cortical layers in which the
various processes are hypothesized to take place are listed in the left
column of the figure. The mathematical variables of the various model
processing stages provide a visualization of the network dynamics that
are mathematically defined in Section 4. Adapted with permission from
Cao and Grossberg (2005).

one of the 18 simulated experiences in these articles, but was
only briefly explained. The percept was also simulated using an
earlier version of the model by Grossberg and Howe (2003).
The current article provides a detailed, step-by-step explana-
tion of the percept and shows that its explanation uses the
same combination of laminar cortical mechanisms that can be
used to explain percepts like Panum’s limiting case (Panum,
1858; Gillam et al., 1995; McKee et al., 1995), where a bar pre-
sented to one eye is simultaneously matched to two separate
bars presented to the other eye. Also see Grossberg and Howe
(2003).

In order to provide a self-contained exposition, much of
the text is revised and refined from Cao and Grossberg (2005,
2012), with additional text and figures added to explain the
Venetian blind effect in greater detail. This section heuristi-
cally describes the seven organizational principles governing the
model’s design. Section 2 provides a functional model description

without mathematical equations. Section 3 summarizes simula-
tions of the Venetian blind effect and Panum’s limiting case, and
clarifies how they are connected. Section 4 provides a mathe-
matical description of model equations and parameters. Sections
2 and 4 are written to enable the functional and mathemati-
cal model descriptions to be coordinated with each other and
the model diagrams. Section 5 provides a discussion of how the
Venetian blind and Panum’s limiting case simulations fit into
a larger theory of the cortical dynamics that are predicted to
support attention, search, learning, recognition, and conscious
awareness of these visual percepts. The reader can skip from
Section 3 to 5 for this discussion, should the mathematical equa-
tions not be of primary concern.

1.2. HOW THE BRAIN SEES IN DEPTH: SEVEN BRAIN DESIGNS
The 3D LAMINART model achieves its explanatory power by
embodying seven functional designs into its laminar cortical cir-
cuitry. Figures 1 and 2 depict this circuitry, whose operation is
intuitively explained in Section 2.

1.2.1. How contrast-specific binocular fusion coexists with
contrast-invariant boundary perception

Veridical stereoscopic depth perception depends on binocu-
larly fusing only pairs of edge signals from the left and right
retinal images that belong to the same object. This is com-
monly referred to as the Correspondence Problem (Julesz, 1971;
Howard and Rogers, 1995). One step in solving this prob-
lem is to allow binocular fusion to occur only between edge
signals from the left and right retinal images that have the
same contrast polarity. Binocular fusion thus obeys the same-
sign hypothesis (Figure 3A). In addition, fused boundaries form
around objects whose contrast polarities on their bounding
contours reverse along their perimeters (Figure 3B; Grossberg,
1994); that is, are contrast-invariant. Both constraints are real-
ized in the model by interactions between orientationally tuned
cells in layers 4, 3B, and 2/3A of cortical area V1 interblobs
(Figure 1).

1.2.2. Contrast magnitude constraint on binocular fusion
Another step in solving the Correspondence Problem is to
binocularly fuse only edges with approximately the same
magnitude of contrast (McKee et al., 1994). This con-
straint, called the obligate property (Poggio, 1991), emerges
in the model through interactions between excitatory and
inhibitory cells in layer 3B of V1 (Figure 1). A mathemati-
cal proof of the obligate property in the model is provided in
Section 4.

1.2.3. Disparity filter
Many false binocular matches can still occur that do not derive
from the same objects (Figure 4). Some authors attempt to elim-
inate these false matches by imposing a unique-matching rule,
whereby each feature in one retinal image is matched with at
most one feature in the other retinal image (Marr and Poggio,
1976; Grimson, 1981). However, this rule fails to explain critical
psychophysical data, such as the percept that arises in Panum’s
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FIGURE 2 | 3D LAMINART functional macrocircuit. This figure provides
functional names of the processes that are shown in Figure 1. In order to
clarify which functional name corresponds to which mathematical variables
and anatomical processing stages in Figure 1, the connections in this figure
are drawn to mimmick those in Figure 1. The abbreviation S-to-B stands for
Surface-to-Boundary feedback signals. These functional names are used to
define the mathematical variables in Section 4. They are also used to label
the processing stages in the simulation Figures 6–10. Taken together,
Figure 1, and this figure and Section 4 should enable the reader to track each
variable that was simulated, as well as the mathematical equation that
determines its dynamics through time.

limiting case (Panum, 1858; Gillam et al., 1995; McKee et al.,
1995). In this percept, a bar presented to one eye is simulta-
neously matched to two bars presented to the other eye. The
unique-matching rule also fails in the Venetian Blind effect. The
3D LAMINART model does not impose unique matches. Rather,
correct matches are facilitated by using a disparity filter (see
DF in Figure 1; Grossberg and McLoughlin, 1997; McLoughlin
and Grossberg, 1998), whose circuit uses line-of-sight inhibition
between active cells that represent different depths at the same
position. A parsimonious property of the model, and one that
suggests how this constraint may have arisen during evolution, is
that these inhibitory interactions are part of the perceptual group-
ing process that selects and completes 3D boundaries within
cortical layer 2/3 (see Section 1.2.5).

1.2.4. Monocular and binocular information combine in forming
depth percepts

Panum’s limiting case has homologs in many naturally occurring
situations where one edge seen by one eye and two possible edges

FIGURE 3 | (A) The same-sign hypothesis: only edges that have the same
contrast polarity can be stereoscopically fused to produce a percept of
depth. The rightmost edges in the left and right eye figures in the upper
row, which have the same contrast polarity and orientation, can be
binocularly fused if their corresponding simple cells (oval shapes) input to
complex cells with an appropriate disparity sensitivity. The rightmost edges
in the left and right eye figures in the lower row, having opposite contrast
polarities, cannot be binocularly fused. (B) Individual complex cells receive
inputs from simple cells that respond to both dark-light and light-dark
contrast polarities, as well as to both red-green and green-red, and
blue-yellow and yellow-blue contrasts. As a result, complex cells can
respond in a contrast-invariant way along the boundary of a figure whose
contrast polarity reverses as the boundary is traversed. In particular,
complex cells can respond at every position along the boundary of the
depicted ellipse, even though the contrast polarity reverses relative to the
background as its perimeter is traversed. Reproduced with permission from
Cao and Grossberg (2005).

with which to match it are seen by the other eye. For example, an
object’s edge seen by one eye may be occluded by a nearer object
when viewed by the other eye. This happens during da Vinci
stereopsis (Nakayama and Shimojo, 1990; Gillam et al., 1999).
The monocularly viewed region nonetheless has a definite depth
that is induced by binocularly viewed scenic features. Monocular
information can hereby contribute to forming seamless depth-
ful percepts. These monocular-binocular interactions have been
probed by varying the relative contrast of the bars in Panum’s lim-
iting case displays and thereby causing alterations in the ensuing
percepts of depth (Smallman and McKee, 1995). Another type of
display that is useful for the study of monocular-binocular inter-
actions is dichoptic masking, where an object presented to one
eye is masked by one presented to the other eye (McKee et al.,
1994). All of these variations have been simulated using the 3D
LAMINART model.

How do monocular boundaries contribute to depthful per-
cepts? To which depths should a monocular boundary be
assigned? This Monocular-Binocular Interface Problem was ana-
lyzed in Grossberg (1994, 1997) as part of the larger problem
of explaining 3D figure-ground percepts. The proposed solution
was first implemented in simulations by Grossberg and Howe
(2003) of many data about 3D surface perception. This hypoth-
esis predicts that the outputs of monocular boundary cells are
added to all depth planes in cortical area V2 pale stripes along
their respective lines-of-sight. Layer 4 is a likely site for combining
monocular and binocular boundary signals from V1 (Figure 4).
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FIGURE 4 | Binocular matching and the Correspondence Problem. The
V1 binocular boundary network matches an edge in one retinal image with
every other edge in the other retinal image whose relative disparity is not
too great, that has the same contrast polarity, and whose magnitude of
contrast is not too different. In response to an image seen in depth with
two white vertical bars on a black background, the V1 boundary network
creates four matches, with the two not in the fixation plane being false
matches between edges that do not correspond to the same object. As
described in the text, these false matches are suppressed by the disparity
filter in V2, wherein each neuron is inhibited by every other neuron that
shares either of its monocular inputs (i.e., shares a monocular line-of-sight
represented by the solid lines; “line-of-sight inhibition”). Note in particular
that the solid lines that represent the monocular lines-of-sight also enable
the computation of allelotropic shifts (see Table 1): an edge in the left
retinal image is shifted to the right for matches increasingly further away,
whereas an edge in the right retinal image is shifted in the opposite
direction. Reproduced with permission from Cao and Grossberg (2005).

Yazdanbakhsh and Watanabe (2004) successfully tested this pre-
diction by doing psychophysical experiments on human subjects.
Monocular boundaries that are not at depths where they can
form closed boundaries are eliminated by the disparity filter,
which is predicted to occur in V2 pale stripes in layer 2/3,
where binocular grouping is completed, as explained below. The
Monocular-Binocular Interface Problem is hereby resolved at the
disparity filter, even as it helps to solve the Correspondence
Problem.

1.2.5. 3D perceptual groupings eliminate false matches
Interactions between pyramidal cells in layer 2/3 of the V2 pale
stripes were predicted to carry out perceptual grouping using a
bipole property, This property utilizes both long-range excitatory
recurrent axons and shorter-range inhibitory axons. The long-
range excitatory recurrent axons connect cells that are (approx-
imately) colinear and coaxial with respect to one another across
space. For example, if a Kanizsa square image is presented, each
pair of collinear pacmen edges can activate pyramidal cells with
like-oriented long-range horizontal connections whose signals
summate on target cells between the pacmen. These long-range

horizontal connections also activate the shorter-range inhibitory
interneurons. These interneurons inhibit each other and nearby
pyramidal cells (Figure 1). Due to their mutual inhibition, the
total activity in their local inhibitory network is normalized; cf.
Grossberg (1973). When the total summating excitation from
the long-range excitatory axons on both sides of a target cell,
combines with the total normalized inhibition from the shorter-
range inhibitory axons, the net excitation can fire the cells cf.,
von der Heydt and Peterhans (1989) and von der Heydt et al.
(1984). This balance of “two-against-one” of excitation and inhi-
bition at target cells implements the bipole property (Grossberg
et al., 1997; Grossberg and Raizada, 2000; Raizada and Grossberg,
2001).

When only a single pacman is the inducing stimulus, it induces
long-range excitation and disynaptic inhibition from only one
side of a recipient cell. In this case, the inhibition is not nor-
malized, so that the excitation and inhibition are approximately
balanced, a case of “one-against-one” excitation vs. inhibition, so
the target cell is not excited. If the cell receives bottom-up input,
it can activate the cell without inputs from any long-range exci-
tatory axons, but its activity can be modulated by such inputs
(Bringuier et al., 1999; Crook et al., 2002). Excitatory modulations
also help to guide the spread of attention along a boundary group-
ing (Roelfsema et al., 1998; Ito and Gilbert, 1999; Roelfsema and
Spekreijse, 1999; Grossberg and Raizada, 2000), the grouping of
2D and 3D planar percepts (Kapadia et al., 1995; Polat et al., 1998;
Bakin et al., 2000), and the grouping of 3D slanted and curved
percepts (Grossberg and Swaminathan, 2004).

The 3D LAMINART model predicts that the shorter-range
inhibitory interneurons also inhibit the pyramidal cells that corre-
spond to other orientations, notably perpendicular orientations,
thereby contributing to figure-ground and binocular rivalry per-
cepts, among others (Grossberg and Swaminathan, 2004; Cao
and Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh, 2005;
Grossberg et al., 2008). As noted in the previous section, some
of these inhibitory interneurons also realize the disparity filter
as part of the grouping process. The model hereby predicts that
the selection of a correct 3D grouping includes the suppression of
false binocular matches. The model hereby shows how the solu-
tion of the Correspondence Problem also helps to solve the Gestalt
grouping problem.

During depth perception, the perceived depths of emergent
perceptual groupings, such as illusory contours, often covary with
the disparities of their binocularly matched local features. This
is not, however, always the case; the perceived depth of percep-
tual groupings can override local feature disparities (Wilde, 1950;
Tausch, 1953; Ramachandran and Nelson, 1976). When this hap-
pens, an emergent 3D grouping can suppress “false matches” that
are based on the real local disparities of their generative features in
the outside world. The model can explain these data because the
disparity filter is part of the 3D grouping process, lying as it does
within the inhibitory interneurons in layer 2/3 V2 pale stripes, as
well as data about how false binocular matches are suppressed
that do not correspond to the objects in the outside world. The
same perceptual grouping process can also simulate many other
challenging data about 3D vision, including data about bistable
perception and binocular rivalry (Grossberg and Swaminathan,
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2004; Grossberg et al., 2008) and perceptual transparency and
Kanizsa stratification (Grossberg and Yazdanbakhsh, 2005).

1.2.6. 3D surface percepts form within Filling-In-Domains
An early model prediction (Grossberg, 1984) that boundary
representations on their own do not give rise to visible per-
cepts, indeed that “all boundaries are invisible,” is consistent
with many perceptual and neurobiological data. This predic-
tion is expected to hold at least within the interblob cortical
stream between V1 and V4 in which perceptual boundaries are
formed. In contrast, all visible percepts have been predicted to
be a property of surface representations within the blob cor-
tical stream from V1 to V4; see Grossberg (1994, 2014) for
reviews. Boundaries are invisible, or amodal, because they pool
opposite-polarity contrasts from both achromatic and chromatic
receptive fields at the complex cell stage in the interblobs of
cortical area V1 in order to build the best possible contrast-
invariant boundaries of objects. In particular, they can build
complete boundaries from objects that lie in front of textured
backgrounds whose relative contrasts reverse along the object’s
perimeter (Figure 3B).

Surface representations are completed using a filling-in pro-
cess that keeps opposite-polarity computations separate to enable
distinct lightnesses and colors to fill-in within depth-selective
Filling-In Domains, or FIDOs. This filling-in process can recon-
struct lightness and color estimates in regions where they have
been suppressed by the process of compensating for variable
illumination, which is also called “discounting the illuminant”
(Grossberg and Todorović, 1988). Boundaries control the depths
at which different lightnesses and colors can fill-in via a pro-
cess called 3D surface capture. The current simulations of the
3D LAMINART model illustrate only the filling-in of achro-
matic lightnesses in depth in response to psychophysical displays.
Grossberg and Hong (2006) and Hong and Grossberg (2004),
in their extension of 3D LAMINART to the Anchored Filling-
In Lightness Model (aFILM) model, have simulated filling-in of
surface lightnesses and colors in response to both psychophysical
displays and natural scenes. Other articles have simulated sur-
face percepts in response to artificial sensors such as Synthetic
Aperture Radar (SAR), e.g., Grossberg and Williamson (1999)
and Mingolla et al. (1999).

How does the brain usually manage to fill-in lightnesses and
colors at only the correct depths? The 3D LAMINART surface
capture process is reviewed in Grossberg (1994), which also uses
it to explain many data about 3D figure-ground perception. The
3D LAMINART model extends FACADE theory to laminar cor-
tical circuitry, while also significantly expanding its explanatory
and predictive range. A key surface capture property is that vis-
ible surfaces arise in cortical area V4 only if they are enclosed
by connected boundaries. Figure 5 illustrates how, in response to
a da Vinci stereopsis display, a rectangular connected boundary
may be composed of one vertical binocular boundary that does
encode disparity information, as well as one vertical monocu-
larly viewed boundary and two horizontal boundaries that do
not. Such a closed boundary can contain filling-in, and thereby
support the formation of a visible surface percept. This surface
percept will occur at the depth of the binocular boundary, if all

FIGURE 5 | Combining monocular and binocular boundaries, and

filling-in within connected boundaries. This figure illustrates how
monocular and other depth-unselective boundaries, such as horizontal
boundaries, are combined to control surface filling-in. The depicted
boundaries, apart from the rectangular boundary frame, represent the
boundaries that are induced by a part of an idealized da Vinci stereopsis
display in which only the left vertical boundary within the frame is
binocularly viewed. See the partially occluded window in Figure 2 of
Grossberg (1994) for a complete da Vinci stereopsis display in which this
kind of situation can occur. The right vertical boundary within the frame is
viewed through only one eye, and is hence a monocular boundary that
conveys no disparity information. The horizontal boundaries are processed
in the same way as monocular boundaries. (A) Open and connected
boundaries that are induced by the display after all boundaries are
combined. The left vertical boundary is processed selectively at Depth 1
due to the binocular disparity that it induces. The right vertical boundary
and the upper and lower horizontal boundaries are added to all boundary
representations, across all depths, along the line of sight. This combination
of boundaries creates a closed rectangular boundary at Depth 1 and an
open boundary at Depth 2. These boundaries are projected topographically
to the Filling-In DOmain, or FIDO, at the corresponding depth within which
boundary-modulated filling-in of surface lightnesses and colors occurs. (B)

Filling-in of surface lightness is contained or not depending on the
connectedness of the boundary. At Depth 1, filling-in is contained within
the closed rectangular boundary. At Depth 2, lightness can flow through
the boundary gap and become uniform around both sides of the figure’s
boundary. As a result, the surface contour representation at Depth 2
generates no output signals via the contrast-sensitive network that outputs
to subsequent processing stages. Reproduced with permission from Cao
and Grossberg (2005).

other constraints are satisfied. At a different depth plane, where
there is no vertical binocular boundary, however, then the total
boundary contains a large gaps through which lightness and color
signals can flow around the boundaries. Surface contrasts at the
boundaries are hereby eliminated and, along with it, any filling-in
of those surface features at higher processing stages.

1.2.7. Surface-to-boundary feedback ensures perceptual
consistency and initiates figure-ground separation

Boundaries and surfaces form according to computationally com-
plementary rules: boundaries are completed inwardly using bipole
cells, but surface filling-in spreads outwardly; boundaries form
in an oriented way, but surface filling-in spreads unoriented in
multiple directions; boundaries pool opposite-polarity contrasts
at V1 complex cells and hereby become insensitive to contrast
polarity, whereas visible surfaces are sensitive to contrast polarity.
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Given that boundaries and surface form using complementary
computations, how do they typically work together to generate
percepts whose perceived boundaries and surfaces are percep-
tually consistent? Otherwise expressed, how is complementary
consistency achieved? Grossberg (1994) proposed that success-
fully filled-in regions within the surface representations send
Surface-to-Boundary feedback to the boundary system (Figure 2)
by sensing whether or not a surface region is filled-in within
a connected boundary (see Figure 5B). Contrast-sensitive out-
put circuits accomplish this by detecting where the bounding
contours of a successfully filled-in region occur. Such bound-
ary contours occur at positions where contrasts change quickly
across space if the boundary can contain filling-in by being con-
nected. If there are large gaps in a boundary that enable filling-in
to spread out and around it, then there are no contrast dif-
ferences around this boundary, so that no output signals are
generated there.

These contrast-sensitive output signals are called surface con-
tours. They are generated by on-center off-surround networks
that operate within disparity and across position in response to
filled-in surface activities. The surface contour outputs from the
surface stream to the boundary stream strengthen, and thereby
confirm, the boundaries that surround successfully filled-in sur-
face regions, at the same time that they inhibit, or prune,
redundant boundaries at the same positions and further depths
(Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997). The
surface contour signals strengthen and prune their target bound-
aries by activating on-center off-surround networks that operate
across disparity and within position within the boundary sys-
tem. This boundary-enhancing property is predicted to interact
with a developmental bias that favors the fixation plane. Taken
together, these properties enable the simulation of stereopsis
data that have not otherwise been explained; for example, see
below and Cao and Grossberg (2005, 2012). Such a fixation
plane bias may develop when the relatively high frequency of
fixated percepts activates basic activity-dependent mechanisms
of self-organizing maps whereby they enhance frequently acti-
vated cortical representations, e.g., Buonomano and Merzenich
(1998).

Surface contour signals are also predicted to control where the
eyes look and how the brain learns invariant object categories.
In particular, because surface contour signals are strongest at the
distinctive features of an attended object, they can be used to com-
pute eye movement targets. The ARTSCAN, pARTSCAN, and
ARTSCAN Search models (Fazl et al., 2009; Grossberg, 2009; Cao
et al., 2011; Foley et al., 2012; Chang et al., 2014) predict how
surface contour signals may generate predictive eye movement
commands, via cortical area V3A, that (1) determine where the
eyes will look next and (2) maintain spatial attention in poste-
rior parietal cortex on an object’s surface representation in V4,
thereby (3) enabling inferotemporal cortex to learn view- and
positionally-invariant object categories that represent its bound-
ary and surface representations. Thus, the 3D LAMINART model
is part of a larger architecture for active vision wherein 3D bound-
ary and surface representations help to control eye movements for
attending, seeing, searching, learning, and recognizing invariant
object categories.

2. MODEL DESCRIPTION
The 3D LAMINART model consists of two processing streams:
a boundary stream and a surface stream (see Figures 1 and 2).
The boundary stream runs from retina/LGN to V1 monocular
and binocular boundaries and then to V2 binocular bound-
aries. The surface stream runs from retina/LGN to V1 and V2
monocular surfaces and then to V4 binocular surfaces. Figure 1
shows a laminar cortical circuit diagram of the 3D LAMINART
model, and Figure 2 shows a functional block diagram of the
model. A mathematical description of the model is provided in
Section 4. In order to facilitate model understanding, the qual-
itative descriptions of model processes that is provided in this
section also list the mathematical equation numbers in which
these properties are rigorously defined in Section 4. In order to
reduce computational load, the model currently simulates only
horizontal and vertical contours and five boundary and sur-
face depths. Five depths were chosen because they are enough
to illustrate non-trivial depth separation. The model is exten-
sible to any finite number of depths if finer depth discrimina-
tions are desired. Gradual changes of depth using a finite set of
depth planes have also been simulated. In particular, Grossberg
and Swaminathan (2004, Figure 23d) simulated slanted 3D per-
cepts, including the Necker cube. Such continuous percepts of
depth may be achieved by computing a weighted average of
filled-in surface activities across multiple depth-selective filling-in
domains.

Each model neuron is defined by membrane equation,
or shunting, dynamics that have automatic gain control and
contrast-normalization properties (Hodgkin, 1964; Grossberg,
1973, 1980). See Equations (1) and (2) in Section 4. Although
model neurons and neurons in vivo will be clearly distin-
guished below, model neurons will be referred to by their neu-
rophysiological names because their computational properties
closely match those found in the brain. See Grossberg and
Howe (2003), Grossberg and Yazdanbakhsh (2005), and Raizada
and Grossberg (2003) for comparisons of model cell properties
and connections with neurophysiological and neuroanatomical
data.

2.1. MONOCULAR BOUNDARIES
2.1.1. LGN cells
The left and right retinal images are processed by LGN cells
with circularly symmetric on-center off-surround receptive fields

[see Figure 1A; variables xL/R
ij in Equations (3)–(5) in Section 4].

These LGN cells discount the illuminant and contrast-normalize
the input scene.

2.1.2. V1 monocular simple cells
LGN outputs activate monocular simple cells in layer 4 of the V1
interblobs. The simple cells are oriented filters (Hubel and Wiesel,
1968) that are sensitive to either a similarly oriented dark-light
or light-dark contrast in the image, but not both [see Figure 1A;

variables sL/R
ijk in Equations (6)–(8)]. Outputs from these simple

cells project to both binocular simple cells and to monocular sim-

ple cells in Layer 3B [for the latter, see Figure 1A; variables bL/R
ijk in

Equation (9)].
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2.2. BINOCULAR BOUNDARIES
2.2.1. V1 binocular simple cells
Outputs from left and right eye monocular simple cells activate
binocular simple cells in layer 3B of the interblobs, where stero-
scopic fusion begins [see Figure 1A; variables bB

ijk in Equation
(10)]. The depth selectivity of binocular simple cells is deter-
mined by the retinal disparities of the layer 4 monocular cells
that project to them. The binocular simple cells in layer 3B are
sensitive to just one contrast polarity because only layer 4 simple
cells with the same contrast polarity project to them (Figure 2A),
thereby implementing the same–sign hypothesis at layer 3B simple
cells that are selective for both binocular disparity and contrast
polarity.

The selectivity of stereoscopic fusion at the binocular simple
cells in layer 3B also requires the action of inhibitory interneu-

rons [see Figure 1; variables qL/R
ijkd in Equations (11) and (12)]. The

activity of a binocular simple cell is suppressed by these inhibitory
interneurons if its left and right eye inputs differ too much in
magnitude. The binocular simple cells hereby act like the “obli-
gate cells” of Poggio (1991) by responding only when their left
and right eye inputs are approximately equal in magnitude. These
layer 3B obligate cells hereby help to solve the Correspondence
Problem by responding only to stereoscopically fused stimuli with
similar contrast amplitudes from the left and right eye retinal
images.

The inhibitory interneurons ensure that binocular simple cells
respond only to a narrow range of disparities by inhibiting each
other through recurrent inhibitory interneurons, as well as their
target binocular simple cell. These recurrent inhibitory interac-
tions normalize total activity within the interneurons. Such nor-
malization enables a “two-against-one” computation that leads
to disparity selectivity, much as it leads to the bipole grouping
property (see Section 1.2.5) during binocular boundary com-
pletion. V1 binocular simple cells and V2 binocular bipole cells
thus both seem to use computationally homologous operations
in different cortical regions and at different spatial scales. Future
experiments should be designed to test this predicted homol-
ogy and to clarify how it arises during brain evolution and
development.

2.2.2. V1 layer 2/3 monocular and binocular complex cells
Layer 2/3 contains complex cells that add inputs from simple
cells at the same position that are sensitive to the same orien-
tation but opposite contrast polarities. Both monocular com-

plex cells [see Figure 1; variables cL/R
ijk in Equations (25) and

(26)] and binocular complex cells [see Figure 1; variables cijkd

in Equations (13)–(24)] are hereby formed. Because complex
cells can respond to both contrast polarities, they can respond
all along an object’s boundary, even if contrast polarity with
respect to the background reverses as its boundary is traversed
(Figure 3B). Layer 2/3 complex cells thus implement an early
cortical stage of contrast-invariant boundary detection. Complex
cells also interact via long-range excitatory recurrent connections
[variables HEc

ijkdv in Equations (13) and (15)–(17)] and disynaptic

inhibitory interneurons [variables sc
ijkdv in Equations (18)–(21)]

that implement non-classical receptive fields via a bipole property

(see Section 2.2.4). This, bipole property in V1 can only modulate
a cell, not fire it, if the cell does not also receive a bottom-up input
from simple cells.

2.2.3. V2 layer 4 binocular cells
V1 layer 2/3 left and right monocular complex cells and binocu-
lar complex cells input to V2 layer 4 cells [see Figure 1; variables
vijkd in Equations (27)–(29)]. The monocular cells, which do
not compute a binocular disparity, are added to all depth planes
in layer 4 along their respective lines-of-sight (Figure 5) as part
of the brain’s solution of the Monocular-Binocular Interface
Problem. The layer 4 cells also receive surface contour feed-
back signals from left and right V2 monocular surfaces that
are formed in the V2 thin stripe region [see Section 2.3.1 and
Figure 1; variables f L

ijkd, f R
ijkd, and fijkd in Equations (28) and (29)]

to help ensure perceptual consistency, despite the complementar-
ity of boundary and surface computations. These surface contour
surface-to-boundary feedback inputs modulate V2 layer 4 cells
by enhancing their current level of activity. Surface contour feed-
back also helps to initiate figure-ground separation (Grossberg,
1994) and plays an indispensable role in explaining various
3D percepts such as da Vinci stereopsis (Cao and Grossberg,
2005).

2.2.4. V2 layer 2/3 bipole grouping cells
Bipole grouping occurs among the binocular cells in V2 layer
2/3 [see Figure 1A; variables gijkd in Equations (30)–(35)]. These
cells receive inputs from V2 layer 4 cells. These cells in layer
2/3 possess collinear, coaxial receptive fields that directly excite

each other via long-range horizontal axons [variables H
Eg

ijkdv in
Equations (30) and (32)]. They also give rise to short-range, disy-
naptic inhibitory interneurons [variables s

g
ijkdv in Equation (34)]

that inhibit themselves as well as their target complex cells [vari-

ables H
Ig
ijkd in Equations (30) and (33)]. This balance of excitation

and self-normalizing inhibition achieves the “two-against-one”
bipole grouping property (Grossberg et al., 1997; Grossberg, 1999;
Grossberg and Raizada, 2000; Grossberg and Williamson, 2001).
The boundary grouping process, together with contrast-invariant
boundary detection (Figures 1, 3B), allows well-localized and
connected object boundaries to be completed even in response
to disconnected and noisy boundary fragments.

Binocular cells in V1 layer 3B attempt to match every input
from a vertical edge from one retinal image with nearby vertical
edge input signals from the other retinal image within its dispar-
ity range, given that all the inputs code the same contrast polarity
and approximately the same contrast magnitude. Even with these
restrictions, there remains a Correspondence Problem because
false matches may occur in V1.

Figure 4 illustrates the Correspondence Problem that may
occur in response to four possible matches if each eye receives
inputs from two bars. Only the two matches in the fixation plane
are correct, and the other two are false. Such false matches are
suppressed in V2 by the disparity filter [see DF in Figure 1; vari-
ables GP

ijkd are the total DF inhibition in Equations (30) and
(35)] as part of the bipole grouping process. The model’s dis-
parity filter (solid lines between Figure 4 neurons) encourages
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unique matching using inhibition between neurons that share
a monocular input. These disparity filter inhibitory interac-
tions are, in addition, symmetrical about the fixation plane
with the fixation plane inhibiting the near and far disparity
planes more than conversely (see Table 2). The line-of-sight
inhibition and the fixation plane advantage together select two
matches in the fixation plane, thereby helping to solve the
Correspondence Problem. Because disparity filter interactions
occur among the inhibitory interactions that control perceptual
grouping in V2 layer 2/3, the model parsimoniously combines
suppression of false matches with long-range Gestalt grouping
processes.

2.3. MONOCULAR SURFACES
2.3.1. V2 monocular surfaces
Monocular surfaces are computed in the model V2 thin stripes

[see Figure 1; variables FL/R
ijd in Equations (36)–(45)]. The left

(right) V2 thin stripe receives boundary signals from V2 layer
2/3 complex cells and illumination-discounted lightness signals
from left (right) LGN cells via the left (right) V1 blob region
(see Figure 1). Earlier FACADE theory and 3D LAMINART
modeling has predicted and simulated how surface representa-
tions may be generated by a filling-in process, whether through
nearest-neighbor diffusive interactions (Cohen and Grossberg,
1984; Grossberg and Todorović, 1988; Grossberg, 1994) or
long-range horizontal connections (Grossberg and Hong, 2006).
Psychophysical data (e.g., Paradiso and Nakayama, 1991; Pessoa
and Neumann, 1998; Pessoa et al., 1998) and neurophysiologi-
cal data (e.g., Rossi et al., 1996; Lamme et al., 1999) support the
existence of filling-in, in contradiction of the critique of Dennett
(1991) that such a process does not exist. Surface filling-in has,
in fact, been used to explain and simulate many percepts that
have not been explained without it, such as surface percepts dur-
ing figure-ground separation (Kelly and Grossberg, 2000); 2D
and 3D neon color spreading and transparency (Grossberg and
Mingolla, 1985a; Grossberg, 1994; Grossberg and Yazdanbakhsh,
2005); 3D shape-from-texture (Grossberg et al., 2007); bistable
3D percepts such as the Necker cube illusion (Grossberg and
Swaminathan, 2004); and multiple lightness and color percepts
(Grossberg and Todorović, 1988; Grossberg and Kelly, 1999;
Hong and Grossberg, 2004; Grossberg and Hong, 2006). As illus-
trated by Figure 5, a consciously perceived surface representation
can rise from filling-in only if it is enclosed by a connected
boundary.

The LGN cells interact through on–center, off–surround circu-
larly symmetric receptive fields whose interactions discount the
effects of spatially non-uniform illumination; that is, “discount
the illuminant.” These excitatory and inhibitory interactions are
balanced and thus attenuate cell activity in response to spatially
uniform or slowly varying stimulation. Model LGN cells hereby
respond preferentially to luminance borders. At later filling-in
stages, these illuminant-discounted surface-border, also called
feature contour, signals propagate across surface regions that are
enclosed by connected boundaries to complete the lightness rep-
resentation. Early simulations of filling-in used a boundary-gated
nearest-neighbor diffusion equation (Grossberg and Todorović,
1988). Connected boundaries from V2 layer 2/3 create resistive

barriers to limit signal spread (Figure 5) of the lightness signals
received from the LGN within the V2 thin stripes. Grossberg and
Hong (2006) have simulated how filling-in can be carried out by
boundary-gated long-range horizontal interactions that operate
1000 times faster than diffusion. An interesting open problem
concerns how long-range excitatory interactions may develop,
on the one hand, to control the inward and oriented proper-
ties of bipole grouping and, on the other hand, to control the
complementary outward and unoriented properties of surface
filling-in.

The monocular surfaces that are formed in V2 thin stripes
are predicted to be invisible, or amodal, and thus do not sub-
serve visible 3D surface percepts. They can, however, directly
activate pathways leading to their amodal recognition within the
inferotemporal cortex (Grossberg, 1994).

2.4. SURFACE-TO-BOUNDARY FEEDBACK SIGNALS
Successfully filled-in monocular surfaces send surface contour
signals from positions at which filled-in contrast changes rapidly
enough across space into the boundary representations via V2

layer 4 [see Figures 1, 2, Section 1.2.7, and variables f L/R
ijkd in

Equations (46)–(48)]. These surface-to-boundary feedback sig-
nals modulate the activities of V2 boundary cells so that the
boundaries that surround the successfully filled-in surfaces are
enhanced and redundant boundaries are suppressed, thereby
ensuring perceptual consistency and contributing to figure-
ground separation

2.5. BINOCULAR SURFACES
2.5.1. V4 surfaces
Consciously visible binocular 3D surface percepts are generated
in cortical area V4, where 3D figure-ground separation of object
surfaces is also predicted to be completed [see Figure 1; variables
wijd in Equations (49) and (50)]. Area V4 receives boundary sig-
nals from V2 layer 2/3 and lightness signals from the LGN via
V1 blobs and V2 thin stripes. The surface filling-in process is
similar to the one described in Section 2.3, except V4 combines
monocular lightness signals from both eyes.

The current model simplifies the V4 interactions that have
been predicted in Grossberg (1994) to generate 3D surface per-
cepts. See Grossberg and Swaminathan (2004) and Grossberg
and Yazdanbakhsh (2005) for simulations of the additional
boundary and surface interactions needed to explain percepts
that involve the separation of overlapping figures from their
backgrounds, such as the Necker cube and 3D neon color
spreading.

3. MODEL SIMULATIONS
This section summarizes a simulation of the Venetian blind effect
and of Panum’s limiting case to illustrate how monocular and
binocular information may interact in the laminar circuits of
visual cortex to generate 3D surface percepts. For the Venetian
blind simulation, each eye’s stimulus was presented on a grid 30
units high and 115 units wide. For the Panum’s limiting case stim-
ulus, each eye’s stimulus was presented on a grid 30 units high
and 60 units wide, which was sufficient to process the smaller
width of the stimulus. In all simulations, the background had a
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luminance value, in arbitrary units, of 2. In the simulation figures,
the light gray bars (if any) had a luminance of 1 and the dark gray
bars 0.1. Simulations were performed using the Matlab software
package.

3.1. THE VENETIAN BLIND EFFECT
Section 1.1 described a Venetian blind stereogram from Figure
6.21 of Howard and Rogers (1995). This display consists of a low
frequency grating that is presented to the left eye, and a high
frequency presented to the right eye. Every second bar of the
left grating is in retinal correspondence with every third bar of
the right grating; see the middle two plots of the first row of
Figure 6A.

Figure 6 includes two parts: Figure 6A V1 and V2 bound-
aries and V4 surfaces and Figure 6B V2 monocular surfaces and
surface-to-boundary feedback signals. Like the model diagram
shown in Figures 1A, 6A should be read from the bottom up, with
the bottom two rows representing the input (inner pair of figures
with black bars on white background) and the V1 boundary rep-
resentations (white boundaries on black background), the next
two rows representing the V2 boundary representations before
(V2 Initial Boundaries) and after (V2 Final Boundaries) surface-
to-boundary feedback acts, and the top row representing the
V4 surface representations. In Figure 6B, the bottom four rows
represent, respectively, in ascending order, the following quanti-
ties corresponding to the left eye: the Initial Monocular Surfaces
before any feedback interactions occur, the Initial Surface-to-
Boundary Signals generated by these surfaces, the Left Final
Monocular Surfaces after the Surface-to-Boundary Signals have
their effect, and the Final Surface-to-Boundary Signals that are
caused by the Final Monocular Surfaces. The same quantities
are represented for the right eye in the top four rows. In the
top four rows of Figure 6A and all rows of Figure 6B, depth
increases from left to right. The middle plot representing the fixa-
tion plane. The two leftmost plots represent the two near depth
planes. Finally, the two right plots represent the two far depth
planes.

This stereogram induces a percept of short ramps, each con-
taining three bars. The bars slope up from left to right and are
separated by step returns. The model correctly simulates this
surface percept; see the top row of Figure 6A, which shows the
simulated depthful surface representations in the model area V4.
This row shows that, reading positions from left to right, the first
bar of the percept is in the zero disparity plane (fixation plane;
second column), the second in the near disparity plane (first col-
umn), then there is a step return to the third bar which is located
in the far disparity plane (third column), after which the pattern
repeats.

Note that every second bar of the left input is in retinal
correspondence with every third bar of the right input (bot-
tom row). In Figure 7, these bars are marked in red color (the
middle two plots of the bottom row) as are their monocular
vertical boundaries (the left most and right most plots of the bot-
tom row). Because of the retinal correspondence, their vertical
boundaries are matched in the fixation plane by V1 binocu-
lar cells, marked in red color in the middle plot of the second
row (reading from the bottom). According to the advantage

FIGURE 6 | Simulation of the Venetian blind effect in Howard and

Rogers (1995). The variables that are plotted in this and other simulations
correspond to the model processing stages shown in Figure 2, and the
corresponding mathematical variables shown in Figure 1. (A) The two
middle plots of the bottom row are the Left Eye Inputs and the Right Eye
Inputs, respectively. The two outer plots in the bottom row are the Left
Monocular Boundaries that are computed at the Left Eye V1 Monocular
Complex Cells and the Right Monocular Boundaries that are computed at
the Right Eye V1 Monocular Complex Cells, respectively. The plots in the
third row from the bottom are the Initial Binocular Boundaries that are
computed in V2 Layer 4. The plots in the fourth row from the bottom are
the Final Binocular Boundaries that are computed in V2 layer 2/3. The initial
boundaries in V2 layer 4 are computed before the Surface-to-Boundary
feedback signals act (see S-to-B in Figure 2). The final boundaries are
computed after all the boundaries equilibrate to the Surface-to-Boundary
feedback signals. The plots in the top row are the V4 Binocular Surfaces.
(B) These simulation figures show the Left and Right, Initial and Final,
Monocular Surfaces and Surface-to-Boundary Signals. As in (A), Initial
values are computed before the Surface-to-Boundary feedback signals act.
Final values are computed after all the surfaces equilibrate to the
Surface-to-Boundary feedback signals. See text for further details.

of the fixation plane (Section 2.2.4), every vertical boundary
located in the same line-of-sight of these binocularly matched
vertical boundaries will be killed by the line-of-sight inhibi-
tion, whether binocularly matched or not. In particular, vertical
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FIGURE 7 | Explanation of the simulation of the Venetian blind effect

where the bars in retinal correspondence and their binocular fusion in

the fixation plane are marked in red. See the caption of Figure 6 for an
explanation of the variables being simulated, and the text for further details.

boundaries in the very near and very far depths (the first plot
and the last plot of the second row) will all be killed. But
the binocularly matched vertical boundaries in the near and
far depths (the second plot and the fourth plot of the second
row) are not in the same lines-of-sight of the binocular bound-
aries in the fixation plane, and hence survive the inhibition
from them.

In order to simplify the explanation, we can divide the stimu-
lus into two components and consider these separately as follows.
First, we extract the bars in retinal correspondence to form the
stimulus shown in the middle two plots of the first row of
Figure 8A. Since the bars in the left and right inputs of this figure
are in retinal correspondence, the model correctly predicts that
they will appear in the fixation plane, as shown by the middle
plot of the fifth row. The specific binocular matches are shown
in Figure 9A, where the matched bars are marked in the same
color.

For the remaining bars, shown in Figure 8B, the right eye
sees twice the number of bars as the left eye, as in Panum’s lim-
iting case, which is explained in the next section. The model
simulates fusion of each bar of the left input with two bars of
the right input to induce the percept shown in the top row of
Figure 8B. Figure 8B shows how these bars are fused, where the
fused bars are marked in the same color and form two side-by-
side Panum’s limiting cases. The binocular matches are shown in
Figure 9B.

Adding together the percepts shown in top rows of
Figures 8A,B yield the surface percept shown in the top row
of Figure 6A, thereby explaining this Venetian blind effect.
Figure 6B shows the left and right V2 monocular surfaces and
the corresponding surface-to-boundary signals, in both ini-
tial and final stages. The surface-to-boundary signals enhance
the surviving boundaries with a closed contour that contains

FIGURE 8 | (A) Simulation of one component of the Venetian blind effect.
(B) Simulation of the other component. See the caption of Figure 6 for
an explanation of the variables being simulated, and the text for further
details.

surface filling-in, and therefore helps to generate the correct
percept.

The insight that the model provides is that this example
of the Venetian blind effect is just a complex version of the
Correspondence Problem as it is illustrated by Panum’s limiting
case, when it is properly understood by combining early stereo
matching, later boundary selection by a disparity filter that is part
of the boundary grouping process, and surface filling-in of those
regions that are completely enclosed by connected boundaries.

3.2. DICHOPTIC MASKING IN PANUM’S LIMITING CASE
As described in the previous section, the present model solves the
Correspondence Problem by using a disparity filter that encour-
ages unique matching, via line-of-sight inhibition, but does not
enforce it. One advantage of this is that the model can simulate
Panum’s limiting case, where a bar in one eye is simultaneously
fused with two bars in the other eye (Panum, 1858; Gillam et al.,
1995; McKee et al., 1995). Figure 10 shows the model simulation
where a bar in one eye masks equally two bars presented to the
other eye as reported by McKee et al. (1995).

For this stimulus, the left eye receives a single bar input,
whereas the right eye receives an input consisting of two bars;
see the middle two plots within the first row of Figure 10A.
The monocular boundaries that are induced by these stimuli are
shown within the outer two plots of the first row. The bar of the
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FIGURE 9 | Explanation of the simulation of components of the

Venetian blind effect where the binocular fused bars are marked in the

same color. (A) Processing of image components in retinal
correspondence. (B) Processing of image components that are disparate in
the two eyes.

left input fuses with both bars of the right input at V1 binocular
boundary cells, thereby forming binocular boundaries in both a
near and a far disparity plane; see, the second and fourth plots
of the second row. In V2, monocular boundaries are added to all
disparity planes along their respective lines-of-sight; see the third
row. Left monocular boundaries induce the left bar representa-
tion in the first two plots, the middle bar representation in the
third plot, and the right bar representation in the fourth and fifth
plots of the third row. Right monocular boundaries induce the
two right bar representations in the first two plots, the outer two
bar representations in the third plot, and the leftmost two bar rep-
resentations in the fourth and fifth plots of the third row. The V1
monocular and binocular boundaries are added within V2. V2
boundaries that combine binocular input and monocular inputs
are stronger than those that do not. Recurrent inhibition of the V2
disparity filter suppresses the V2 vertical boundaries that receive
only monocular input and that share one of their lines-of-sight.
The binocularly matched boundaries in the near and far depths,
represented, respectively, in the third row by the first bar of the
second plot and the second bar of third plot, are in the same line-
of-sight. But they have the same (or almost the same) strength,
and therefore do not kill each other because the disparity fil-
ter encourages unique matching, via line-of-sight inhibition, but
does not enforce it. The surviving V2 boundary representations

FIGURE 10 | Simulation of dichoptic masking in Panum’s limiting case

studied by McKee et al. (1995). See the caption of Figure 6 for an
explanation of the variables being simulated, and the text for further details.

are shown in the fourth row. Those regions in V2 that are enclosed
by a connected boundary give rise to surface percepts in V4, as
shown in the fifth row.

Figure 10B shows the left and right V2 monocular surfaces
and the corresponding surface-to-boundary signals, in both ini-
tial and final stages. The surface-to-boundary signals enhance the
surviving binocular boundaries in the second and fourth plots
of the fourth row of Figure 9A, which have closed contours that
enclose the surface filling-in process, and therefore generate the
correct surface percept. The model correctly predicts that the bar
of the left input is matched with both bars of the right input, and
so masks them both equally (McKee et al., 1995).

4. MODEL EQUATIONS
This section describes the 3D LAMINART model equations. Since
it describes the model used in Cao and Grossberg (2005), the
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description of the equations is adapted from the exposition in that
article.

Each neuron is a single voltage compartment whose mem-
brane potential, v(t), obeys:

Cm
dv(t)

dt
= (Eleak − v(t))gleak + (Eexcit − v(t))gexcit(t)

+ (Einhib − v(t))ginhib(t). (1)

In (1), parameters E denote reversal potentials, gleak is a con-
stant leakage conductance, and the time-varying conductances
gexcit(t) and ginhib(t) are the total excitatory and inhibitory inputs
to the cell (Hodgkin, 1964; Grossberg, 1968, 1973). The prod-
ucts of potential differences times conductances define shunting
interactions that enable automatic gain control and normaliza-
tion of activity to occur among the interacting variables. The
following notation is used for the capacitance term Cm = 1,
the leakage conductance gleak = A, and the reversal potentials
Eexcit = B, Einhib = −C, and Eleak = 0. When Equation (1) can be
rewritten as:

dv

dt
= −Av + (B − v)gexcit − (C + v)ginhib. (2)

In (2), A is a constant decay rate, B is the maximum membrane
potential, C is the minimum membrane potential, gexcit is the
total excitatory input, and ginhib is the total inhibitory input. All
the simulations use a single set of parameters. For simplicity,
the same parameter symbol (e.g., α) may be used in different
equations, but with a different value, that is specified in each
equation Figure 1 labels the model processing stages with the
corresponding mathematical variable names to facilitate track-
ing the network relationships among the various variables. The
non-technical summary of model processes in Section 2 paral-
lels the definition of mathematical equations in this section to
provide further expository support. Simulations were performed
using Matlab.

4.1. LGN
The LGN cell membrane potentials, xL/R

ij , obey the following
shunting on-center off-surround equation:

dxL/R
ij

dt
= −αxL/R

ij +
(
β − xL/R

ij

)
IL/R

ij − xL/R
ij

∑
p �= i,q �= j

GpqijI
L/R
pq , (3)

where L/R designates that the cell belongs to the left or right
monocular pathway, indices i and j denote the position of the
input on the retina, α is a constant (10−5) rate of decay, β

is a constant (9.9) maximum membrane potential, IL/R
ij is the

luminance input of the left or right retinal image to the excita-
tory on-center, and Gpqij is a Gaussian inhibitory off-surround
kernel:

Gpqij = exp

(
−
(
p − i

)2 + (
q − j

)2

2σ 2

)
, (4)

where σ scales the kernel size (1.5). The steady-state cell mem-
brane potentials are:

xL/R
ij =

βIL/R
ij

α +∑
p,q

GpqijI
L/R
pq

. (5)

Equation (5) was used in the simulations.

4.2. V1 LAYER 4 SIMPLE CELLS
At steady-state, the membrane potentials, sL/R,+

ijk , of simple cells
that respond to dark-light contrast polarity are given by:

sL/R,+
ijk =

∑
p,q

Kpqk

[
xL/R

i + p,j + q

]+
. (6)

In (6), the superscript L/R, + means L+ or R+. L denotes left
monocular, R denotes right monocular, + indicates that the sim-
ple cell responds to dark-light contrast polarity, and k denotes
orientation. Two orientations, vertical (k = 1) and horizontal
(k = 2), were simulated. The threshold linear signal function
[x]+ = max(x,0), and Kpqk is an orientationally-tuned Gabor
kernel:

Kpqk = φ sin

(
2π(r − 0.5)

τ

)

exp

[
−1

2

(
(p − 0.5)2

σ 2
p

+ (q − 0.5)2

σ 2
q

)]
. (7)

In (7), terms φ,τ ,σp,σq are constants (4.4, 3π , 0.6, 0.6) repre-
senting kernel amplitude and dimensions; r = p for cells that
respond to vertical boundaries; and r = q for those that respond
to horizontal boundaries.

The cell membrane potentials of simple cells with light–dark
contrast polarity are the inverse of those in (6):

sL/R,−
ijk = −sL/R,+

ijk = −
∑
p,q

Kpqk

[
xL/R

i + p,j + q

]+
. (8)

4.3. V1 LAYER 3B MONOCULAR SIMPLE CELLS
The steady-state membrane potentials, bL/R,+/−

ijk of the layer 3B
monocular simple cells obey:

bL/R,+/−
ijk = 2

[
sL/R,+/−
ijk

]+
. (9)

The factor of 2 compensates for monocular simple cells receiv-
ing an input from one eye whereas binocular simple cells receive
inputs from both eyes.

4.4. V1 LAYER 3B BINOCULAR SIMPLE CELLS
The layer 3B binocular simple cells implement the obligate
property by receiving excitatory inputs from layer 4 and bal-
anced inhibitory input from layer 3B inhibitory interneurons
at the same position and disparity. Their membrane potentials,
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bB,+/−
ijkd obey:

d

dt
bB,+/−

ijkd = −γ1bB,+/−
ijkd +

(
1 − bB,+/−

ijkd

)
([

sL,+/−
(i + s)jk − θ

]+ +
[

sR,+/−
(i − s)jk − θ

]+)

−α

([
qL,+/−

ijkd

]+ +
[

qL,−/+
ijkd

]+

+
[

qR,+/−
ijkd

]+ +
[

qR,−/+
ijkd

]+)
, (10)

where the parameters γ1, α, and θ (0.1, 7.2, 0.4) represent the
decay rate of the membrane potential, the inhibitory gain, and

the signal threshold. The variables qL/R,+/−
ijkd are membrane poten-

tials of inhibitory interneurons in layer 3B, k is the orientation, d
is the disparity to which the model neuron selectively fires, and
index s is the positional shift between left and right eye inputs
that depends on the disparity; see Table 1.

Layer 3B inhibitory interneuronal cell membrane potentials,

qL/R,+/−
ijkd , receive excitatory input from layer 4 and inhibitory

input from all other inhibitory interneurons that code the same
position and disparity. Their left (L) and right (R) subpopulations
obey:

d

dt
qL,+/−

ijkd = − γ2qL,+/−
ijkd +

[
sL,+/−
(i + s)jk − θ

]+ − β

([
qR,+/−

ijkd

]+

+
[

qR,−/+
ijkd

]+ +
[

qL,−/+
ijkd

]+)
, (11)

and

d

dt
qR,+/−

ijkd = − γ2qR,+/−
ijkd +

[
sR,+/−
(i − s)jk − θ

]+ − β

([
qL,+/−

ijkd

]+

+
[

qL,−/+
ijkd

]+ +
[

qR,−/+
ijkd

]+)
. (12)

In (11) and (12), the parameters γ2, β, and θ (4.5, 4, 0.4) are the
membrane potential decay rate, the inhibitory gain, and the signal
threshold, respectively.

Table 1 | The allelotropic shift (s) is the amount that the left and right

monocular contours must be displaced to form a single fused

binocular contour.

Disparity V. Near Near Zero Far V. Far

(d) disparity disparity disparity disparity disparity

Allelotropic

shift (s)

−8 −4 0 +4 +8

It depends on the disparity. It is zero for matches in the fixation plane because

these matches are between contours at retinal correspondence. Figure 3 illus-

trates the allelotropic shift and shows that a left monocular contour needs to be

shifted more to the right for matches that are further from the observer, whereas

a right monocular contour needs to be shifted in the opposite direction.

Mild constraints on these parameter values are sufficient to
ensure that the binocular simple cells act like “obligate cells”
(Poggio, 1991) that respond vigorously only when their left
and right inputs are approximately equal in size. Equation (10)
was solved at equilibrium, using the equations described in the
Obligate Theorem (see Section 4) to speed up the simulations.

4.5. V1 LAYER 2/3 MONOCULAR AND BINOCULAR COMPLEX CELLS
V1 layer 2/3 monocular and binocular complex cells pool the
cell membrane potentials of monocular and binocular layer 3B
simple cells of both contrast polarities at each position and ori-
entation. These complex pyramidal cells also emit long-range,
collinear, coaxial connections within layer 2/3 whereby they excite
each other. The long-range excitatory connections also diverge
to excite short-range, disynaptic interneurons that inhibit target
complex cells and nearby inhibitory interneurons. The recurrent
inhibition normalizes the total activity of the inhibitory interneu-
ronal network. The “two-against-one” balance of excitation and
inhibition that converges on the pyramidal cells implements the
bipole property that controls boundary grouping (Grossberg and
Mingolla, 1985a,b; Grossberg and Raizada, 2000). Monocular
and binocular bipole cells obey the same laws but have differ-
ent inputs. The membrane potential, cijkd, of binocular collinear
bipole cell in V1 layer 2/3 obeys:

d

dt
cijkd = −αcijkd + (

β − cijkd
)

(
Ic
ijkd

(
γ1 + γ2

[∑
v

HEc
ijkdv − HIc

ijkd

]+)
+ γ3

[
cijkd − βc

]+)

− (
1 + cijkd

) (
CP

ijkd + CS
ijkd

)
, (13)

with parameters α, β, γ (α = 20, β = 7, γ1 = 1, γ2 = 1, γ3 =
0.5). The input Ic

ijkd from V1 layer 3B binocular simple cells obeys:

Ic
ijkd = μ

([
bB,+

ijkd − θ
]+ +

[
bB,−

ijkd − θ
]+)

. (14)

with parameters μ and θ (20, 0.1). The excitatory input HEc
ijkdv

derives from long-range recurrent connections in V1 layer 2/3 to
a complex cell at position (i,j), orientation k, disparity d, and side
v of the bipole cell (Grossberg and Swaminathan, 2004). Term∑

v HEc
ijkdv sums inputs from both sides v = 1, 2 of the bipole cell:

HEc
ijkdv =

∑
pq

Wc
pqijkv

[
cpqkd − ζc

]+
. (15)

In (15), ζc is a threshold (0), and Wc
pqijkv is the long-range connec-

tion weight from the bipole cell at position (p,q) to the bipole cell
at position (i,j), orientation k, and side v. The connection weights
for the horizontal orientation (k = 2) obey (v = 1 for left branch
and v = 2 for right branch):

Wc
pqij21 =

[
sign(i − p) exp

(
−
(

(i − p)2

σ 2
p

+ (j − q)2

σ 2
q

))]+
, (16)
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and

Wc
pqij22 =

[
sign(p − i) exp

(
−
(

(i − p)2

σ2
p

+ (j − q)2

σ2
q

))]+
, (17)

where sign(x) = 1 if x > 0, −1 if x < 0, and 0 otherwise.
Parameters σp = 8, σq = 0.3 , and the spatial connection range
(diameter) is 3. Connection weights for the vertical orientation
are obtained by rotation.

Term HIc
ijkd is the total inhibitory input from the inhibitory

interneurons:

HIc
ijkd =

∑
v

[
sc
ijkdv

]+
. (18)

In (18), sc
ijkdv is the activity of the interneuron that inhibits the

bipole cell at position (i,j), orientation k, disparity d, from side v,
where:

d

dt
sc
ijkdv = δI

(
−sc

ijkdv + HEc
ijkdv − ηsc

ijkdv

[
sc
ijkdu

]+)
. (19)

In (19), u and v are the two branches of orientation k, δI is a
large gain that ensures rapid response of the inhibitory interneu-

ron, and η = 1. Term HEc
ijkdv from the long-range connection

excites the interneuron, whereas term −ηsc
ijkdv

[
sc
ijkdu

]+
defines

the recurrent inhibition that normalizes the total inhibitory activ-
ity, thereby enabling the 2-to-1 bipole interaction. Solving (19)
at equilibrium yields the steady-state inhibitory activities that are
used in the simulations:

sc
ijkdv =

(
−Bv +

√
B2

v + 4ηHEc
ijkdv

)
/2η, (20)

and

sc
ijkdu =

(
−Bu +

√
B2

u + 4ηHEc
ijkdu

)
/2η. (21)

In (20) and (21), respectively, Bv = 1 + η
(

HEc
ijkdu − HEc

ijkdv

)
and

Bu = 1 + η
(

HEc
ijkdv − HEc

ijkdu

)
. A bipole cell will not fire when it

receives excitatory input from only one side of its long-range con-
nection, but it can fire when it receives excitatory inputs from
both sides. In (19), for example, when HEc

ijkdu equals zero, then

sc
ijkdu equals zero. As a result, sc

ijkdv equals HEc
ijkdv. The total exci-

tatory input from the long-range connections then equals the
total inhibitory input from the inhibitory interneurons, and can-
cel. However, when the collinear excitatory long-range recurrent
inputs HEc

ijkdu and HEc
ijkdv from both sides of the target cell are far

from zero, the sum of these excitatory inputs is larger than the
total self-normalizing inhibitory input, and thus the cell can fire
if the cell if it is in V2 see Equation (30). If the cell is in V1, as
in Equation (13), then the excitatory inputs from its long-range
connections are modulatory, thereby enhancing bipole cell firing
only if it also receives excitatory input from layer 4.

Term γ3[cijkd − βc]+ in (13) is self-excitatory feedback, with
threshold βc = 0.03. Term CP

ijkd is the inhibitory input at the same
position and disparity from other bipole cells that code different
orientations:

CP
ijkd = γ4

⎛
⎝∑

r �= k

[
cijrd − βc

]+⎞⎠ , (22)

where γ4 = 5. Term CS
ijkd is the inhibitory input from spatial

competition across position and orientation, but within dispar-
ity. Competition across position sharpens and localizes the spatial
positions of boundaries. Competition across orientation prevents
abutting lines in the image of different orientations from gen-
erating illusory contours that can penetrate the interior of a
differently oriented boundary. This latter property is called spatial
impenetrability (Grossberg and Mingolla, 1987; Grossberg and
Williamson, 2001). Term CS

ijkd obeys:

CS
ijkd = γ5

∑
p �= i,q �= j,r

Wpqijk
[
cpqrd − βc

]+
. (23)

In (23), γ5 = 1, and Wpqijk is an elliptic Gaussian kernel elon-
gated at the orientation perpendicular to k. For the Wpqijk vertical
orientation (k = 1):

Wpqij1 = exp

(
−
(

(i − p)2

σ 2
p

+ (j − q)2

σ 2
q

))
, (24)

where σp > σq (σp = 8, σq = 0.3). The horizontally oriented
kernel is obtained by rotation.

The membrane potential, cL/R
ijk , of a monocular complex cell

obeys the same equation as that of a binocular complex cell cijkd:

d

dt
cL/R

ijk = −αcL/R
ijk +

(
β − cL/R

ijk

)
(

Ic,L/R
ijk

(
γ1 + γ2

[∑
v

HEc
ijkv − HIc

ijk

]+)
+ γ3

[
cL/R

ijk − βc

]+)

−
(

1 + cL/R
ijk

) (
CP

ijk + CS
ijk

)
. (25)

The input Ic,L/R
ijk from V1 layer 3B monocular simple cells obeys:

Ic,L/R
ijk =

[
bL/R,+

ijk − θ
]+ +

[
bL/R,−

ijk − θ
]+

. (26)

The parameters α = 20,β = 8, and θ = 0.4. The other
parameters are the same as the binocular parameters.

4.6. V2 LAYER 4
Most V2 cells are binocular (Hubel and Livingstone, 1987),
consistent with the model’s combination of V1 left and right
monocular inputs with binocular inputs in layer 4 of V2, such
that monocular inputs are added to all depth planes along their
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respective lines–of–sight, yielding. Initially, the following initial
membrane potential, vijkd, of a V2 layer 4 cell:

vijkd = αh

([
c−

ijkdθ
]+)+ β

(
h

([
cL

(i + s)jk − θm

]+)

+ h

([
cR

(i − s)jk − θm

]+))
. (27)

In (27), s is the positional shift between left and right eye input
(see Table 1); h is a signal function with h(x) = 1 if x > 0, 0 oth-
erwise;  and θm are signal thresholds (0.06, 0.3); and α and β

(2.6, 0.8) are the gains of the excitatory binocular and monocular
connections, respectively.

These layer 4 boundary cells in the V2 pale stripes also receive
feedback signals from left and right monocular surfaces in the V2
thin stripes. These are the surface-to-boundary surface contour
feedback signals that were discussed in constraint (7) of Section 1.
When these surface contour signals are active, (27) is replaced, at
steady-state, by:

vijkd =
(

αh
([

cijkd − θ
]+)+ β

(
h

([
cL

(i + s)jk − θm

]+)

+ h

([
cR

(i − s)jk − θm

]+)))
(1 + αf fijkd)

(
δ + (1 − δ)h(fijkd)

)
. (28)

In (28), fijkd is the total surface contour feedback signal, αf is its
excitatory gain (1.1), and α, β, h, θ and θm are the same as in (27).
Parameter δ (0.2) scales the activities of layer 4 cells. If δ < 1, then
the activities of layer 4 cells that do not receive surface contours
signals are suppressed to some degree. The total surface contour
feedback signal fijkd obeys:

fijkd =
[

f L
ijkd − θf

]+ +
[

f R
ijkd − θf

]+
. (29)

In (29), f L
ijkd and f R

ijkd are the surface contour signals derived
from left and right monocular surfaces, respectively, and θf is a
threshold (0.03).

4.7. V2 LAYER 2/3 COMPLEX CELLS
The bipole cells in V2 layer 2/3 implement perceptual grouping
by long-range horizontal connections, and include the disparity
filter as part of the inhibitory interactions that control perceptual
grouping. See constraint (5) of Section 1. The membrane poten-
tial, gijkd, of the bipole cell at position (i,j) that codes orientation
k and disparity d obeys:

d

dt
gijkd = −αgijkd + (β − gijkd)

(
γ1I

g
ijkd + γ2

[∑
v

H
Eg

ijkdv − H
Ig

ijkd

]+)

− (1 + gijkd)GP
ijkd, (30)

where α, β, γ1, and γ2 are constants (α = 30, β = 10, γ1 = 1.4,
γ2 = 1). Term I

g
ijkd in (30) is the input from V2 layer 4:

I
g
ijkd = [vijkd]+. (31)

As for V1 layer 2/3 cells, V2 layer 2/3 bipole cells receive long-
range recurrent excitatory signals from other (almost) collinear
and coaxial bipole cells at nearby positions with the same dis-

parity preference. Term H
Eg

ijkdv is the total excitatory input from
branch v of the bipole cell at position (i,j), orientation k and
disparity d:

H
Eg
ijkdv =

∑
pq

W
g
pqijkv

[
gpqkd − ζg

]+
. (32)

The long-range connection weight W
g
pqijkv is the same as Wc

pqijkv in
(16) and (17), but with a larger spatial range (diameter = 7) and

σp = 15, σq = 0.1, and ζg = 0.03. Term H
Ig
ijkd is the total input

from the inhibitory interneurons:

H
Ig
ijkd =

∑
v

[
s
g
ijkdv

]+
. (33)

The activity, s
g
ijkdv, of the inhibitory interneuron for branch v has

the same form as the inhibitory interneurons that are defined in
Equation (19) for V1 layer 2/3:

d

dt
s
g
ijkdv = δI

(
−s

g
ijkdv + H

Eg

ijkdv − ηs
g
ijkdv

[
s
g
ijkdu

]+)
. (34)

The parameters in (34) are also the same as those in (19).
Term GP

ijkd in (30) is the disparity filter (DF in Figure 1A)
whose inhibitory signals cross disparities along the lines-of-sight:

GP
ijkd = γ3

∑
d′ �= d

Mdd′
([

g(i + s′ − s)jkd′ − βg
]+

+ [
g(i + s − s′)jkd′ − βg

]+)
. (35)

In (35), γ3 is the gain (5) of the total disparity filter inhibition;
Mdd′ is the connection strength of line-of-sight inhibition from
all cells that share a monocular input between disparities d and d′
(see Table 2); and

[
g(i + s′ − s)jkd′ − βg

]+
and

[
g(i + s − s′)jkd′ − βg

]+
are V2 layer 2/3 bipole cell inhibitory inputs along the left
and right lines-of-sight with the corresponding disparity-induced
positional shifts s and s′ (see Table 1) and threshold βg (0.03).

The disparity filter (GP) works across a range of parameter val-
ues. As illustrated in Table 2, it needs to be symmetrical about
the fixation plane (i.e., the near and far disparity planes equally
inhibit and are equally inhibited by the zero disparity plane), and
the zero disparity plane inhibits the near and far disparity planes
more than conversely.
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Table 2 | The inhibition coefficients Mdd ′ that define line-of-sight

inhibition.

V. Near Near Zero Far V. Far

V. Near – 3 5 3 2

Near 0.4 – 2.5 2 0.4

Zero 0.3 1.5 – 1.5 0.3

Far 0.4 2 2.5 – 0.4

V. Far 2 3 5 3 –

Each neuron is inhibited by every other neuron that shares either of its inputs by

an amount that depends on the disparities of the inhibited and inhibiting neurons

(cf. Figure 3).

4.8. V2 THIN STRIPE MONOCULAR SURFACE FILLING-IN
Monocular surface filling-in occurs within V2 thin stripes in
response to lightness signals from LGN via V1 blobs, and binocu-
lar boundary signals from V2 layer 2/3 bipole cells. The boundary
signals create resistive barriers that contain the spread of lightness

during the filling-in process. The activity FL/R
ijd in each Filling-In

Domain, or FIDO, is the membrane potential of a left (L) or right
(R) monocular surface cell at position (i,j) and disparity d. These
activities obey a nearest-neighbor diffusion equation (Grossberg
and Todorović, 1988):

ε
d

dt
FL/R

ijd = −αFL/R
ijd +

∑
(p,q) ∈ Nij

(
FL/R

pqd − FL/R
ijd

)
�pqijd + xL/R

ijd .(36)

The rate parameter ε << 1 ensures that this surface filling-in
process within the thin stripes is faster than the boundary group-
ing process within the pale stripes. Parameter α is the decay
rate (1.0); and Nij is the set of the nearest-neighbor positions
of (i,j):

Nij = {(
i, j − 1

)
,
(
i − 1, j

)
,
(
i + 1, j

)
,
(
i, j + 1

)} ; (37)

and xL/R
ijd is the lightness input from the left (L) or right

(R) LGN:

xL
ijd =

[
xL

(i + s)j

]+
(38)

and

xR
ijd =

[
xR

(i − s)j

]+
, (39)

where s is the disparity-sensitive positional shift (see Table 1).
The boundary-gated diffusion coefficients, �pqijd, in (36)
are suppressed at positions where the boundary signals are
large:

�pqijd = δ

1 + ρ
(
g(i − 0.5)(j − 0.5)d + g(i − 0.5)(j + 0.5)d

)
if p = i − 1 and q = j, (40)

�pqijd = δ

1 + ρ
(
g(i + 0.5)(j − 0.5)d + g(i + 0.5)(j + 0.5)d

) ,
if p = i + 1 and q = j, (41)

�pqijd = δ

1 + ρ
(
g(i − 0.5)(j − 0.5)d + g(i + 0.5)(j − 0.5)d

) ,
if p = i and q = j − 1, (42)

�pqijd = δ

1 + ρ
(
g(i − 0.5)(j + 0.5)d + g(i + 0.5)(j + 0.5)d

) ,
if p = i and q = j + 1. (43)

The diffusion parameter δ = 2000, and the boundary-gating
parameter ρ = 200. The boundary terms in these equations sum
over all orientations of bipole cell activations at the corresponding
position and disparity:

gijd = γ
∑

k

[
gijkd − θg

]+
, (44)

with gain γ = 10 and threshold θg = 0.03.
In Equations (40–(43), the lattice of boundary-gating signals

is offset by [0.5, 0.5] relative to the lattice of discounted light-
ness inputs. This enables the boundary-gating signals to contain
filling-in without trapping the lightness inputs within the bound-
ary itself. These two processing streams are also spatially displaced
in the cortical map. Spurious edge effects were avoided by using
wrap–around whereby the last element of a row/column is adja-
cent to the first element of the same row/column (Grossberg and
Howe, 2003).

The steady-state of (36) is used in the simulations; namely:

FL/R
ijd =

xL/R
ijd + ∑

(p,q) ∈ Nij

FL/R
pqd �pqijd

α + ∑
(p,q) ∈ Nij

�pqijd
. (45)

This approximation is justified by the assumption of filling-in that
is fast relative to the rate of boundary formation. During each
time step of boundary grouping, monocular surfaces are filled-
in using (45) and generate surface-to-boundary surface contour
signals before the process is reiterated.

4.9. SURFACE CONTOUR FEEDBACK SIGNALS
The surface contour signals project from V2 monocular surfaces
in the thin stripes to V2 layer 4 cells in the pale stripes to modu-
late binocular boundaries in layer 2/3; see Equation (28). Output
signals from the left (L) and right (R) monocular surface activities
(45) are derived from oriented filters:

f L/R,+
ijkd =

∑
p,q

Kpqk

[
FL/R

i + p,j + q,d

]+
, (46)

f L/R,−
ijkd = −f L/R,+

ijkd = −
∑
p,q

Kpqk

[
FL/R

i + p,j + q,d

]+
. (47)
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where the Gabor kernel Kpqk is defined in Equation (7). Their sum
defines the final surface contour signals:

f L/R
ijkd =

[
f L/R,+
ijkd

]+ +
[

f L/R,−
ijkd

]+
. (48)

V4 binocular surface filling-in: Visible 3D percepts. V4 is pre-
dicted in the model to support visible percepts of 3D surfaces.
To accomplish this, V4 receives lightness signals from the LGN
via V1 blobs and V2 thin stripes, and boundary signals from V2
layer 2/3. It combines the monocular lightness signals from the
two eyes that correspond to the same 3D location. Its binocular
lightness input, zijd, sums the rectified monocular lightness sig-
nals from the left (L) and right (R) eyes that correspond to the
same 3D position:

zijd =
[

xL
(i + s)j

]+ +
[

xR
(i − s)j

]+
. (49)

In (49), i, j are positional indices, d disparity and s the posi-
tional shift defined in Table 1. V4 cell membrane potentials, wijd,
undergo binocular surface filling-in using a steady-state diffusion
equation similar to (36):

wijd =
zijd + ∑

(p,q) ∈ Nij

wpqd�pqijd

α + ∑
(p,q) ∈ Nij

�pqijd
. (50)

In (50), parameter α = 1; the set of nearest-neighbors Nij is
defined in (A37); and �pqijd is defined in (40)–(43) with the dif-
fusion parameter δ = 1000 and the boundary-gating parameter
ρ = 400.

4.10. OBLIGATE THEOREM
The following theorem shows that the obligate property holds at
the binocular simple cells in layer 3B. See Grossberg and Howe
(2003) for a proof.

Obligate Theorem. Consider the system:

dbB,+
ijkd

dt
= − γ1bB,+

ijkd +
(

1 − bB,+
ijkd

) (
SL,+

(i + s)jk + SR,+
(i − s)jk

)

−α

([
qL,+

ijkd

]++
[

qL,−
ijkd

]++
[

qR,+
ijkd

]++
[

qR,−
ijkd

]+)
,(51)

dqL,+
ijkd

dt
= − γ2qL,+

ijkd + SL,+
(i + s)jk

−β

([
qR,+

ijkd

]+ +
[

qR,−
ijkd

]+ +
[

qL,−
ijkd

]+)
, (52)

dqR,+
ijkd

dt
= − γ2qR,+

ijkd + SR,+
(i − s)jk

−β

([
qL,+

ijkd

]+ +
[

qL,−
ijkd

]+ +
[

qR,−
ijkd

]+)
, (53)

dqL,−
ijkd

dt
= − γ2qL,−

ijkd + SL,−
(i + s)jk

− β

([
qR,−

ijkd

]+ +
[

qR,+
ijkd

]+ +
[

qL,+
ijkd

]+)
, (54)

and

dqR,−
ijkd

dt
= − γ2qR,−

ijkd + SR,−
(i − s)jk

−β

([
qL,−

ijkd

]+ +
[

qL,+
ijkd

]+ +
[

qR,+
ijkd

]+)
, (55)

where

SL,+/−
(i + s)jk =

[
sL,+/−
(i + s)jk − θ

]+
, (56)

and

SR,+/−
(i − s)jk =

[
sR,+/−
(i − s)jk − θ

]+
. (57)

In (6) and (7), sL,+/−
(i + s)jk and sR,+/−

(i − s)jk are the monocular simple cell
activities defined by (6) and (8). The parameters θ ≥ 0, γ1 > 0
and

0 < β < γ2 < α < γ2 + β (58)

Then, in response to constant inputs, the system converges expo-
nentially to the following unique equilibrium. Let � = γ1 +
SL,+

(i + s)jk + SR,+
(i − s)jk.

(1) if 0 < SL,+
(i + s)jk, SR,+

(i − s)jk; and
β

γ2
≤

SL,+
(i + s)jk

SR,+
(i − s)jk

≤ γ2

β
,

then at equilibrium

bB,+
ijkd = 1

�

(
1 − α

γ2 + β

)(
SL,+

(i + s)jk + SR,+
(i − s)jk

)
; (59)

(2) if 0 < SV,L,+
(i + s)j, SV,R,+

(i − s)j ; and
SL,+

(i + s)jk

SR,+
(i − s)jk

>
γ2

β2
,

then at equilibrium

bB,+
ijkd = 1

�

(
SR,+

(i − s)jk +
(

1 − α

γ2

)
SL,+

(i + s)jk

)
; (60)

(3) if 0 < SV,L,+
(i + s)j, SV,R,+

(i − s)j ; and
SL,+

(i + s)jk

SR,+
(i − s)jk

<
β

γ2
,
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then at equilibrium

bB,+
ijkd = 1

�

(
SL,+

(i + s)jk +
(

1 − α

γ2

)
SR,+

(i − s)jk

)
; (61)

(4) for all other values of SL,+
(i + s)jk, SR,+

(i − s)jk,

at equilibrium bB,+
ijkd ≤ 0. (62)

5. DISCUSSION: CONSCIOUS 3D SURFACE PERCEPTS ARE
PART OF SURFACE-SHROUD RESONANCES

The current simulations illustrate how the interactions among
identified neurons in laminar cortical circuits can give rise to
consciously seen surface percepts such as the Venetian blind and
Panum’s limiting case percepts. These simulations, along with
those in articles such as Cao and Grossberg (2005, 2012); Fang
and Grossberg (2009), Grossberg and Howe (2003), Grossberg
et al. (2007), Grossberg and McLoughlin (1997), Grossberg and
Raizada (2000), Grossberg and Swaminathan (2004), Grossberg
and Yazdanbakhsh (2005), Kelly and Grossberg (2000), and
Raizada and Grossberg (2001), show how the model cortical
interactions of FACADE theory and its laminar cortical exten-
sion in the 3D LAMINART model provide unified explanations,
and testable predictions, about a wide variety of psychophysical
and neurobiological data about 2D and 3D perceptual grouping,
surface perception, and figure-ground separation.

The filled-in surface representations in all of these articles have
parametric properties that closely match visually perceived and
reported surface percepts by human subjects. It is for this reason
that the liberty is taken of calling them model representations of
conscious percepts. However, the model as stated in the current
article is insufficient to represent the dynamics that may subserve
a conscious percept in the brain. This insufficiency may be bet-
ter understood from the vantage point of other theoretical results
which clarify how the current model may be consistently embed-
ded into a larger theory wherein more sophisticated correlates of
conscious events may be represented.

This insufficiency may be summarized in the light of two theo-
retical predictions. The first prediction is part of FACADE theory
(Grossberg, 1994) and the 3D LAMINART model. It claims that
“conscious visual percepts are surface percepts” that are repre-
sented within the surface cortical stream through V1 blobs, V2
thin stripes, and their projections to V4 and beyond. This predic-
tion coexists with the companion prediction that “all boundaries
are invisible” within the boundary cortical stream through V1
interblobs, V2 pale stripes, and their projections to V4 and
beyond.

The second prediction is part of Adaptive Resonance Theory,
or ART (Grossberg, 1976, 2012, 2013; Carpenter and Grossberg,
1991, 1993). It claims that “all conscious states are resonant
states.”

Putting together these two predictions raises the question:
what resonance enables filled-in surface representations to be
consciously seen? Recent research on how the brain coordi-
nates attention, perception, eye movement search, learning, and
recognition of invariant object categories, embodied in a class
of models whose variations are called ARTSCAN, distributed

ARTSCAN (dARTSCAN), positional ARTSCAN (pARTSCAN),
and ARTSCAN Search (Fazl et al., 2009; Grossberg, 2009; Cao
et al., 2011; Foley et al., 2012; Chang et al., 2014), has shed new
light on this question. In particular, these models have explained
and predicted how surface representations, say in cortical area V4,
bid for spatial attention, say in posterior parietal cortex (PPC),
and how a winning surface, to which focused spatial attention is
paid, enables spatial attention in PPC to fit itself to the shape of
the surface. Such form-fitting spatial attention is sometimes called
an attentional shroud (Tyler and Kontsevich, 1995) and the feed-
back interaction that maintains spatial attention in PPC upon the
surface of interest in V4 is said to form a surface-shroud resonance.

Grossberg (2012, 2013) has predicted that every conscious
visual surface percept is part of a surface-shroud resonance. Such
a resonance has been proposed to propagate both top-down to
lower cortical levels, such as V1, where finer features of seen
representations may be represented, as well as bottom-up to
higher cortical areas. For purposes of the present article, it suf-
fices to observe that the current 3D LAMINART model can be
consistently embedded into a larger system for focusing spatial
attention from the Where cortical stream upon consciously seen
visual surface representations using surface-shroud resonances,
while learning to recognize them in the What cortical stream
using feature-category resonances, such as those modeled by ART
(Grossberg, 1980, 2012; Carpenter and Grossberg, 1991, 1993).
Said more simply, a mechanistic account is now available for doc-
umenting the differences between seeing and knowing, and how
they are coordinated into seamless moments of conscious aware-
ness using interactions between the What and Where cortical
streams.
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